Benchmarking I/O response speed of microprocessors

Goncalo Martins
University of Denver

Goncalo.Martins@du.edu

ABSTRACT

This paper describes a method for comparing the I/O re-
sponsiveness of microprocessors with programmable input
and output functionality. This addresses the need for bench-
marks for real-time systems that measure critical properties
for system design that are not currently handled by tradi-
tional performance benchmarks.

The benchmarks are tested against three different micro-
processor architectures: ARM, PIC and XMOS. The results
of the benchmarks are presented and analyzed to show how
they can inform real-time system designers.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering|: Metrics—complezity mea-
sures, performance measures

Keywords

benchmarking, real-time, performance

1. INTRODUCTION

Real-time systems [4, 5] are systems whose functionality de-
pend on performing computations within known deadlines.
Such systems are common in embedded environments. Of-
ten real-time systems are split into hard and soft real time;
hard real-time systems have catastrophic failure if a dead-
line is not met to whereas soft real-time systems do not have
catastrophic failure but do suffer quality loss if deadlines are
not met.

The need to adhere to such deadlines makes particular de-
mands of the architecture on which a real-time system is
implemented. If the architecture itself is not well suited to
this type of programming the developer may have to ac-
commodate this is some way such as over-provisioning (i.e.
requiring a much faster processor than is needed on average
to make the worst case), accepting the failure and imple-

Andrew Stanford-Jason
XMOS Ltd.
andrew@xmos.com

David Lacey
XMOS Ltd.
davel@xmos.com

menting special “recovery” methods when things go wrong,
or even implementing the most challenging real-time part of
the system directly in hardware.

Many existing benchmarking methods are relevant to real-
time system designers. The accuracy, throughput perfor-
mance and reliability of such systems affects the quality of
the final application. However, the differentiating feature of
a real-time system (that tasks must be completed by certain
deadlines) is not particularly well represented by traditional
benchmarking techniques.

Complete application benchmarks would be one way to ad-
dress real-time system benchmarking but complete real-time
applications are generally hard to port from one system to
another, so pragmatically this method is not well suited to
comparing different architectures and systems. Even appli-
cation kernels can be quite large with complex implementa-
tions.

Another option is micro-benchmarking i.e. benchmarking
the fundamental operations involved in real-time systems.
For example, the Thread Metric benchmark suite [3] pro-
vides a micro-benchmarking framework for the common op-
erations of real-time operating systems. These provide a use-
ful data point for system designers but are slightly removed
from application requirements and only cover systems using
a real-time operating system.

This paper takes a different approach to try and characterize
a single, but key, property of real-time systems: the speed at
which a system can respond to an external stimulus. Fur-
thermore, it tries to characterize how this property varies
when the system is also performing many tasks that require
responsiveness.

While characterizing a single property will not tell a system
designer everything they need to now about a system, it is
the authors’ belief that this property reflects the potential
capability of a system for a range of real-time embedded
tasks.

2. METHOD

The key property that the benchmarks in this paper test is
the I/O response latency. This can be characterized rela-
tively simply:

The response latency of a system is the time it

takes the system to change an output signal in
response to a change in an input signal.

To measure this is relatively simple. The device under test
is connected to a measuring device through two wires: the
input wire contains the signal to be received by the device
under test and the output wire contains the signal to be
output by the device under test (see Figure 1).

1-bit input signal |

M . Device
easuring Under
Device Test

- 1-bit output signal

Figure 1: Test setup

The test consists of the measuring device creating a stimulus
by driving the input signal from low to high. At this point
the device under test should react and drive the output sig-
nal from low to high. The measuring device calculates the
time between the driving of the input signal and the change
in the output signal. The measuring device then drives the
input signal low again, the device under test drives the out-
put signal low and the test can be repeated. Figure 2 shows
the interaction of the two signals and the measured response
time.

Response
Time

-
-t

A\

Input
Signal

Output
Signal

Figure 2: Test signals and response time

The accuracy of the test depends on the accuracy of the
measuring device which will have a specific granularity and
accuracy of measuring time. For the specific tests reported
in this paper this is discussed in Section 2.5.

In addition to measuring response time, we wish to test how
the device under test works while doing multiple tasks. This
involves adding two extra dimensions to the test:

e The device under test should run a workload task that
performs processing in between the responses to the
external stimulus.

e The device under test should be tested for multiple
responses i.e. how it can respond to several input wires
in parallel.

When several responses are required, the inputs are all sig-
nalled at the same time and all times are measured between
this event and each output wire going high.

2.1 Implementation
The implementation on the device under test is required to
fulfil two requirements:

e Implement the required response behaviour for the test
setup described above (the characteristic task) to re-
spond to one or more input signals.

e Run a workload task concurrently with the character-
istic task.

Details of the workload task can be found in Section 2.2.
Due to variations in architecture and programming method
it is not always feasible to have the same source code across
different platforms. Therefore, in the tests presented here
the systems re-implement the same functionality in ways
that are natural to the architecture. The implementation
should follow these guidelines:

e The implementation cannot be the same across sys-
tems so should be implemented using the best method
for the architecture so long as it provides the same
external behavior.

e The implementation should attempt to be represen-
tative of standard real-time embedded programming
practices for that device.

e The implementation that responds to the input signal
must be part of the generally programmable logic of
the system.

e The characteristic tasks must be concurrent in the
sense that they could respond to the inputs occur-
ring at different times in an asynchronous manner and
could be extended to respond in different ways.

The guidelines try to ensure that the implementations are
such that the results of the testing can provide meaningful
guidance to programmers trying to evaluate how systems
are likely to perform in real applications.

The last guideline is to ensure a fair reflection of real appli-
cation tasks in the implementation even if the test harness
works in a specific synchronous manner (i.e. signals all in-
puts at the same time).

2.2 The workload task

The workload tasks model the idea that in a real application
the system will be doing many things at once. What the task
is and how it is implemented will depend on the system.
However, the workload task must represent a “fair” use of
all the major types of the systems resources (for example:
memory, functional units, I/0O).

Overall, the functionality of the task itself is not that impor-
tant providing the above guidelines are adhered to. Gener-
ally a simple loop that performs some calculation and some
reads and writes from memory will suffice.

2.3 Performance normalization

The aim of this paper is to use the benchmarking to compare
system architectures rather than individual devices’ absolute
performance. Clearly, a device running at a higher clock rate
will generally run faster and is more likely to get a better
response latency. For the purpose of comparing architec-
tures, it is necessary to normalize the clock frequency of the
device.

There are two approaches to this: run every device under
test at the same clock frequency or normalize by dividing the
result by the clock frequency. The first approach is probably
a more realistic test but is not always possible due to the
oscillators and clocking capabilities on specific devices. In
the experiments presented here a dual approach was taken:
the clock speeds were chosen to be as close as possible to
each other and then a normalization factor was applied to
the results of each device.

2.4 Response time variation

The response time of a system may vary depending on sys-
tem state. The jitter of the response time is the extent of
this variation (i.e. the maximum observed response time
less the minimum observed response time).

A sensible benchmarking strategy is to run the test multiple
times and keep track of the average, minimum and maximum
response time. Since the workload tasks do not interact with
the outside world the main variation of system state will be
done to the relative timing of the input signal against the
current state of the implementation. As such it is vital that
the signal generator varies the timing of its stimulus creation
by random amounts that are not likely to be multiples of any
internal clocks of the device under test.

2.5 Setup and measurement

The systems were tested by using an XMOS XK-1A develop-
ment board as a measurement device. This device measures
time intervals with 10ns granularity to an accuracy of within
2.5ns.

Each system was tested by generating a signal change and
measuring the response time for 22° repetitions.

2.6 Systems Tested

Three systems were tested with the aim of comparing archi-
tectural variation. The ARM and XMOS systems were run
with a system clock frequency of 100MHz. The PIC was run
with a system clock of 40MHz and the results were scaled
up to normalize to 100MHz.

27 ARM
The ARM development system had the following properties:

Dev. Board BlueBoard LPC1768-H

Device LPC1768FBD100
Core ARM Cortex-M3
Dev. Tools Keil uVision 4.21
0OS FreeRTOS 7.0.1

The characteristic task was implemented by mapping the
input signals to external interrupts which would interrupt

12000

m
£ 10000
(0]
S
E 8000
(O]
(7]
&
e v == ARM
5 4000 v-PIC
(7]
3
7 2000 v
(e]
= L. O L
1 2 3 4

Number of Responses

Figure 3: Worst case response times

the workload task.

2.8 PIC

The PIC development system had the following properties:

Dev. Board dsPICDEM Starter Board V2

Device dsPIC33FJ256
Dev. Tools MPLAB v&.80
0OS FreeRTOS 7.0.1

The characteristic task was implemented by mapping the
input signals to external interrupts which would interrupt
the workload task.

2.9 XMOS

The XMOS development system had the following proper-
ties:

Dev. Board XMOS XC-1A

Device XS1-G4
Dev. Tools XMOS Development Tools 11.2.2
(O] None

Both the characteristic and workload tasks were implemented
as hardware threads with the input signals reaction imple-
mented as port events using conditional input statements in
the XC programming langauge [2].

2.10 Benchmark Availability

All the software required to run the benchmarks is available
to download for free under an open source license [1].

3. RESULTS

3.1 Architecture comparisons
The raw data for all the experiments can be found in Ap-
pendix A.

Figure 3 shows the normalized maximum response latency of
the three architectures benchmarked as the number of real-
time tasks increase. This is the most relevant measurement
for hard real-time systems.

7000
> 6000 V4
£
© 5000
= v
|_
2 4000
S vV - XMOS
& 3000 s ARM
(14 V-PIC
© 2000 V
()]
o
2 1000
<
o.] 01
1 2 3 4
Number of Responses

Figure 4: Average response times

The average response latency of the different architectures
are shown in Figure 4. This figure may be more relevant to
soft real-time systems.

The average response latency should only be viewed taking
into account the jitter of that response, that is, the spread
between minimum and maximum response time. Figures 5,
6 and 7 show this spread.

3.2 Analysis

Overall it is clear that the XMOS devices exhibit better
characteristics in terms of response latency for both soft and
hard real-time systems with both the average and, in par-
ticular, the worst case latency being significantly less than
the other architectures. This is perhaps unsurprising given
that the architecture is specifically designed for this type of
task. The difference can mainly be attributed to the fact
that on the XMOS architecture each response is handled by
a separate hardware thread which can respond to the input
signal without needing a context switch.

Both the ARM and PIC architectures implement the re-
sponse via interrupts (the lowest latency method available
on those systems) which require a context switch before re-
sponse. The concatenation of these context switches explain
the linear growth in response time given the number of re-
sponses needed.

Every attempt has been made to make the comparisons in
the previous section represent the best performing setups of
the different architectures given realistic assumptions about
how the processors would be used for real applications. How-
ever, there may be trade-offs designers can make that either
negatively affect the response latency or may improve it in
certain cases. On both the PIC and ARM chips one of the
key factors is the choice of operating system. In fact, these
benchmarks could be seen as characterising the combination
of both the architecture and the OS. Different combinations
will likely have different results. In some cases no OS will be
used at all and that is likely to improve the results (though
at the cost of having to hand craft the context switching,

12000

10000 vV
»
=
> 8000 v
C
Qo
T 6000 v - Min
o == Avg
S 4000 V v Max
o
(2]
(0]
® 2000
]] Ol
0
1 2 3 4

Number of Responses

Figure 5: Spread of response times (ARM)

300
250 \V4

200

4‘7

———

== Avg
100 V- Max

T<

Response Latency (ns)

a
o

1 2 3 4
Number of Responses

Figure 6: Spread of response times (XMOS)

interrupt servicing and task scheduling within the system).

Even given the variations in results that these design trade-
offs can make it is the authors’ view that the architecture
comparison presented here is representative of what the var-
ious architectures can achieve.

4. CONCLUSION

The main contribution of this work is to propose a more
suitable metric and related benchmarking method to char-
acterize properties of interest to real-time system develop-
ers. The results of the benchmarks show that the response
latency of systems can vary significantly between architec-
tures and under different system loads; these results will be
useful to designers when initially designing a system. Of
course, in all these cases the response latency performances
needs to be balanced against other system requirements.

4.1 Future Work

12000

10000 V4
»
< 8000
>
) \V4
Qo
o == Avg
S 4000 V' Max
Q
2]
o)
X 2000

1 2 3 4
Number of Responses

Figure 7: Spread of response times (PIC)

The results presented here only tracked the maximum, min-
imum and average response times. It would be useful to
extend the test harness to produce a distribution of results
to see, for example, how likely the maximum is to occur.

The tests were also limited in how many signals are handled
by the hardware of the devices tested. However, with more
work it would be possible to work around these limitations in
software for all the devices under test. This would probably
see a dramatic drop in performance past the hardware limit
(e.g. four fast interrupts on the ARM device) but the size
of that difference and the scaling properties past this limit
would be of interest to designers.

5. ACKNOWLEDGMENTS
The authors’ would like to thank Jon Ferguson, Mark Lip-
pett, Henk Muller and Douglas Watt for comments and con-
tributions to the work presented here.

6. REFERENCES

[1] I/O benchmark software repository.
http://github.com/xcore/sw_io_benchmarks.

[2] Douglas Watt. Programming XC on XMOS Devices.
Website, 2009. http://www.xmos.com/published/xcxs1.

[3] Express Logic, Inc. Measuring Real-Time Performance
of an RTOS.

http://rtos.com/PDFs/MeasuringRTOSPerformance.pdf.

[4] C. M. Krishna. Real-Time Systems. John Wiley &
Sons, Inc., 2001.

[5] J. W. S. W. Liu. Real-Time Systems. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1st edition, 2000.

APPENDIX
A. TEST DATA

In the following sections all results are in nanoseconds and
normalized to a 100MHz system clock.

A.1 ARM Tests

Responses | Best Average Worst

1 690 739.47 4040

2 690 1495.40 5550

3 690 2426.56 7600

4 690 3542.61 10260
A.2 PIC Tests

Responses | Best Average Worst

1 1976 2137.69 2196

2 1972 3396.78 4712

3 1976 4691.53 7340

4 1976 5967.98 9856
A3 XMOS Tests

Responses | Best Average Worst

1 160 185.01 210

2 160 190.13 220

3 170 191.94 220

4 160 209.21 250

