32-bit Complex Scalar Floating-Point API#
- group float_complex_s32_api
Functions
-
float_complex_s32_t float_complex_s32_mul(const float_complex_s32_t x, const float_complex_s32_t y)#
Multiply two float_complex_s32_t together.
The inputs \(x\) and \(y\) are multiplied together (using complex multiplication) for a result \(a\), which is returned.
- Operation Performed
- \[\begin{aligned} & a \leftarrow x \cdot y \end{aligned}\]
- Parameters:
x – [in] Input operand \(x\)
y – [in] Input operand \(y\)
- Returns:
\(a\), the complex product of \(x\) and \(y\)
-
float_complex_s32_t float_complex_s32_add(const float_complex_s32_t x, const float_complex_s32_t y)#
Add two float_complex_s32_t together.
The inputs \(x\) and \(y\) are added together for a result \(a\), which is returned.
- Operation Performed
- \[\begin{aligned} & a \leftarrow x + y \end{aligned}\]
- Parameters:
x – [in] Input operand \(x\)
y – [in] Input operand \(y\)
- Returns:
\(a\), the sum of \(x\) and \(y\)
-
float_complex_s32_t float_complex_s32_sub(const float_complex_s32_t x, const float_complex_s32_t y)#
Subtract one float_complex_s32_t from another.
The input \(y\) is subtracted from the input \(x\) for a result \(a\), which is returned.
- Operation Performed
- \[\begin{aligned} & a \leftarrow x - y \end{aligned}\]
- Parameters:
x – [in] Input operand \(x\)
y – [in] Input operand \(y\)
- Returns:
\(a\), the difference of \(x\) and \(y\)
-
float_complex_s32_t float_complex_s32_mul(const float_complex_s32_t x, const float_complex_s32_t y)#