
Design and manufacture systems with flash memory

IN THIS DOCUMENT

· Boot a program from flash memory

· Generate a flash image for manufacture

· Perform an in-field upgrade

· Customize the flash loader

xTIMEcomposer can be used to target xCORE devices that use SPI flash memory for
booting and persistent storage. The xCORE flash format is shown in Figure 1.

Flash
loader

Factory
image0 1 2 3

Upgrade
image

BOOT PARTITION DATA
PARTITION0

Upgrade
image

Default
0 bytes

(unavailable)

Sector boundariesHardware protected

Figure 1:

Flash format
diagram

The flash memory is logically split between a boot and data partition. The boot
partition consists of a flash loader followed by a “factory image” and zero or more
optional “upgrade images.” Each image starts with a descriptor that contains a
unique version number, a header that contains a table of code/data segments for
each tile used by the program and a CRC. By default, the flash loader boots the
image with the highest version with a valid CRC.

1 Boot a program from flash memory

To load a program into an SPI flash memory device on your development board,
start the command-line tools (see XM-000950-PC) and enter the following com-
mands:

1. xflash -l

XFLASH prints an enumerated list of all JTAG adapters connected to your PC and
the devices on each JTAG chain, in the form:

ID Name Adapter ID Devices

-- ---- ---------- -------

2. xflash --id ID program.xe

Publication Date: 2013/11/11 REV D

XMOS © 2013, All Rights Reserved

http://www.xmos.com/doc/XM-000950-PC/latest#get-started-start-the-command-line-tools


Design and manufacture systems with flash memory 2/6

XFLASH generates an image in the xCORE flash format that contains a first stage
loader and factory image comprising the binary and data segments from your
compiled program. It then writes this image to flash memory using the xCORE
device.

The XN file used to compile your program must define an SPI flash device and
specify the four ports of the xCORE device to which it is connected (see XM-
000929-PC).

2 Generate a flash image for manufacture

In manufacturing environments, the same program is typically programmed into
multiple flash devices.

To generate an image file in the xCORE flash format, which can be subsequently
programmed into flash devices, start the command-line tools (see XM-000950-PC)
and enter the following command:

· xflash program.xe -o image-file

XFLASH generates an image comprising a first stage loader and your program as
the factory image, which it writes to the specified file.

3 Perform an in-field upgrade

xTimeComposer and the libflash library let you manage multiple firmware upgrades
over the life cycle of your product. You can use XFLASH to create an upgrade
image and, from within your program, use libflash to write this image to the boot
partition. Using libflash, updates are robust against partially complete writes, for
example due to power failure: if the CRC of the upgrade image fails during boot,
the previous image is loaded instead.

3.1 Write a program that upgrades itself

The example program in Figure 2 uses the libflash library to upgrade itself.

The call to fl_connect opens a connection between the xCORE and SPI devices,
and the call to fl_getPageSize determines the SPI device’s page size. All read and
write operations occur at the page level.

The first upgrade image is located by calling fl_getFactoryImage and then getNext-
BootImage. Once located, fl_startImageReplace prepares this image for replace-
ment by a new image with the specified (maximum) size. fl_startImageReplace
must be called until it returns 0, signifying that the preparation is complete.

The function fl_writeImagePage writes the next page of data to the SPI device.
Calls to this function return after the data is output to the device but may return
before the device has written the data to its flash memory. This increases the
amount of time available to the processor to fetch the next page of data. The
function fl_endWriteImage waits for the SPI device to write the last page of data to

REV D

http://www.xmos.com/doc/XM-000929-PC/latest#xn-spec-externaldevice
http://www.xmos.com/doc/XM-000929-PC/latest#xn-spec-externaldevice
http://www.xmos.com/doc/XM-000950-PC/latest#get-started-start-the-command-line-tools


Design and manufacture systems with flash memory 3/6

#include <platform.h>
#include <flash.h>

#define MAX_PSIZE 256

/* initializers defined in XN file
* and available via platform.h */

fl_SPIPorts SPI = { PORT_SPI_MISO ,
PORT_SPI_SS ,
PORT_SPI_CLK ,
PORT_SPI_MOSI ,
XS1_CLKBLK_1 };

int upgrade(chanend c, int usize) {

/* obtain an upgrade image and write
* it to flash memory
* error checking omitted */

fl_BootImageInfo b;
int page[MAX_PSIZE ];
int psize;

fl_connect(SPI);

psize = fl_getPageSize ();
fl_getFactoryImage(b);
fl_getNextBootImage(b);

while(fl_startImageReplace(b, usize))
;

for (int i=0; i page[j];)
fl_writeImagePage(page);

fl_endWriteImage ();

fl_disconnect ();

return 0;
}

int main() {
/* main application - calls upgrade
* to perform an in-field upgrade */

}

Figure 2:

C program
that uses

libflash to
upgrade itself

its flash memory. To simplify the writing operation, XFLASH adds padding to the
upgrade image to ensure that its size is a multiple of the page size.

REV D



Design and manufacture systems with flash memory 4/6

The call fl_disconnect closes the connection between the xCORE and SPI devices.

3.2 Build and deploy the upgrader

To build and deploy the first release of your program, start the command-line tools
(see XM-000950-PC) and enter the following commands:

1. xcc file.xc -target=boardname -lflash -o first-release.xe

XCC compiles your program and links it against libflash. Alternatively add the
option -lflash to your Makefile.

2. xflash first-release.xe -o manufacture-image

XFLASH generates an image in the xCORE flash format that contains a first stage
loader and the first release of your program as the factory image.

To build and deploy an upgraded version of your program, enter the following
commands:

1. xcc file.xc -target=boardname -lflash -o latest-release.xe

XCC compiles your program and links it against libflash.

2. xflash --upgrade version latest-release.xe -o upgrade-image

XFLASH generates an upgrade image with the specified version number, which
must be greater than 0. Your program should obtain this image to upgrade
itself.

If the upgrade operation succeeds, upon resetting the device the loader boots the
upgrade image, otherwise it boots the factory image.

4 Customize the flash loader

xTIMEcomposer lets you customize the mechanism for choosing which image is
loaded from flash. The example program in Figure 3 determines which image to
load based on the value at the start of the data partition.

The xCORE loader first calls the function init, and then iterates over each image
in the boot partition. For each image, it calls checkCandidateImageVersion with
the image version number and, if this function returns non-zero and its CRC
is validated, it calls recordCandidateImage with the image version number and
address. Finally, the loader calls reportSelectedImage to obtain the address of the
selected image.

To produce a custom loader, you are required to define the functions init,
checkCandidateImageVersion, recordCandidateImage and reportSelectedImage.

The loader provides the function readFlashDataPage.

REV D

http://www.xmos.com/doc/XM-000950-PC/latest#get-started-start-the-command-line-tools


Design and manufacture systems with flash memory 5/6

extern void *readFlashDataPage(unsigned addr);

int dpVersion;
void *imgAdr;

void init(void) {
void *ptr = readFlashDataPage (0);
dpVersion = *(int *)ptr;

}

int checkCandidateImageVersion(int v) {
return v == dpVersion;

}

void recordCandidateImage(int v, unsigned adr) {
imgAdr = adr;

}

unsigned reportSelectedImage(void) {
return imgAdr;

}

Figure 3:

C functions
that

customize
the flash

loader

4.1 Build the loader

To create a flash image that contains a custom flash loader and factory image, start
the command-line tools (see XM-000950-PC) and enter the following commands:

1. xcc -c file.xc -o loader.o

XCC compiles your functions for image selection, producing a binary object.

2. xflash bin.xe --loader loader.o

XFLASH writes a flash image containing the custom loader and factory
image to the specified file.

4.2 Add additional images

The following command builds a flash image that contains a custom flash loader, a
factory image and two additional images:

· xflash factory.xe --loader loader.o --upgrade 1 usb.xe 0x20000
--upgrade 2 avb.xe

The arguments to --upgrade include the version number, executable file and an
optional size in bytes. XFLASH writes each upgrade image on the next sector
boundary. The size argument is used to add padding to an image, allowing it to be
field-upgraded in the future by a larger image.

REV D

http://www.xmos.com/doc/XM-000950-PC/latest#get-started-start-the-command-line-tools


Design and manufacture systems with flash memory 6/6

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV D


	Boot a program from flash memory
	Generate a flash image for manufacture
	Perform an in-field upgrade
	Customize the flash loader

