32-bit Complex Scalar Floating-Point API#

group float_complex_s32_api

Functions

float_complex_s32_t float_complex_s32_mul(const float_complex_s32_t x, const float_complex_s32_t y)#

Multiply two float_complex_s32_t together.

The inputs \(x\) and \(y\) are multiplied together (using complex multiplication) for a result \(a\), which is returned.

Operation Performed

\[\begin{aligned} & a \leftarrow x \cdot y \end{aligned}\]

Parameters:
  • x[in] Input operand \(x\)

  • y[in] Input operand \(y\)

Returns:

\(a\), the complex product of \(x\) and \(y\)

float_complex_s32_t float_complex_s32_add(const float_complex_s32_t x, const float_complex_s32_t y)#

Add two float_complex_s32_t together.

The inputs \(x\) and \(y\) are added together for a result \(a\), which is returned.

Operation Performed

\[\begin{aligned} & a \leftarrow x + y \end{aligned}\]

Parameters:
  • x[in] Input operand \(x\)

  • y[in] Input operand \(y\)

Returns:

\(a\), the sum of \(x\) and \(y\)

float_complex_s32_t float_complex_s32_sub(const float_complex_s32_t x, const float_complex_s32_t y)#

Subtract one float_complex_s32_t from another.

The input \(y\) is subtracted from the input \(x\) for a result \(a\), which is returned.

Operation Performed

\[\begin{aligned} & a \leftarrow x - y \end{aligned}\]

Parameters:
  • x[in] Input operand \(x\)

  • y[in] Input operand \(y\)

Returns:

\(a\), the difference of \(x\) and \(y\)