®
l MOS XCORE_C (2.0.0)

XCORE C Library

A library providing a native C implementation of xCORE hardware features. This is effectively a bare-metal
programming environment for using the xCORE. It assumes very good understanding of how the xCORE
architecture works as it does not provide the usual protection that xC does to prevent incorrect use of
the hardware.

Features

e Support for channel and streaming channels. This includes full interoperability with xC channels
and the ability to write custom channel protocols

Support for ports and clock blocks

Support for timers

Support for select events so that xC ‘select’ functionality can be implemented

Support for interrupt events

Support for hardware locks

Software version and dependencies

This document pertains to version 2.0.0 of this library. It is known to work on version 14.2.1 of the
xTIMEcomposer tools suite, it may work on other versions.

This library depends on the following other libraries:

e lib_trycatch (>=1.0.0) o lib_xassert (>=2.0.1)

Copyright 2016 XMOS Ltd. 1 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

1 Usage

All functions can be accessed via the xcore_c.h header:

#include "xcore_c.h"
You will also have to add 1ib_xcore_c to the USED_MODULES field of your application Makefile.

1.1 Using timers

The library provides support for xCORE hardware timers. They are allocated using:

hwtimer_t tmr;
hwtimer_alloc(&tmr);

A timer can then be read to get the current time by doing:

uint32_t time;
hwtimer_get_time(tmr, &time);

There are two functions provided to delay using a timer. The first waits for a specified time:

// The times are in 10ns, so 100000 timer ticks is 1ms
uint32_t now;
hwtimer_wait_until(tmr, time + 100000, &now); // Wait for (time + 1ms)

The second delays for a period of time in 100MHz timer ticks:

hwtimer_delay(tmr, 100000); // Delay for 1ms

When the timer is no longer required it can be released to be used by other cores by calling:

hwtimer_free(&tmr);

Each logical core is automatically allocated a hardware timer for use by xC code. If a task is not running
xC code, or the xC code is not using timers, the core’s hardware timer may be released back into the pool
by calling:

// Start of task.
hwtimer_free_xc_timer();

hwtimer_realloc_xc_timer();
// End of task.

As the above code illustrates, the hardware timer must be reallocated before the logical core completes
execution. There must be a free hardware timer available when hwtimer_realloc_xc_timer() is called.

1.2 Using channels

1.2.1 Local channels

Local channel connections on a tile are fully supported by the library. A channel connection is created
using:
channel_t c;

chan_alloc(&c);

Copyright 2016 XMOS Ltd. 2 WWW.Xmos.com
XM010504




®
l MOS XCORE_C (2.0.0)

Data can then be sent and received using:

chan_out_word(c.end_a, 1);
chan_out_byte(c.end_a, 2);

with a corresponding block of code on another core to consume the data:

uint32_t 1i;
chan_in_word(c.end_b, &i);
uint8_t j;
chan_in_byte(c.end_b, &j);

When the channel is finished with then it is closed and the resources released using:

chan_free(&c);

1.2.2 Inter-tile channels

The use of inter-tile channels is supported by the library. However, the only way to create inter-tile chan-
nels is to use a top-level main() written in xC. Without the top-level main there is no way to automatically
communicate the tile ID of multiple tiles within a system.

A basic top-level main would look like:

#include <platform.h>
#include "application.h"

int mainQ

{
chan c;
par {
on tile[0]: {
application_0(c);
}
on tile[1]: {
application_1(c);
}
}

return 0;

3

This uses xC to do all of the thread assignment and connecting of the initial channel. After that, the
applications can use more channels on each tile and have enough information to know how to connect to
each other.

A new channel-end can be allocated using:

void application_0(chanend c)

{
chanend new_c;
chanend_alloc(&new_c);

And a new connection established by passing this new channel-end over the existing link, receiving the
destination link on the other tile and connecting the two. So, both applications can do:

Copyright 2016 XMOS Ltd. 3 WWW.Xmos.com
XM010504




®
l MOS XCORE_C (2.0.0)

chan_out_word(c, new_c); // Send my new-chanend to other tile.
chanend new_dest;

chan_in_word(c, new_dest); // Recieve other tile's new-chanend...
chanend_set_dest(new_c, new_dest); // ... and connect it to my new-chanend.

When the channel-end is finished with then it is closed and the resources released using:

chanend_free(&new_c);

1.2.3 Streaming channels

Streaming channels can be used in a similar manner to standard channels. A streaming channel is created
using:

streaming_channel_t c;
s_chan_alloc(&c);

Data can then be sent and received using:

s_chan_out_word(c.end_a, 1);
s_chan_out_byte(c.end_a, 2);

with a corresponding block of code on another core to consume the data:

uint32_t 1i;
s_chan_in_word(c.end_b, &i);
uint8_t j;
s_chan_in_byte(c.end_b, &j);

When the channel is finished with then it is closed and the resources released using:

s_chan_free(&c);

1.2.4 Channel transactions

The library has functions to support interacting with xC channel ends. This includes master/sTave
transactions. For example, a block of xC could use a master transaction to send a block of words
syhchronised only at the beginning and end:

uint32_t datal[10] = {...}
master {
for (size_t i =0; i < 10; i++) {
c <: data[i];
}
}

The C code to receive this data is of the form:

// we have a chanend 'c';

transacting_chanend_t tc;

chan_init_transaction_slave(&c, &tc);

uint32_t data[10];

for (size_t i =0; i < 10; i++) {
t_chan_in_word(tc, &datal[i]);

}

chan_complete_transaction(&c, &tc);

Copyright 2016 XMOS Ltd. 4 WWW.Xmos.com
XM010504




®
l MOS XCORE_C (2.0.0)

There are additional functions to send and receive both bytes and blocks of data.

1.3 Using ports and clock blocks

The use of ports and clock blocks is fully supported in the library. This section of the document gives
a brief example of how to use the library. For complete documentation of the functionality supported
please see the API section.

1.3.1 Example

This example will show how to use the library to configure a clock block and port. The first thing to do is
to configure the clock block. For example, if using clock block 1 to be clocked from a divided version of
the reference clock:

clock c;

clock_alloc(&c, clock_1);

clock_set_source_clk_ref(c);

clock_set_divide(c, 1); // Configure to 50MHz (100Mhz / 2x1)

The port to be used can then be enabled, configured and connected to the clock:

port p;
port_alloc(&p, port_1A);
port_set_clock(p, c);

Starting the clock will reset the port counters on all connected ports. This is generally best done after all
ports have been connected so that their counters will be synchronised:

clock_start(c);

The port can now be used to output or input data:

port_out(p, 1);
port_out(p, 0);

In order to clean up, both the port and clock block must be freed:

clock_free(&c);
port_free(&p);

1.3.2 Ready signals

Configuring ports to use ready signals is done using the port_protocol_x functions provided in
port_protocol.h. All the basic functions needed to implement this functionality is provided, but the
order of configuring a port as a strobed or handshaken port is critical and therefore best done using
these wrapper functions.

For example, to create a data port which is controlled by a strobe then the following code sequence could
be used:

Copyright 2016 XMOS Ltd. 5 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

port p;

port_alloc(&p, port_4A);

port p_ready;
port_alloc(&p_ready, port_1A);
clock clk;

clock_alTloc(&clk, clock_1);

port_protocol_in_strobed_slave(p, p_ready, clk);
clock_start(clk);

After this, any data received on the port p will only be available when the valid signal (strobe on PORT_1A)
is high.

1.4 Using hardware locks

The library provides support for xCORE hardware locks. They are allocated using:

Tock_t 1;
lock_alloc(&1);

To enter a mutex region the lock is then acquired:

Tock_acquire(1);

After this function completes it is safe to use shared state that must only be used by one core at a time.
To leave the mutex region the lock is released:

lock_release(1);

The lock resource is released using:

Tock_free(&1);

1.5 Using select events
The library provides the ability to re-create the equivalent of the xC select statement.
1.5.1 Example

As an example, take a function which receives data from two channels and handles whichever one is
ready.

The function needs to have an enum containing an entry per resource that is part of the select:

typedef enum {
EVENT_CHAN_C = ENUM_ID_BASE,
EVENT_CHAN_D

} event_choice_t;

The function then starts by clearing all existing select triggers on resources owned by this core to ensure
that they cannot trigger events:

void channel_example(chanend c, chanend d)

{
select_disable_trigger_all(Q);

Copyright 2016 XMOS Ltd. 6 WWW.Xmos.com
XM010504




®
l MOS XCORE_C (2.0.0)

The resources are each configured to trigger events and return a value from the enum specified above:

chanend_setup_select(c, EVENT_CHAN_C);
chanend_enable_trigger(c);
chanend_setup_select(d, EVENT_CHAN_D);
chanend_enable_trigger(d);

And then the rest of the function can simply use the select_wait() function to wait for events to be
triggered by either resource:

while (1) {
event_choice_t choice = select_wait();
uint32_t x;
switch (choice) {
case EVENT_CHAN_C: {
// Read value to clear the trigger
chan_in_word(c, &x);
break;
}
case EVENT_CHAN_D: {
// Read value to clear the trigger
chan_in_word(d, &x);
break;
}

}
3

1.5.2 Select event handling with a default

In xC a select can have a default case which is executed if no events have triggered. This library
provides the user with the ability to do this by using the select_no_wait() function. For example, the
above example could be changed to add to the enum a no-event value:

typedef enum {
EVENT_CHAN_C = ENUM_ID_BASE,
EVENT_CHAN_D,
EVENT_NONE

} event_choice_t;

And then to test for triggers but perform some background task if there is no data available on either
channel:

Copyright 2016 XMOS Ltd. 7 WWW.Xmos.com
XM010504




®
l MOS XCORE_C (2.0.0)

while (1) {
event_choice_t choice = select_no_wait(EVENT_NONE);
uint32_t x;
switch (choice) {
case EVENT_CHAN_C: {
// Read value and clear event
chan_in_word(c, &x);

break;

}

case EVENT_CHAN_D: {
// Read value and clear event
chan_in_word(d, &x);
break;

}

case EVENT_NONE: {
// Run background task
break;

}

3
}

The argument that is passed to select_no_wait() is the value that will be returned if no events are
ready.

1.5.3 Select event callback functions

This library also supports the ability to install select event callback functions. This allows the user to write
code where events are not all handled within one switch statement. It makes it possible to write libraries
which are completely self-contained.

For example, if the user writes a library to perform a real-time task based on a timer event the library
initialisation would install a callback:

void Tib_init(void =*data)
{
hwtimer_t tmr;
hwtimer_alloc(&tmr);
uint32_t time;
hwtimer_get_time(tmr, &time);
hwtimer_setup_select_callback(tmr, time + period,
data, SELECT_CALLBACK(Chwtimer_callback_func));
hwtimer_enable_trigger(tmr);

3

This code allocates a hardware timer and then gets the current time before registering callback function.
The call to hwtimer_setup_select_callback() takes four arguments.

. The timer to configure

. The time at which the next event should fire

. A void* which is user data that is passed to the handler

4. The macro generated select_callback_t function called when events are triggered by the timer

w N =

Note: There are similar functions for ports (port_setup_select_callback()) and channel ends
(chanend_setup_select_callback()).

Copyright 2016 XMOS Ltd. 8 WWW.Xmos.com
XM010504




®
l MOS XCORE_C (2.0.0)

The callback function is passed the user data registered with that resource:

void hwtimer_callback_func(void *data);

However, we also need to generate a wrapping function, so we use the API’s marcro to declare both at
the same time:

DECLARE_SELECT_CALLBACK Chwtimer_callback_func, data);

data will usually be the resource’s ID so that the callback can access the resource. If additional informa-
tion is required, data may be a pointer to a struct:

typedef struct data_t {hwtimer_t tmr; uint32_t period;} data_t;

DEFINE_SELECT_CALLBACKChwtimer_callback_func, data) {
data_t *d = (data_t =*)data;
uint32_t time;
hwtimer_get_time(d->tmr, &time);
hwtimer_change_trigger_time(d->tmr, time + d->period);

When using select callback functions, the select_disable_trigger_al1() function should not be
called, otherwise any registered callback functions will be disabled. Instead, users should now clear
any triggers it enables:

void handle_events(chanend c, chanend d)

{
// Setup the channels to generate select events
chanend_setup_select(c, EVENT_CHAN_Q);
chanend_enable_trigger(c);
chanend_setup_select(d, EVENT_CHAN_D);
chanend_enable_trigger(d);

// Handle select events using select_wait() / select_no_wait()

// Disable select events Tlocal to this function

chanend_disable_trigger(c);

chanend_disable_trigger(d);

// The chanends keep their setup should you wish to re-enable their triggering.

}

After the handle_events() function has completed another equivalent function can be called in which
the timer callback will continue to be called periodically.

When the timer select callbacks are no longer required then they can be disabled using the
hwtimer_disable_trigger() function (or equivalent port/chanend functions):

hwtimer_disable_trigger(tmr);

1.5.4 Ordered select events

The xCORE hardware has implicit ordering enforced. Ports are highest priority, then timers, then channels.
If there are multiple resources of the same type that are ready then the resource with the highest priority
(lowest resource ID) will be selected.

If the user wants to enforce a different ordering from that provided by the hardware then they can use
select_wait_ordered() (or the no wait equivalent select_no_wait_ordered()).

Events are set up as detailed above and a list is created with all the active resources. For example, if using
two channels (c, d) and a timer (tmr) then a null-terminated list can be defined to ensure the channels are
handled before the timer if they are ready:

Copyright 2016 XMOS Ltd. 9 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

resource_t ids[4] = {c, d, tmr, 0};

And then the core of the select event handling loop would be changed to pass this list of resource IDs to
define the order in which events are enabled:

while (1) {
event_choice_t choice = select_wait_ordered(ids);
switch (choice) {

3

1.6 Using interrupts

The library provides support for hardware interrupts from xCORE resources.

Interrupts can be raised by resources as an alternative to select events, and will be vectored to the
provided callback function.

As interrupts can occur at any point during program execution there are certain requirements which must
be adhered to ensure safe operation:

1. Resources must not have interrupts enabled whilst being configured, or the core must have inter-
rupts masked if the resource has already been configured to raise interrupts.
2. The core must have interrupts masked when disabling interrupts for a resource.

1.6.1 Example

As an example, take a function which receives data from two channels and handles whichever one is
ready.

We start by declaring the scope in which interrupts may occur - ‘the hosting function’. The hosting
function will make space on its stack for a temporary kernel stack which will be used by the interrupts.
Our ordinary ‘void test(chanend,chanend)’ is turned into a hosting function by wrapping it in the ‘DE-
CLARE_INTERRUPT_PERMITTED’ function macro:

Copyright 2016 XMOS Ltd. 10 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

// xc top level file creating our Togical cores.
DECLARE_INTERRUPT_PERMITTED(void, test, chanend cl, chanend c2);
int main() {
chan c, d;
par {
INTERRUPT_PERMITTED(test) (c, d); // interrupts hosted on this core.

// Start two other cores to create the interrupt events.

{
delay_ticks(5000);
c <: 12;
delay_ticks(5000);
c <: 34;
}
{
delay_ticks(10000);
d <: 56;
delay_ticks(10000);
d <: 78;
}
}
return 0;

3

and likewise the definition (see below for implementation):

DEFINE_INTERRUPT_PERMITTED(my_group, void, test, chanend cl, chanend c2)
{

)

The identifier ‘my_group’ tells the hosting function which interrupts it will be hosting, so it can calculate
the stack requirements.

One piece of user data will be sent to the callback as a ‘void*’ argument. We will register a pointer to a
structure:

typedef struct {

chanend c; // The resource that caused the interrupt.
const char *message;
} chan_data_t;

We now define/declare the interrupt callback function, wrapping it in function macros and placing it in
the same group:

volatile size_t received = 0; // For the host to monitor events.

DEFINE_INTERRUPT_CALLBACK(my_group, my_handler, data)
{
chan_data_t *cd = (chan_data_t=*)data;
uint32_t x;
chan_in_word(cd->c, &x);
debug_printf("%s received %d\n", cd->message, x);
received++;

3

And finally we can set up the interrupt and enable them:

Copyright 2016 XMOS Ltd. 11 WWW.Xmos.com
XM010504




®
l MOS XCORE_C (2.0.0)

DEFINE_INTERRUPT_PERMITTED(my_group, void, test, chanend cl, chanend c2)
{
// Set up interrupt.
// We assume either the triggers are disabled or interrupts are masked.
chan_data_t cdl = {cl, "channel 1"};
chanend_setup_interrupt_callback(cdl.c, (void«)&cdl,
INTERRUPT_CALLBACK(my_handler));
chan_data_t cd2 = {c2, "channel 2"};
chanend_setup_interrupt_callback(cd2.c, (void«)&cd2,
INTERRUPT_CALLBACK(my_handler));

// Enable interrupts.
chanend_enable_trigger(cdl.c);
chanend_enable_trigger(cd2.c);
interrupt_unmask_al1(Q);

And when we have finished, disable them:

while (received < 4);

// Disable interrupts.

interrupt_mask_al1(); // Mask before disabling.
chanend_disable_trigger(cdl.c);
chanend_disable_trigger(cd2.c);

Copyright 2016 XMOS Ltd. 12 WWW.Xmos.com
XMO010504




XMOS

2 API

XCORE_C (2.0.0)

2.1 Opaque types used by the library

Type resource_t

Description | generic resource handle
This is an opaque base of the types ‘chanend’, ‘port’ and ‘timer’. It is used to form a
list to pass into select_wait_ordered() and select_no_wait_ordered().
Users must not access its raw underlying type.

Type chanend

Description | Opaque type for use in C/C++ code.
It enables a xC function prototyped as taking a parameter of type chanend to be called
from C and vice versa.
Users must not access its raw underlying type.

Type streaming_chanend_t

Description | Opaque type for use in C/C++ code.
It enables a xC function prototyped as taking a parameter of type stream-
ing_chanend_t to be called from C and vice versa.
Users must not access its raw underlying type.

Type transacting_chanend_t

Description | An opaque type for handling transactions.
Users must not access its raw underlying type.

Type clock

Description | clock is an opaque type for use in C/C++ code.
It enables a xC function prototyped as taking a parameter of type clock to be called
from C and vice versa.
Users must not access its raw underlying type.

Type lock_t

Description | lock is an opaque type that denotes a hardware lock which provide a mutex function.
Users must not access its raw underlying type.

Copyright 2016 XMOS Ltd. 13

WWW.XmMOos.com
XM010504



®
l MOS XCORE_C (2.0.0)

Type port

Description | portis an opaque type for use in C/C++ code.

It enables a xC function prototyped as taking a parameter of type port to be called
from C and vice versa.

Users must not access its raw underlying type.

Type hwtimer_t

Description | hwtimer_t is an opaque type.

The hwtimer_t type can be used just like the timer type. It gives a unique hardware
timer to use (as opposed to the default timer in xC which is allocated based on a
shared hardware timer per logical core).

Users must not access its raw underlying type.

Type select_callback_t

Description | wrapped select callback function
This is an opaque type returned by the SELECT_CALLBACK() macro.
Users must not access its raw underlying type.

Type interrupt_callback_t

Description | wrapped interrupt callback function
This is an opaque type returned by the INTERRUPT_CALLBACK() macro.
Users must not access its raw underlying type.

Copyright 2016 XMOS Ltd. 14 WWW.Xmos.com
XMO010504




XMOS

XCORE_C (2.0.0)

2.2 Errors and exception

Type

Xxcore_c_error_t

Description

Errors returned when XCORE_C_NO_EXCEPTION policy is active.
All errors (apart from error_none) are caught hardware exceptions. See ‘The XMOS
XS1/XS2 Architecture’ for details regarding the exceptions.

Values

error_none

error_link_error

error_illegal_pc

error_illegal_instruction

error_illegal_resource

error_load_store

error_illegal_ps

error_arithmetic

error_ecall

error_resource_dep

error_kcall

Macro

XCORE_C_NO_EXCEPTION

Continued on next page

Copyright 2016 XMOS Ltd.

15 WWW.XMmos.com
XM010504



®
l MOS XCORE_C (2.0.0)

Description | The exception policy for the library.

If the user respects the resource type parameter of the library, checks for zero (fail) on
allocation, passes in valid pointer addresses and does not access the same resource
on multiple logical cores the library will not throw an exception.

Exceptions should be viewed as programming errors rather than runtime errors.
The default exception policy for the library is to throw exceptions. Setting the library
to no_exceptions will increase the code size and run time of the resultant binary.
XCORE_C_NO_EXCEPTION may be set by the user to a boolean constant or expression.

Copyright 2016 XMOS Ltd. 16 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

2.3 Chanends

Function s_chanend_alloc

Description | Allocate a single streaming_chanend_t.

This function allocates a hardware channel end. If there are no channel ends available
the function returns 0. When the channel end is no longer required, s_chanend_free()
must be called to deallocate it.

Type xcore_c_error_t
s_chanend_alloc(streaming_chanend_t *c)

Parameters | streaming_chanend_t or zero if none are available.

ET_LOAD_STORE
invalid *c argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function s_chanend_free

Description | Deallocate a single streaming_chanend_t.
This function frees the hardware streaming_chanend_t. The last transfer on the
streaming_chanend_t must have been a CT_END token.

Type Xcore_c_error_t
s_chanend_free(streaming_chanend_t *c)

Parameters | streaming_chanend_t to free.

ET_ILLEGAL_RESOURCE
not an allocated streaming_chanend_t, an input/output is pending, or it
has not received/sent a CT_END token.

ET_RESOURCE_DEP
another core is actively using the streaming_chanend_t.

ET_LOAD_STORE
invalid *c argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function s_chanend_set_dest

Description | Set the destination of a streaming_chanend_t.

Continued on next page

Copyright 2016 XMOS Ltd. 17 WWW.Xmos.com
XMO010504




XMOS

Type Xxcore_c_error_t
s_chanend_set_dest(streaming_chanend_t c,
streaming_chanend_t dst)
Parameters | streaming_chanend_t to set.
dst Destination streaming_chanend_t.
ET_ILLEGAL_RESOURCE
not an allocated streaming_chanend_t.
ET_RESOURCE_DEP
another core is actively using the streaming_chanend_t.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function s_chanend_convert
Description | Convert a chanend to a streaming_chanend_t.
A chanend is always in a safe state for converting into a streaming_chanend_t.
Type streaming_chanend_t s_chanend_convert(chanend c)
Parameters | chanend to convert.
Returns the streaming_chanend_t
Function chanend_alloc
Description | Allocate a single chanend.
This function allocates a hardware channel end. If there are no channel ends available
the function returns 0. When the channel end is no longer required, chanend_free()
must be called to deallocate it.
Type xcore_c_error_t chanend_alloc(chanend =*c)
Parameters | chanend or zero if none are available.
ET_LOAD_STORE
invalid *c argument.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

XCORE_C (2.0.0)

Copyright 2016 XMOS Ltd. 18

WWW.XmMOos.com
XM010504



XMOS

Function chanend_free
Description | Deallocate a single chanend.
This function frees the hardware chanend. The last transfer on the chanend must
have been a CT_END token.
Type xcore_c_error_t chanend_free(chanend *c)
Parameters | ¢ chanend to free.
ET_ILLEGAL_RESOURCE
not an allocated chanend, an input/output is pending, or it has not
received/sent a CT_END token.
ET_RESOURCE_DEP
another core is actively using the chanend.
ET_LOAD_STORE
invalid *c argument.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function chanend_set_dest
Description | Set the destination of a chanend.
Type xcore_c_error_t chanend_set_dest(chanend c, chanend dst)
Parameters | chanend to set.
dst Destination chanend.
ET_TILLEGAL_RESOURCE
not an allocated chanend.
ET_RESOURCE_DEP
another core is actively using the chanend.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function chanend_convert
Description | Convert a streaming_chanend_t to a chanend.
streaming_chanend_t must have completed any transaction with an end-token
handshake before being converting into a chanend.

Continued on next page

XCORE_C (2.0.0)

Copyright 2016 XMOS Ltd. 19

WWW.XmMOos.com
XM010504



XMOS

Type chanend
chanend_convert(streaming_chanend_t c)
Parameters | ¢ streaming_chanend_t to convert.
Returns the chanend
Function chanend_setup_select
Description | Setup select events on a chan-end.
Configures a chan-end to trigger select events when data is ready. It is used in com-
bination with select_wait() et al functions, returning the enum_id when the event is
triggered.
Once the event is setup you need to call chanend_enable_trigger() to enable it.
Type xcore_c_error_t chanend_setup_select(chanend c, uint32_t enum_id)
Parameters | ¢ The chan-end to setup the select event on
enum_id The value to be returned by select_wait() et al when the chan-end event
is triggered.
ET_ILLEGAL_RESOURCE
not a valid chan-end.
ET_RESOURCE_DEP
another core is actively using the chan-end.
ET_ECALL  when xassert enabled, on XS1 bit 16 not set in enum_id.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function chanend_setup_select_callback
Description | Setup select events on a chan-end where the events are handled by a function.
Same as chanend_setup_select() except that a callback function is used rather than
the event being passed back to the select_wait() et al functions.
Once the event is setup you need to call chanend_enable_trigger() to enable it.
Type Xcore_c_error_t
chanend_setup_select_callback(chanend c,
void =data,
select_callback_t func)

Continued on next page

XCORE_C (2.0.0)

Copyright 2016 XMOS Ltd. 20

WWW.XmMOos.com
XM010504



®
l MOS XCORE_C (2.0.0)

Parameters | ¢ The chan-end to setup the select event on
data The value to be passed to the select_callback_t function
func The select_callback_t function to handle the event

ET_ILLEGAL_RESOURCE
not a valid chan-end.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_ECALL when xassert enabled, on XS1 bit 16 not set in enum_id.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function chanend_setup_interrupt_callback

Description | Setup interrupt events on a chan-end .
Once the event is setup you need to call chanend_enable_trigger() to enable it.

Type Xxcore_c_error_t

chanend_setup_interrupt_callback(chanend c,
void xdata,
interrupt_callback_t func)

Parameters | ¢ The chan-end to setup the events on
data The value to be passed to the interrupt_callback_t function
func The interrupt_callback_t function to handle events

ET_TILLEGAL_RESOURCE
not a valid chan-end.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_ECALL  when xassert enabled, on XS1 bit 16 not set in enum_id.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function chanend_enable_trigger

Continued on next page

Copyright 2016 XMOS Ltd. 21 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Description | Enable select & interrupt events on a chan-end.

Prior to enabling, chanend_setup_select(), chanend_setup_select_callback() or
chanend_setup_interrupt_callback() must have been called. Events can be
temporarily disabled and re-enabled using chanend_disable_trigger() and cha-
nend_enable_trigger(). When the event fires, the value must be read from the chan-
end to clear the event.

Type xcore_c_error_t chanend_enable_trigger(chanend c)

Parameters | c The chan-end to enable events on

ET_ILLEGAL_RESOURCE
not a valid chan-end.

ET_RESOURCE_DEP
another core is actively using the chan-end.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function chanend_disable_trigger

Description | Disable select & interrupt events for a given chan-end.
This function prevents any further events being triggered by a given chan-end.

Type xcore_c_error_t chanend_disable_trigger(chanend c)

Parameters | ¢ The chan-end to disable events on

ET_TILLEGAL_RESOURCE
not a valid chan-end.

ET_RESOURCE_DEP
another core is actively using the chan-end.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 22 WWW.Xmos.com
XMO010504




XMOS

XCORE_C (2.0.0)

2.4 Channels

Type channel_t
Description | Helper type for passing around both ends of a channel.
Function chan_alloc
Description | Allocate a channel.
This function allocates two hardware chan-ends and joins them. If there are not
enough chan-ends available the function returns a channel_t with both fields set to 0.
When the channel_t is no longer required, chan_free() must be called to deallocate it.
The chan-ends must be accessed on the same tile
Type xcore_c_error_t chan_alloc(channel_t =*c)
Parameters | channel_t variable holding the two initialised and joined chan-ends or
Os.
ET_LOAD_STORE
invalid *c argument.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function chan_free
Description | Deallocate a channel.
This function frees the two hardware chan-ends.
Type xcore_c_error_t chan_free(channel_t =*c)
Parameters | c channel_t to free
ET_ILLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.
ET_RESOURCE_DEP
another core is actively using the chanend.
ET_LOAD_STORE
invalid *c argument.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 23

WWW.XmMOos.com
XM010504



XMOS

XCORE_C (2.0.0)

Function chan_out_word
Description | Output a word over a channel.
Type xcore_c_error_t chan_out_word(chanend c, uint32_t data)
Parameters | ¢ The chan-end
data The word to be output
ET_LINK_ERROR
chan-end destination is not set.
ET_TLLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.
ET_RESOURCE_DEP
another core is actively using the chan-end.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function chan_out_byte
Description | Output a byte over a channel.
Type xcore_c_error_t chan_out_byte(chanend c, uint8_t data)
Parameters | The chan-end
data The byte to be output
ET_LINK_ERROR
chan-end destination is not set.
ET_ILLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.
ET_RESOURCE_DEP
another core is actively using the chan-end.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function chan_out_buf_word
Description | Output a block of data over a channel.

Continued on next page

Copyright 2016 XMOS Ltd. 24

WWW.XmMOos.com
XM010504



®
l MOS XCORE_C (2.0.0)

Type xcore_c_error_t chan_out_buf_word(chanend c,
const uint32_t buf[],
size_t n)
Parameters | ¢ The chan-end
buf A pointer to the buffer containing the data to send
n The number of words to send

ET_LINK_ERROR
chan-end destination is not set.

ET_ILLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid buf[] argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function chan_out_buf_byte

Description | Output a block of data over a channel.

Type xcore_c_error_t chan_out_buf_byte(chanend c,
const uint8_t buf[],
size_t n)

Continued on next page

Copyright 2016 XMOS Ltd. 25 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | ¢ The chan-end
buf A pointer to the buffer containing the data to send
n The number of bytes to send

ET_LINK_ERROR
chan-end destination is not set.

ET_ILLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid buf[] argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function chan_in_word

Description | Input a word from a channel.

Type xcore_c_error_t chan_in_word(chanend c, uint32_t =data)
Parameters | ¢ The chan-end
data The inputted word

ET_TLLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid *data argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function chan_in_byte

Description | Input a byte from a channel.

Type xcore_c_error_t chan_in_byte(chanend c, uint8_t =data)

Continued on next page

Copyright 2016 XMOS Ltd. 26 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | ¢ The chan-end

data The inputted byte

ET_ILLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid *data argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function chan_in_buf_word

Description | Input a block of data from a channel.

Type xcore_c_error_t chan_in_buf_word(chanend c,
uint32_t buf[],
size_t n)
Parameters | ¢ The chan-end
buf A pointer to the memory region to fill
n The number of words to receive

ET_ILLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid buf[] argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function chan_in_buf_byte

Description | Input a block of data from a channel.

Type xcore_c_error_t chan_in_buf_byte(chanend c, uint8_t buf[], size_t n)

Continued on next page

Copyright 2016 XMOS Ltd. 27 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | ¢ The chan-end
buf A pointer to the memory region to fill
n The number of bytes to receive

ET_TLLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid buf[] argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 28 WWW.Xmos.com
XMO010504




XMOS

2.5 Streaming channels

Type streaming_channel_t
Description | Helper type for passing around both ends of a streaming channel.
Fields streaming_chanend_t end_a
streaming_chanend_t end_b
Function s_chan_alloc
Description | Allocate a streaming_channel_t.
This function allocates two hardware chan-ends and joins them. If there are not
enough chan-ends available the function returns a streaming_channel_t with both
fields set to 0. When the streaming_channel_t is no longer required, s_chan_free()
must be called to deallocate it.
The chan-ends must be accessed on the same tile
Type xcore_c_error_t s_chan_alloc(streaming_channel_t =*c)
Parameters | streaming_channel_t variable holding the two initialised and joined
chan-ends or Os.
ET_LOAD_STORE
invalid *c argument.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function s_chan_free
Description | Deallocate a streaming_channel_t.
This function frees the two hardware chan-ends.
Type xcore_c_error_t s_chan_free(streaming_channel_t =c)

Continued on next page

XCORE_C (2.0.0)

Copyright 2016 XMOS Ltd. 29

WWW.XmMOos.com
XM010504



®
l MOS XCORE_C (2.0.0)

Parameters | ¢ streaming_channel_t to free.

ET_LINK_ERROR
a chan-end destination is not set.

ET_ILLEGAL_RESOURCE
not an allocated channel, or an input/output is pending.

ET_RESOURCE_DEP
another core is actively using the channel.

ET_LOAD_STORE
invalid *c argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function s_chan_out_word

Description | Output a word over a streaming_channel_t.

Type Xxcore_c_error_t
s_chan_out_word(streaming_chanend_t c,
uint32_t data)

Parameters | ¢ The streaming chan-end
data The word to be output

ET_LINK_ERROR
chan-end destination is not set.

ET_ILLEGAL_RESOURCE
not an allocated chan-end.

ET_RESOURCE_DEP
another core is actively using the chan-end.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function s_chan_out_byte

Description | Output an byte over a streaming_channel_t.

Type xcore_c_error_t
s_chan_out_byte(streaming_chanend_t c,
uint8_t data)

Continued on next page
. ____________________________________________________________________________________________________________________________________|

Copyright 2016 XMOS Ltd. 30 WWW.Xmos.com
XMO010504




XMOS

XCORE_C (2.0.0)

Parameters | ¢ The streaming chan-end
data The byte to be output
ET_LINK_ERROR
chan-end destination is not set.
ET_TLLEGAL_RESOURCE
not an allocated chan-end.
ET_RESOURCE_DEP
another core is actively using the chan-end.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function s_chan_out_buf_word
Description | Output a block of data over a streaming_channel_t.
Type Xxcore_c_error_t
s_chan_out_buf_word(streaming_chanend_t c,
const uint32_t buf[],
size_t n)
Parameters | ¢ The streaming chan-end
buf A pointer to the buffer containing the data to send
n The number of words to send
ET_LINK_ERROR
chan-end destination is not set.
ET_ILLEGAL_RESOURCE
not an allocated chan-end.
ET_RESOURCE_DEP
another core is actively using the chan-end.
ET_LOAD_STORE
invalid buf[] argument.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 31

WWW.XmMOos.com
XM010504



XMOS

XCORE_C (2.0.0)

Function

s_chan_out_buf_byte

Description

Output a block of data over a streaming_channel_t.

Type

Xcore_c_error_t

s_chan_out_buf_byte(streaming_chanend_t c,
const uint8_t buf[],
size_t n)

Parameters

C The streaming chan-end
buf A pointer to the buffer containing the data to send
n The number of bytes to send

ET_LINK_ERROR
chan-end destination is not set.

ET_ILLEGAL_RESOURCE
not an allocated chan-end.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid buf[] argument.

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function

s_chan_in_word

Description

Input a word from a streaming_channel_t.

Type

Xcore_c_error_t
s_chan_in_word(streaming_chanend_t c,
uint32_t =data)

Continued on next page

Copyright 2016 XMOS Ltd. 32

WWW.XmMOos.com
XM010504



XMOS

XCORE_C (2.0.0)

Parameters

C The streaming chan-end
data The inputted word.

ET_ILLEGAL_RESOURCE

not an allocated chan-end, or has pending control token.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid *data argument.

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function

s_chan_in_byte

Description

Input a byte from a streaming_channel_t.

Type

Xcore_c_error_t
s_chan_in_byte(streaming_chanend_t c,
uint8_t =data)

Parameters

C The streaming chan-end
data The inputted byte

ET_TLLEGAL_RESOURCE

not an allocated chan-end, or has pending control token.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid *data argument.

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function

s_chan_in_buf_word

Description

Input a block of data from a streaming_channel_t.

Type

Xcore_c_error_t
s_chan_in_buf_word(streaming_chanend_t c,
uint32_t buf[],
size_t n)

Continued on next page

Copyright 2016 XMOS Ltd. 33

WWW.XmMOos.com
XM010504



XMOS

XCORE_C (2.0.0)

Parameters | ¢ The streaming chan-end
buf A pointer to the memory region to fill
n The number of words to receive
ET_TLLEGAL_RESOURCE
not an allocated chan-end, or has pending control token.
ET_RESOURCE_DEP
another core is actively using the chan-end.
ET_LOAD_STORE
invalid buf[] argument.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function s_chan_in_buf_byte
Description | Input a block of data from a streaming_channel_t.
Type Xxcore_c_error_t
s_chan_in_buf_byte(streaming_chanend_t c,
uint8_t buf[],
size_t n)
Parameters | ¢ The streaming chan-end
buf A pointer to the memory region to fill
n The number of bytes to receive
ET_ILLEGAL_RESOURCE
not an allocated chan-end, or has pending control token.
ET_RESOURCE_DEP
another core is actively using the chan-end.
ET_LOAD_STORE
invalid buf[] argument.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 34

WWW.XmMOos.com
XM010504



®
l MOS XCORE_C (2.0.0)

Function s_chan_out_ct

Description | Output a control token onto a streaming_channel_t.

Type xcore_c_error_t s_chan_out_ct(streaming_chanend_t c, uint8_t ct)
Parameters | ¢ The streaming chan-end
ct Control token to be output. Legal control tokens that can be used are 0

or any value in the range 3..191 inclusive.

ET_LINK_ERROR
chan-end destination is not set or token is reserverd.

ET_TILLEGAL_RESOURCE
not an allocated chan-end.

ET_RESOURCE_DEP
another core is actively using the chan-end.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function s_chan_out_ct_end

Description | Output a CT_END control token onto a streaming_channel_t.

Outputting a CT_END control token informs the communication network and the other
chan-end that the current transaction has completed. Thus freeing the communica-
tion network for other channels to use.

The streaming_channel_t remains allocated, awaiting another transaction or dealloca-
tion.

Type Xxcore_c_error_t
s_chan_out_ct_end(streaming_chanend_t c)

Parameters | The streaming chan-end

ET_LINK_ERROR
chan-end destination is not set.

ET_ILLEGAL_RESOURCE
not an allocated chan-end.

ET_RESOURCE_DEP
another core is actively using the chan-end.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 35 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Function s_chan_check_ct

Description | Check that a specific control token on a streaming_channel_t.

This function blocks until a token is available on the streaming_channel_t. If the
available token is a control token and has the value ct, then the token is input and
discarded. Otherwise an exception is raised.

Type Xxcore_c_error_t
s_chan_check_ct(streaming_chanend_t c, uint8_t ct)

Parameters | ¢ The streaming chan-end
ct Control token that is expected on the streaming_channel_t.

ET_ILLEGAL_RESOURCE
not an allocated chan-end, or does not contain expected token.

ET_RESOURCE_DEP
another core is actively using the chan-end.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function s_chan_check_ct_end

Description | Check for a CT_END token on a streaming_channel_t.

This function blocks until a token is available on the streaming_channel_t. If the
available token is a CT_END token the token is input and discarded. Otherwise an
exception is raised.

Type Xcore_c_error_t
s_chan_check_ct_end(streaming_chanend_t c)

Parameters | The streaming chan-end

ET_ILLEGAL_RESOURCE
not an allocated chan-end, or does not contain CT_END token.

ET_RESOURCE_DEP
another core is actively using the chan-end.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 36 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

2.6 Channels with transactions

Function chan_init_transaction_master

Description | Start a transaction (master).

This initiates a transaction on a channel.

A transacting_chanend_t is used to temporarily open a transaction route through a
channel. During the transaction, you can use transaction channel operations for in-
creased efficiency. You can create a transacting chanend from a normal chanend
using chan_init_transaction_master() and chan_init_transaction_slave().

This called must be matched by a call to chan_init_transaction_slave() on the other
end of the channel.

A transaction must be closed with chan_complete_transaction().

Type xcore_c_error_t
chan_init_transaction_master(chanend =c,
transacting_chanend_t =tc)

Parameters | c chan-end to initialize the transaction on. chanend is invalidated
tc the intialized master transacting_chanend_t

ET_LINK_ERROR
chan-end destination is not set.

ET_ILLEGAL_RESOURCE
not an allocated chan-end.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid *c or *tc argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function chan_init_transaction_slave

Description | Start a transaction (slave).

This initiates a transaction on a channel.

This called must be matched by a call to chan_init_transaction_master() on the other
end of the channel.

A transaction must be closed with chan_complete_transaction().

The original chanend must not be used until the transaction is closed.

Type Xcore_c_error_t
chan_init_transaction_sTlave(chanend =c,
transacting_chanend_t =*tc)

Continued on next page

Copyright 2016 XMOS Ltd. 37 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | ¢ chan-end to initialize the transaction on. chanend is invalidated
tc the intialized slave transacting_chanend_t
ET_ILLEGAL_RESOURCE
not an allocated chan-end, or does not contain CT_END token.
ET_RESOURCE_DEP
another core is actively using the chan-end.
ET_LOAD_STORE
invalid *c or *tc argument.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function chan_complete_transaction
Description | Complete a transaction.
This function completes a transaction. After this call the route between the two ends
of the channel is freed allowing other channels to use the communication network.
Whilst the transacting_chanend_t is now invalid, the channel remains allocated, await-
ing another transaction or deallocation.
This call must be accompanied by a call to chan_complete_transaction() on the other
end of the channel.
Type Xxcore_c_error_t
chan_complete_transaction(chanend =c,
transacting_chanend_t =*tc)
Parameters | ¢ The original chan-end. chanend is made valid again.
tc Transacting chan-end to close. transacting_chanend_t is invalidated
ET_LINK_ERROR
chan-end destination is not set.
ET_TLLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.
ET_RESOURCE_DEP
another core is actively using the chan-end.
ET_LOAD_STORE
invalid *c or *tc argument.

Copyright 2016 XMOS Ltd. 38 WWW.Xmos.com

XM010504



®
l MOS XCORE_C (2.0.0)

Function t_chan_out_word

Description | Output a word over a transacting chan-end.

Type Xcore_c_error_t
t_chan_out_word(transacting_chanend_t =*tc,
uint32_t data)

Parameters | tc Transacting chan-end
data Word to be output

ET_LINK_ERROR
chan-end destination is not set.

ET_ILLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid *tc argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function t_chan_out_byte

Description | Output an byte over a transacting chan-end.

Type xcore_c_error_t
t_chan_out_byte(transacting_chanend_t =*tc,
uint8_t data)

Continued on next page

Copyright 2016 XMOS Ltd. 39 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | tc Transacting chan-end

data Byte to be output

ET_LINK_ERROR
chan-end destination is not set.

ET_TILLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid *tc argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function t_chan_out_buf_word

Description | Output a block of data over a transacting chan-end.

Type Xcore_c_error_t
t_chan_out_buf_word(transacting_chanend_t =*tc,
const uint32_t buf[],

size_t n)
Parameters | tc Transacting chan-end
buf Pointer to the buffer containing the data to send
n Number of words to send

ET_LINK_ERROR
chan-end destination is not set.

ET_TLLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid *tc or buf{] argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 40 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Function t_chan_out_buf_byte

Description | Output a block of data over a transacting chan-end.

Type Xcore_c_error_t
t_chan_out_buf_byte(transacting_chanend_t =*tc,
const uint8_t buf[],

size_t n)
Parameters | tc Transacting chan-end
buf Pointer to the buffer containing the data to send
n Number of bytes to send

ET_LINK_ERROR
chan-end destination is not set.

ET_TILLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid “tc or buf[] argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function t_chan_in_word

Description | Input a word from a transacting chan-end.

Type Xcore_c_error_t
t_chan_in_word(transacting_chanend_t =tc,
uint32_t =data)

Continued on next page

Copyright 2016 XMOS Ltd. 41 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | tc Transacting chan-end

data Inputted integer

ET_LINK_ERROR
chan-end destination is not set.

ET_TILLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid *tc or *data argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function t_chan_in_byte

Description | Input a byte from a transacting chan-end.

Type xcore_c_error_t
t_chan_in_byte(transacting_chanend_t =tc,
uint8_t =*data)

Parameters | tc Transacting chan-end
data Inputted byte

ET_LINK_ERROR
chan-end destination is not set.

ET_ILLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid *tc or *data argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 42 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Function t_chan_in_buf_word

Description | Input a block of data from a transacting chan-end.

Type Xcore_c_error_t
t_chan_in_buf_word(transacting_chanend_t =*tc,
uint32_t buf[],

size_t n)
Parameters | tc Transacting chan-end
buf Pointer to the memory region to fill
n The number of words to receive

ET_LINK_ERROR
chan-end destination is not set.

ET_TILLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid “tc or buf[] argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function t_chan_in_buf_byte

Description | Input a block of data from a transacting chan-end.

Type Xcore_c_error_t
t_chan_in_buf_byte(transacting_chanend_t =*tc,
uint8_t buf[],
size_t n)

Continued on next page

Copyright 2016 XMOS Ltd. 43 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | tc Transacting chan-end
buf Pointer to the memory region to fill
n The number of bytes to receive

ET_LINK_ERROR
chan-end destination is not set.

ET_ILLEGAL_RESOURCE
not an allocated chan-end, or channel handshaking corrupted.

ET_RESOURCE_DEP
another core is actively using the chan-end.

ET_LOAD_STORE
invalid *tc or buf[] argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 44 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

2.7 Clock blocks

Type

clock_id_t

Description

A clock block identifier.
Clock resources must be allocated by name rather than from a pool.

Values

clock_ref

clock_1

clock_2

clock_3

clock_4

clock_5

Function

clock_alloc

Description

Allocates a clock.
This function enables a specified clock block and returns a clock variable denoting
the clock.

Type

xcore_c_error_t clock_alloc(clock =clk, clock_id_t id)

Parameters

clk Clock variable representing the initialised clock
id The id of the clock to allocate

ET_ILLEGAL_RESOURCE
not a valid clock.

ET_RESOURCE_DEP
another core is actively changing the clock.

ET_LOAD_STORE
invalid *clk argument.

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 45 WWW.Xmos.com

XM010504



XMOS

XCORE_C (2.0.0)

Function clock_free
Description | Deallocate a clock.
Type xcore_c_error_t clock_free(clock =cl1k)
Parameters | 7k The clock to be freed
ET_TLLEGAL_RESOURCE
not a valid clock.
ET_RESOURCE_DEP
another core is actively changing the clock.
ET_LOAD_STORE
invalid *clk argument.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function clock_start
Description | Start a clock.
This function starts a clock running.
Type xcore_c_error_t clock_start(clock cl1k)
Parameters | c1k The clock to start running
ET_ILLEGAL_RESOURCE
not a valid clock.
ET_RESOURCE_DEP
another core is actively changing the clock.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function clock_stop
Description | Stop a clock.
This function waits until the clock is low and then pauses a clock.
Type xcore_c_error_t clock_stop(clock clk)

Continued on next page

Copyright 2016 XMOS Ltd. 46

WWW.XmMOos.com
XM010504



XMOS

Parameters | c1k The clock to stop
ET_ILLEGAL_RESOURCE
not a valid clock.
ET_RESOURCE_DEP
another core is actively changing the clock.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function clock_set_source_port
Description | Configure a clock’s source to a 1-bit port.
A clock can be a 1-bit port, the reference clock or the xCORE clock. Note that if
the xCORE clock is used then a non-zero divide must be used for ports to function
correctly.
Type xcore_c_error_t clock_set_source_port(clock clk, port p)
Parameters | c7k The clock to configure
p The 1-bit port to set as the clock input. Attempting to set a port which
is not 1-bit as the input will cause an exception.
ET_ILLEGAL_RESOURCE
not a valid clock or port, or the clock is running, or p not a one bit port.
ET_RESOURCE_DEP
another core is actively changing the clock.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function clock_set_source_clk_ref
Description | Configure a clock’s source to be the 100MHz reference clock.
Type xcore_c_error_t clock_set_source_clk_ref(clock clk)
Parameters | c1k The clock to configure
ET_ILLEGAL_RESOURCE
not a valid clock, or the clock is running.
ET_RESOURCE_DEP
another core is actively changing the clock.

Continued on next page

XCORE_C (2.0.0)

Copyright 2016 XMOS Ltd. 47

WWW.XmMOos.com
XM010504



®
l MOS XCORE_C (2.0.0)

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function

clock_set_source_clk_xcore

Description

Configure a clock’s source to be the xCORE clock.
Note: When using the xCORE clock as the clock input a divide of > 0 must be used for
the ports to function correclty.

Type

Xcore_c_error_t
clock_set_source_clk_xcore(clock c1k)

Parameters

clk The clock to configure

ET_ILLEGAL_RESOURCE
not a valid clock, or the clock is running.

ET_RESOURCE_DEP
another core is actively changing the clock.

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function

clock_set_divide

Description

Configure the divider for a clock.

A clock can divide its input signal by an integer value which this function specifies.
The XS2 architecture supports dividing the signal from a 1-bit port while the XS1
architecture will raise a trap if a non-zero divide is used with a 1-bit port input.

If the clock has been started then this will raise an exception.

If the divide is O then the value signal will be passed through the clock. If the value is
non-zero then the clock output will be divided by 2*divide.

Type

xcore_c_error_t clock_set_divide(clock clk, uint8_t divide)

Parameters

clk The clock to configure
divide The divide value

ET_ILLEGAL_RESOURCE
not a valid clock, or the clock is running.

ET_RESOURCE_DEP
another core is actively changing the clock.

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 48 WWW.Xmos.com

XM010504



®
l MOS XCORE_C (2.0.0)

Function clock_set_ready_src

Description | Sets a clock to use a 1-bit port for the ready-in signal.
If the port is not a 1-bit port then an exception is raised. The ready-in port controls
when data is sampled from the pins.

Type xcore_c_error_t clock_set_ready_src(clock clk, port ready_source)

Parameters | c1k The clock to configure.

ready_source
The 1-bit port to use for the ready-in signal.

ET_ILLEGAL_RESOURCE
not a valid clock, or ready_source not a one bit port.

ET_RESOURCE_DEP
another core is actively changing the clock.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 49 WWW.Xmos.com
XMO010504




XMOS

2.8 Locks
Function lock_alloc
Description | Allocates a lock.
This function allocates a hardware lock. If there are no locks availble the function
returns 0. When the lock is no longer required, lock_free() must be called to deallocate
it.
Type xcore_c_error_t Tock_alloc(lock_t =*1)
Parameters | ] lock_t variable representing the initialised lock
ET_LOAD_STORE
invalid */ argument.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function lock_free
Description | Deallocate a lock.
This function frees the hardware lock. The lock must be released prior to calling this
function.
Type xcore_c_error_t lock_free(lock_t =1)
Parameters | ] The lock_t to be freed
ET_TILLEGAL_RESOURCE
not an allocated lock, or the lock has not been released.
ET_RESOURCE_DEP
another core is actively changing the lock.
ET_LOAD_STORE
invalid */ argument.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function lock_acquire
Description | Acquire a lock.
Only one core at a time can acquire a lock. This provides a hardware mutex which
have very low overheads. If another thread has already acquired this lock then this
function will pause until the lock is released and this core becomes the owner.

Continued on next page

XCORE_C (2.0.0)

Copyright 2016 XMOS Ltd. 50

WWW.XmMOos.com
XM010504



®
l MOS XCORE_C (2.0.0)

Type xcore_c_error_t lock_acquire(lock_t 1)

Parameters | ] The lock_t to acquire

ET_TILLEGAL_RESOURCE
not an allocated lock.

ET_RESOURCE_DEP
another core is actively changing the lock.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function lock_release

Description | Release a lock.
This releases the lock and allocates the next owner from the list of waiting cores in
round-robin manner. Note: there are no checks that the core releasing the lock is the
current owner.

Type xcore_c_error_t lock_release(lock_t 1)

Parameters | The lock_t to use release

ET_ILLEGAL_RESOURCE
not an allocated lock.

ET_RESOURCE_DEP
another core is actively changing the lock.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 51 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

2.9 Ports

Type port_id_t

Description | A port identifier.
Port resources must be allocated by name rather than from a poll.

Values port_1A
port_1B
port_1C
port_1D
port_1E
port_1F
port_1G
port_1H
port_1I
port_1]
port_1K
port_1L
port_1M
port_1N
port_10
port_1P
port_4A
port_4B

port_4C

Continued on next page
. ____________________________________________________________________________________________________________________________________|

Copyright 2016 XMOS Ltd. 52 WWW.Xmos.com
XMO010504




XMOS

XCORE_C (2.0.0)

port_4D

port_4E

port_4F

port_8A

port_8B

port_8C

port_8D

port_16A

port_16B

port_16C

port_16D

port_32A

port_32B

Type

port_type_t

Description

Enumeration to declare how the port was set up.

Values

PORT_UNBUFFERED

PORT_BUFFERED

Function

port_alloc

Continued on next page

Copyright 2016 XMOS Ltd. 53

WWW.XmMOos.com
XM010504



XMOS

XCORE_C (2.0.0)

Description | Allocates a port.
Either this function or port_alloc_buffered() must be called once for each variable of
type port before use. port_free() must be called afterwards.
The port’s state is set to: input, unbuffered, inout_data, no_invert, rising_edge, mas-
ter, no_ready, no triggers, clocked by XS1_CLKBLK_REF.
Type xcore_c_error_t port_alloc(port *p, port_id_t id)
Parameters | p Port variable representing the initialised port
id Value that identifies which port to drive
ET_ILLEGAL_RESOURCE
not a valid port.
ET_RESOURCE_DEP
another core is actively changing the port.
ET_LOAD_STORE
invalid *p argument.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function port_reset
Description | Reset a port.
Clears a ports settings back to the default state at port_alloc().
Type Xxcore_c_error_t port_reset(port p)
Parameters | p The port to be reset
ET_ILLEGAL_RESOURCE
not a valid port.
ET_RESOURCE_DEP
another core is actively changing the port.
ET_LOAD_STORE
invalid *p argument.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 54

WWW.XmMOos.com
XM010504



®
l MOS XCORE_C (2.0.0)

Function port_alloc_buffered

Description | Allocates a port to buffer and serialise/deserialise data.
Either this function or port_alloc() must be called once for each variable of type port
before use. port_free() must be called afterwards.

Type xcore_c_error_t port_alloc_buffered(port =p,
port_id_t 1d,
size_t transfer_width)

Parameters | p Port variable representing the initialised port
id Value that identifies which port to drive

transfer_width
Number of bits to serialise; must be 1, 4, 8, or 32. The number of bits
must be >= to the physical port width.

ET_TILLEGAL_RESOURCE
not a valid port, or is not legal width for the port.

ET_RESOURCE_DEP
another core is actively changing the port.

ET_LOAD_STORE
invalid *p argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_free

Description | Deallocate a port.

Type xcore_c_error_t port_free(port xp)

Parameters | p The port to be freed

ET_TILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

ET_LOAD_STORE
invalid *p argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 55 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Function port_set_transfer_width
Description | Change the transfer width of a port.
The default transfer width is the same as the physical port width.
A port must have been set to buffered if the width is different from the physical
port width
Type xcore_c_error_t port_set_transfer_width(port p,
size_t transfer_width)
Parameters | p The port to change the transfer width of
transfer_width
Number of bits to serialise; must be 1, 4, 8, or 32. The number of bits
must be >= to the physical port width.
ET_ILLEGAL_RESOURCE
not a valid port, or is not legal width for the port, or the port is un-
buffered.
ET_RESOURCE_DEP
another core is actively changing the port.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function port_set_buffered
Description | Sets a port to be buffered.
Configures a port into buffered mode where it can automatically serialise or deseri-
alise data.
Type xcore_c_error_t port_set_buffered(port p)
Parameters | p The port to set as buffered
ET_ILLEGAL_RESOURCE
not a valid port.
ET_RESOURCE_DEP
another core is actively changing the port.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 56 WWW.Xmos.com

XM010504



®
l MOS XCORE_C (2.0.0)

Function port_set_unbuffered

Description | Sets a port to be unbuffered (default state).
Configures a port into unbuffered mode. Note that before this is called, a a port needs
to have its transfer width equal to the port width and be configured as a master port.

Type xcore_c_error_t port_set_unbuffered(port p)

Parameters | p The port to set as unbuffered

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_set_clock

Description | Set the clock clocking a port.
This function changes the clock used for a port’s control functions. The default clock
is ‘XS1_CLKBLK_REF’.

Type xcore_c_error_t port_set_clock(port p, clock clk)
Parameters | p Port whose clock is being changed.
clk Clock to attach to the port.

ET_ILLEGAL_RESOURCE
not a valid port, clock, or clock is running.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_set_inout_data

Description | Set a port drive out the data value (default state).

Type xcore_c_error_t port_set_inout_data(port p)

Continued on next page

Copyright 2016 XMOS Ltd. 57 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | p Port to change the mode of

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_set_out_clock

Description | Set a port to drive out its clocking signal.
This function configures the port to drive the clock signal instead of its own data
values. The clock signal that is driven out is configured using the port_set_clock()

function.
Type xcore_c_error_t port_set_out_clock(port p)
Parameters | p Port to change the mode of

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_set_out_ready

Description | Set a port to drive out the ready signal of another port.
This function configures the port to drive the ready signal of another port instead of
its own data values.

Type Xxcore_c_error_t port_set_out_ready(port p, port ready_source)

Continued on next page

Copyright 2016 XMOS Ltd. 58 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | p Port to change the mode of. This must be a 1-bit port or this function
will trap.

ready_source
The port whose ready signal will be output

ET_TLLEGAL_RESOURCE
not a valid port. or p not a one bit port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_set_invert

Description | Set the port to invert its data.
This function configures a port to invert the data on the pin. This can be reverted by
calling port_set_no_invert().

Type Xcore_c_error_t port_set_invert(port p)

Parameters | p Port to set its data to be inverted. This must be a 1-bit port or a trap
will be raised.

ET_TILLEGAL_RESOURCE
not a valid port, or p not a one bit port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_set_no_invert

Description | Set the port to not invert its data (default state).
This function configures a port to not invert the data on the pin.

Type Xcore_c_error_t port_set_no_invert(port p)

Continued on next page

Copyright 2016 XMOS Ltd. 59 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | p Port to set the data to not be inverted.

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_set_sample_falling_edge

Description | Set the port to sample on the falling edge.

The default is for a port to sample data on the rising edge of the clock. This function
changes the port to sample on the falling edge instead. This change can be reverted
by calling port_set_sample_rising_edge().

Type xcore_c_error_t port_set_sample_falling_edge(port p)

Parameters | p Port to change its sampling edge.

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_set_sample_rising_edge

Description | Set the port to sample on the rising edge (default state).
This function restores a port to sampling data on the rising edge of the clock.

Type xcore_c_error_t port_set_sample_rising_edge(port p)

Parameters | p Port to change its sampling edge.

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 60 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Function port_set_master

Description | Set the port to master mode (default state).

This function configures a port to be a master. This is only relevant when using ready
signals (port_set_ready_strobed() / port_set_ready_handshake()).

It is highly recommended to use the port_protocol_x functions to put a port into
its desired mode as the order of operations is critical.

Type Xcore_c_error_t port_set_master(port p)

Parameters p Port to set as a master

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_set_slave

Description | Set the port to slave mode.

This function configures a port to be a master. This is only relevant when using a
ready strobe (port_set_ready_strobed())

Note: the port must be set to use a ready strobe, otherwise this function will raise an
exception.

It is highly recommended to use the port_protocol_x functions to put a port into
its desired mode as the order of operations is critical.

Type xcore_c_error_t port_set_slave(port p)

Parameters | p Port to set as a slave

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_set_no_ready

Continued on next page

Copyright 2016 XMOS Ltd. 61 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Description

Set the port to use no ready signals (default state).

This function changes a port to not use ready signals. A port can be con-
figured to use strobes or handshaking signals using port_set_ready_strobed() or
port_set_ready_handshake().

Note: the port must be a master port otherwise this function will raise an exception.
It is highly recommended to use the port_protocol_x functions to put a port into
its desired mode as the order of operations is critical.

Type

Xcore_c_error_t port_set_no_ready(port p)

Parameters

p Port to change to not use ready signals

ET_TILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function

port_set_ready_strobed

Description

Set the port to use a single strobe.

This function changes a port to not use ready signals. A port can be con-
figured to use strobes or handshaking signals using port_set_ready_strobed() or
port_set_ready_handshake().

Note: the port must be a buffered port otherwise this function will raise an exception.
It is highly recommended to use the port_protocol_x functions to put a port into
its desired mode as the order of operations is critical.

Type

xcore_c_error_t port_set_ready_strobed(port p)

Parameters

p Port to change to not use ready signals

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function

port_set_ready_handshake

Continued on next page

Copyright 2016 XMOS Ltd. 62 WWW.Xmos.com

XM010504



®
l MOS XCORE_C (2.0.0)

Description

Set the port to be fully handshaken.

This function changes a port to use both a ready input and drive a ready output in
order to control when data is sampled or written.

Note: the port must be a master buffered port otherwise this function will raise an
exception.

It is highly recommended to use the port_protocol_x functions to put a port into
its desired mode as the order of operations is critical.

Type

xcore_c_error_t port_set_ready_handshake(port p)

Parameters

p Port to change to not use ready signals

ET_TILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function

port_get_trigger_time

Description

Get the timestamp of the last operation on a port.
This function gets the timestamp of the last input or output operation on a port.

Type

xcore_c_error_t port_get_trigger_time(port p, intl6_t =t)

Parameters

p The port to get the timestamp from
t The timestamp of the last operation

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

ET_LOAD_STORE
invalid *t argument.

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function

port_set_trigger_time

Continued on next page

Copyright 2016 XMOS Ltd. 63 WWW.Xmos.com

XM010504



XMOS

Description

Set the timestamp at which the port will input/output data.

This function sets the time condition for the next input or output on a port. If the
port is unbuffered or the buffer is empty/full a call to port_in() or port_out() will
pause until the specified time. The trigger is cleared by a input/output or by calling
port_clear_trigger_time().

Type

xcore_c_error_t port_set_trigger_time(port p, intl6_t t)

Parameters

p The port to set the condition on
t The port timestamp to match

ET_TILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively using the port.

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function

port_clear_trigger_time

Description

Clear the timestamp trigger on a port.

This function clears any trigger_time condition on the port so the next input or output
will happen unconditionally in respect to the timestamp. This function does not clear
the trigger_in condition on the port.

Type

xcore_c_error_t port_clear_trigger_time(port p)

Parameters

p the port to clear the trigger_time on

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function

port_set_trigger_in_equal

Description

Setup an event to trigger on a port when its input value matches.

On a unbuffered port the trigger will apply to all future inputs until the trigger is set
again. On an buffered port the trigger will only hold for the next input after which the
trigger_in_equal will be cleared.

Continued on next page

XCORE_C (2.0.0)

Copyright 2016 XMOS Ltd. 64

WWW.XmMOos.com
XM010504



XMOS

Type xcore_c_error_t port_set_trigger_in_equal(port p, uint32_t v)
Parameters | p The port to set the trigger on
v The value to match
ET_ILLEGAL_RESOURCE
not a valid port.
ET_RESOURCE_DEP
another core is actively changing the port.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function port_set_trigger_in_not_equal
Description | Setup an event to trigger on a port when its input value does not matches.
On a unbuffered port the trigger will apply to all future inputs until the trigger is set
again. On an buffered port the trigger will only hold for the next input after which the
trigger_in_not_equal will be cleared.
Type Xcore_c_error_t
port_set_trigger_in_not_equal(port p, uint32_t v)
Parameters | p The port to set the trigger on
Y% The value not to match
ET_ILLEGAL_RESOURCE
not a valid port.
ET_RESOURCE_DEP
another core is actively changing the port.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function port_clear_trigger_in
Description | Clear the in trigger on a port.
This function clears any trigger_in condition on the port so the next input will hap-
pen unconditionally in respect to the input value. This function does not clear the
trigger_time condition on the port.
Type xcore_c_error_t port_clear_trigger_in(port p)

Continued on next page

XCORE_C (2.0.0)

Copyright 2016 XMOS Ltd. 65

WWW.XmMOos.com
XM010504



®
l MOS XCORE_C (2.0.0)

Parameters | p The port to clear the trigger_in on

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_peek

Description | Peek at the value on a a port.

Peeking a port returns the current value on the pins of a port, regardless of whether
the port is an output or input and without affecting its direciton. Peek will not pause,
regardless of any triggers that have been set.

Type xcore_c_error_t port_peek(port p, uint32_t =data)
Parameters | p Port to be peeked
data The current value on the pins

ET_ILLEGAL_RESOURCE
not a valid port.

ET_LOAD_STORE
invalid *data argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_out

Description | Outputs a value onto a port.

In the case of an unbuffered port, the value will be driven on the pins on the next
clock cycle. In the case of a buffered port, the data will be stored in the buffer, and
be serialised onto the output pins.

If there is a time trigger setup and the port is unbuffered or the buffer is full the call
will pause until the specified time.

Type xcore_c_error_t port_out(port p, uint32_t data)

Continued on next page

Copyright 2016 XMOS Ltd. 66 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | p Port to output to

data Value to output

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_in

Description | Input a value from a port.

For unbuffered port with no trigger, the data will be whatever is on the input pins. For
unbuffered port with a trigger, the data will be the value read when the trigger fired.
The call will pause if the trigger has not yet fired. For buffered port, this function will
pause until the buffer is filled up with deserialised data.

Type xcore_c_error_t port_in(port p, uint32_t =data)
Parameters | p Port to input from
data The inputted data

ET_TILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

ET_LOAD_STORE
invalid *data argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_out_shift_right

Description | Outputs a value onto a port and shift the output data.

In the case of an unbuffered port, the value will be driven on the pins on the next
clock cycle. In the case of a buffered port, the data will be stored in the buffer, and
be serialised onto the output pins.

If there is a time trigger setup and the port is unbuffered or the buffer is full the call
will pause until the specified time.

Continued on next page

Copyright 2016 XMOS Ltd. 67 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Type xcore_c_error_t port_out_shift_right(port p, uint32_t =data)
Parameters | p Port to output to
data data is shifted right by the transfer width of the port, with the bits
shifting out onto the port. The remaining shifted bits are returned in
data.

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

ET_LOAD_STORE
invalid *data argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_in_shift_right

Description | Input a value from a port and shift the data.

For unbuffered port with no trigger, the data will be whatever is on the input pins. For
unbuffered port with a trigger, the data will be the value read when the trigger fired.
The call will pause if the trigger has not yet fired. For buffered port, this function will
pause until the buffer is filled up with deserialised data.

Type xcore_c_error_t port_in_shift_right(port p, uint32_t =data)
Parameters | p Port to input from
data The input data shifted right by the transfer width of the port

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

ET_LOAD_STORE
invalid *data argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 68 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Function port_out_at_time

Description | Outputs a value onto a port at a specified port timestamp.

In the case of an unbuffered port, the value will be driven on the pins when on the
clock cycle that moves the port timestamp to the specified time. In the case of a
buffered port, the data will be stored in the buffer, and be serialised onto the output
pins at the point that the time is reached.

Type Xcore_c_error_t port_out_at_time(port p, intl6e_t t, uint32_t data)
Parameters | p Port to output to

t The timestamp to do the output on

data Value to output

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_in_at_time

Description | Input data from a port when its counter is at a specific time.

In the case of an unbuffered port, the data will be inputted when the counter reaches
time t. In the case of a buffered port, an input will wait until the given time and then
will start capturing data, returning a value when the buffer is full.

Type xcore_c_error_t port_in_at_time(port p, intl6_t t, uint32_t =data)
Parameters | p Port to input from

t The timestamp to do input on

data The inputted data

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

ET_LOAD_STORE
invalid *data argument.

Continued on next page

Copyright 2016 XMOS Ltd. 69 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_out_shift_right_at_time

Description | Outputs a value onto a port at a specified time and shifts the output data.

In the case of an unbuffered port, the value will be driven on the pins when on the
clock cycle that moves the port counter to the specified time. In the case of a buffered
port, the data will be stored in the buffer, and be serialised onto the output pins at
the point that the time is reached.

Type xcore_c_error_t port_out_shift_right_at_time(port p,
intl6_t t,
uint32_t =*data)

Parameters | p Port to output to
t The timestamp of the output
data data is shifted right by the transfer width of the port, with the bits
shifting out onto the port. The remaining shifted bits are returned in
data.

ET_TILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

ET_LOAD_STORE
invalid *data argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_in_shift_right_at_time

Description | Input data from a port at a specific time and shift the data.

In the case of an unbuffered port, the data will be inputted when the counter reaches
time t. In the case of a buffered port, an input will wait until the given time and then
will start capturing data, returning a value when the buffer is full.

Type xcore_c_error_t port_in_shift_right_at_time(port p,
intl6_t t,
uint32_t =data)

Continued on next page

Copyright 2016 XMOS Ltd. 70 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | p Port to input from
t The timestamp to do input on
data The input data shifted right by the transfer width of the port

ET_TLLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

ET_LOAD_STORE
invalid *data argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_in_when_pinseq

Description | Input data from a port when its pins match a specific value.

In the case of an unbuffered port, the data inputted be identical to the value. In the
case of a buffered port, an input will wait until the value appears on the pins and then
return that value and some previous values that have been deserialised.

Type xcore_c_error_t port_in_when_pinseq(port p,

port_type_t pt,
uint32_t value,
uint32_t =data)

Parameters | p Port to input from
pt If port is buffered or unbuffered.
value The value to match against the pins
data The inputted data

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

ET_LOAD_STORE
invalid *data argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 71 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Function port_in_when_pinsneq

Description | Input data from a port when its pins do not match a specific value.

In the case of an unbuffered port, the inputted data will be the non-matching pin
values. In the case of a buffered port, this macro will wait until a non matching value
appears on the pins, and then return that value and previous values that have been

deserialised.

Type Xxcore_c_error_t port_in_when_pinsneq(port p,
port_type_t pt,
uint32_t value,
uint32_t =data)

Parameters | p Port to input from

pt If port is buffered or unbuffered.
value The value to match against the pins
data The inputted data

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

ET_LOAD_STORE
invalid *data argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_in_shift_right_when_pinseq

Description | Input data from a port when its pins match a specific value and shift the data.

In the case of an unbuffered port, the data inputted be identical to the value. In the
case of a buffered port, an input will wait until the value appears on the pins and then
return that value and some previous values that have been deserialised.

Type Xxcore_c_error_t

port_in_shift_right_when_pinseq(port p,
port_type_t pt,
uint32_t value,
uint32_t =data)

Continued on next page

Copyright 2016 XMOS Ltd. 72 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | p Port to input from
pt If port is buffered or unbuffered.
value The value to match against the pins
data The input data shifted right by the transfer width of the port

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

ET_LOAD_STORE
invalid *data argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_in_shift_right_when_pinsneq

Description | Input data from a port when its pins do not match a specific value and shift the data.
In the case of an unbuffered port, the inputted data will be the non-matching pin
values. In the case of a buffered port, this macro will wait until a non matching value
appears on the pins, and then return that value and previous values that have been
deserialised.

Type Xcore_c_error_t

port_in_shift_right_when_pinsneq(port p,
port_type_t pt,
uint32_t value,
uint32_t =data)

Continued on next page

Copyright 2016 XMOS Ltd. 73 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | p Port to input from
pt If port is buffered or unbuffered.
value The value to match against the pins
data The input data shifted right by the transfer width of the port

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

ET_LOAD_STORE
invalid *data argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_clear_buffer

Description | Clears the buffer used by a port.

Any data sampled by the port which has not been input by the processor is discarded.
Any data output by the processor which has not been driven by the port is discarded.
If the port is in the process of serialising output, it is interrupted immediately. If
a pending output would have caused a change in direction of the port then that
change of direction does not take place. If the port is driving a value on its pins when
this function is called then it continues to drive the value until an output statement
changes the value driven.

Type xcore_c_error_t port_clear_buffer(port p)

Parameters | p The port whose buffer is to be cleared

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_endin

Continued on next page

Copyright 2016 XMOS Ltd. 74 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Description | Ends the current input on a buffered port.

The number of bits sampled by the port but not yet input by the processor is returned.
This count includes both data in the transfer register and data in the shift register
used for deserialisation. Subsequent inputs on the port return transfer-width bits of
data until there is less than one transfer-width bits of data remaining. Any remaining
data can be read with one further input, which returns transfer-width bits of data with
the remaining buffered data in the most significant bits of this value.

Type xcore_c_error_t port_endin(port p, size_t *num)
Parameters | p The port to end the current input on
num The number of bits of data remaining

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

ET_LOAD_STORE
invalid *num argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_force_input

Description | Force an input on a buffered port.
The function will perform an input on a buffered port even if the buffer is only partially
full.

Type xcore_c_error_t port_force_input(port p,
size_t *num,
uint32_t =data)

Continued on next page

Copyright 2016 XMOS Ltd. 75 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | p The port to do the input on
num A variable to be filled with number of bits inputted
data The inputted data

ET_TLLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively changing the port.

ET_LOAD_STORE
invalid *num or *data argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_setup_select

Description | Setup select events on a port.

Configures a port to trigger select events when ready. By default a port will trig-
ger when there is data available. The trigger event can be changed using the
port_set_trigger_*() function.

Once the select event is setup you need to call port_enable_trigger() to enable it.

Type Xcore_c_error_t port_setup_select(port p, uint32_t enum_id)
Parameters | p The port to setup the select event on
enum_id The value to be returned by select_wait() et al when the port event is

triggered. On XS1 bit 16 must be set (see ENUM_ID_BASE)

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively using the port.

ET_ECALL  when xassert enabled, on XS1 bit 16 not set in enum_id.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_setup_select_callback

Continued on next page

Copyright 2016 XMOS Ltd. 76 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Description | Setup select events on a port where the events are handled by a function.
Same as port_setup_select() except that a callback function is used rather than the
event being passed back to the select_wait() et al functions.
Once the event is setup you need to call port_enable_trigger() to enable it.
Type xcore_c_error_t port_setup_select_callback(port p,
void =*data,
select_callback_t func)
Parameters | p The port to setup the select event on
data The value to be passed to the select_callback_t function On XS1 bit 16
must be set (see ENUM_ID_BASE)
func The select_callback_t function to handle events
ET_ILLEGAL_RESOURCE
not a valid port.
ET_RESOURCE_DEP
another core is actively using the port.
ET_ECALL  when xassert enabled, on XS1 bit 16 not set in data.
Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).
Function port_setup_interrupt_callback
Description | Setup interrupt event on a port.
Once the event is setup you need to call port_enable_trigger() to enable it.
Type Xxcore_c_error_t
port_setup_interrupt_callback(port p,
void =data,
interrupt_callback_t func)

Continued on next page

Copyright 2016 XMOS Ltd. 77 WWW.Xmos.com

XM010504



®
l MOS XCORE_C (2.0.0)

Parameters | p The port to setup the interrupt event on

data The value to be passed to the interrupt_callback_t function On XS1 bit
16 must be set (see ENUM_ID_BASE)

func The interrupt_callback_t function to handle events

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively using the port.

ET_ECALL when xassert enabled, on XS1 bit 16 not set in data.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_enable_trigger

Description | Enable select & interrupt events on a port.

Prior to enabling, port_setup_select(), port_setup_select_callback()  or
port_setup_interrupt_callback() must have been called. Events can be temporar-
ily disabled and re-enabled using port_disable_trigger() and port_enable_trigger().
When the event fires, the value must be read from the port to clear the event.

Type xcore_c_error_t port_enable_trigger(port p)

Parameters | p The port to enable events on

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively using the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_disable_trigger

Description | Disable select & interrupt events for a given port.
This function prevents any further events being triggered by a given port.

Type xcore_c_error_t port_disable_trigger(port p)

Continued on next page

Copyright 2016 XMOS Ltd. 78 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | p The port to disable events on

ET_ILLEGAL_RESOURCE
not a valid port.

ET_RESOURCE_DEP
another core is actively using the port.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 79 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

2.9.1 Port protocol helpers

Function

port_protocol_in_handshake

Description

Configure a port to be a clocked input port in handshake mode.

If the ready-in or ready-out ports are not 1-bit ports, an exception is raised. The
ready-out port is asserted on the falling edge of the clock when the port’s buffer is
not full. The port samples its pins on its sampling edge when both the ready-in and
ready-out ports are asserted.

By default the port’s sampling edge is the rising edge of clock. This can be changed
by the function port_set_sample_falling_edge().

Note: A handshaken port must be buffered, so this function will also make the port
buffered.

Type

xcore_c_error_t port_protocol_in_handshake(port p,
port readyin,
port readyout,
clock c1k)

Parameters

p The port to configure
readyin A 1-bit port to use for the ready-in signal
readyout A 1-bit port to use for the ready-out signal
clk The clock used to configure the port
ET_ILLEGAL_RESOURCE
not a valid port/clock or clock is running, or readyin/readyout not a one

bit port.

ET_RESOURCE_DEP
another core is actively changing a port/clock

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function

port_protocol_out_handshake

Continued on next page

Copyright 2016 XMOS Ltd. 80 WWW.Xmos.com

XM010504



®
l MOS XCORE_C (2.0.0)

Description | configures a port to be a clocked output port in handshake mode.

if the ready-in or ready-out ports are not 1-bit ports an exception is raised. the port
drives the initial value on its pins until an output statement changes the value driven.
the ready-in port is read on the sampling edge of the port. outputs are driven on the
next falling edge of the clock where the previous value read from the ready-in port
was high.

on the falling edge of the clock the ready-out port is driven high if data is output on
that edge, otherwise it is driven low.

by default the port’s sampling edge is the rising edge of clock. this can be changed
by the function port_set_sample_falling_edge().

note: a handshaken port must be buffered, so this function will also make the port

buffered.
Type xcore_c_error_t port_protocol_out_handshake(port p,
port readyin,
port readyout,
clock clk,
uint32_t initial)
Parameters | p the port to configure
readyin a 1-bit port to use for the ready-in signal

readyout a 1-bit port to use for the ready-out signal
clk the clock used to configure the port
initial the initial value to output on the port
ET_ILLEGAL_RESOURCE
not a valid port/clock or clock is running, or readyin/readyout not a one

bit port.

ET_RESOURCE_DEP
another core is actively changing a port/clock

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_protocol_in_strobed_master

Description | configures a port to be a clocked input port in strobed master mode.

if the ready-out port is not a 1-bit port, an exception is raised. the ready-out port is
asserted on the falling edge of the clock when the port’s buffer is not full. the port
samples its pins on its sampling edge after the ready-out port is asserted.

by default the port’s sampling edge is the rising edge of clock. this can be changed
by the function set_port_sample_delay().

note: a strobed port must be buffered, so this function will also make the port
buffered.

Continued on next page
. ____________________________________________________________________________________________________________________________________|

Copyright 2016 XMOS Ltd. 81 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Type Xxcore_c_error_t
port_protocol_in_strobed_master(port p,
port readyout,
clock c1k)

Parameters | p the port to configure
readyout a 1-bit port to use for the ready-out signal
clk the clock used to configure the port

ET_ILLEGAL_RESOURCE
not a valid port/clock or clock is running, or readyout not a one bit port.

ET_RESOURCE_DEP
another core is actively changing a port/clock

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_protocol_out_strobed_master

Description | configures a port to be a clocked output port in strobed master mode.

if the ready-out port is not a 1-bit port, an exception is raised. the port drives the
initial value on its pins until an output statement changes the value driven. outputs
are driven on the next falling edge of the clock. on the falling edge of the clock the
ready-out port is driven high if data is output on that edge, otherwise it is driven low.
note: a strobed port must be buffered, so this function will also make the port
buffered.

Type Xcore_c_error_t
port_protocol_out_strobed_master(port p,
port readyout,
clock clk,
uint32_t initial)

Parameters | p the port to configure

readyout a 1-bit port to use for the ready-out signal
clk the clock used to configure the port
initial the initial value to output on the port

ET_ILLEGAL_RESOURCE
not a valid port/clock or clock is running, or readyout not a one bit port.

ET_RESOURCE_DEP
another core is actively changing a port/clock

Continued on next page
. ____________________________________________________________________________________________________________________________________|
Copyright 2016 XMOS Ltd. 82 WWW.Xmos.com
XM010504




®
l MOS XCORE_C (2.0.0)

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_protocol_in_strobed_slave

Description | configures a port to be a clocked input port in strobed slave mode.
if the ready-in port is not a 1-bit port, an exception is raised. the port samples its
pins on its sampling edge when the ready-in signal is high. by default the port’s
sampling edge is the rising edge of clock. this can be changed by the function
set_port_sample_delay().
note: a strobed port must be buffered, so this function will also make the port
buffered.

Type Xcore_c_error_t
port_protocol_in_strobed_sTave(port p,

port readyin,
clock c1k)

Parameters | p the port to configure
readyin a 1-bit port to use for the ready-in signal
clk the clock used to configure the port
ET_ILLEGAL_RESOURCE

not a valid port/clock or clock is running, or readyin not a one bit port.
ET_RESOURCE_DEP
another core is actively changing a port/clock

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function port_protocol_out_strobed_slave

Description | configures a port to be a clocked output port in strobed slave mode.
if the ready-in port is not a 1-bit port, an exception is raised. the port drives the initial
value on its pins until an output statement changes the value driven. the ready-in port
is read on the port’s sampling edge. outputs are driven on the next falling edge of
the clock where the previous value read from the ready-in port is high. by default the
port’s sampling edge is the rising edge of clock. this can be changed by the function
set_port_sample_delay().
note: a strobed port must be buffered, so this function will also make the port
buffered.

Continued on next page

Copyright 2016 XMOS Ltd. 83 WWW.Xmos.com

XM010504



XMOS

XCORE_C (2.0.0)

Type Xxcore_c_error_t
port_protocol_out_strobed_slave(port p,
port readyin,
clock clk,
uint32_t initial)
Parameters | p the port to configure
readyin a 1-bit port to use for the ready-in signal
clk the clock used to configure the port
initial the initial value to output on the port
ET_ILLEGAL_RESOURCE
not a valid port/clock or clock is running, or readyin not a one bit port.
ET_RESOURCE_DEP
another core is actively changing a port/clock
. ____________________________________________________________________________________________________________________________________|
Copyright 2016 XMOS Ltd. 84 WWW.Xmos.com

XM010504



XMOS

2.10 Timers

Function hwtimer_free_xc_timer

Description | Deallocate the xC timer resource for a thread.
This function deallcoates the hardware timer automatically allocated for xC use. Each
logical core is allocated a hardware timer that is multiplexed and used by the xC
‘timer’ interface. This multiplexed timer is not accessible from C. If the logical core
is not running any xC code, or any XC code is not making use of the ‘timer’ resource
type, the allocated hardware timer may be retrieved for use as a hwtimer_t.
This call must be paired with a call to :c:func:*hwtimer_realloc_xc_timer‘ prior to
the logical core completing its tasks
The xScope link also requires a hardware timer

Type xcore_c_error_t hwtimer_free_xc_timer(void)

Parameters | ET_TLLEGAL_RESOURCE

timer has already been deallocated.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function hwtimer_realloc_xc_timer

Description | Reallocate the xC timer resource for a thread.
This function reallcoates a logical core’s xC hardware timer that was deallocated by a
call to hwtimer_free_xc_timer().
There must be an available hw timer when this call is made, otherwise an excep-
tion will be raised when the logical core completes

Type xcore_c_error_t hwtimer_realloc_xc_timer(void)

Parameters | ET_ECALL no available hw timer, reallocation failed.

Returns error_none.

Function hwtimer_alloc

Description | Allocates and initialise a timer.
This function allocates a hardware timer. If there are no timers available, then the
function will return 0. This macro is to be called once on every variable of the type
timer. When the timer is no longer required, hwtimer_free() must be called to deal-
locate it.

Type xcore_c_error_t hwtimer_allocChwtimer_t =t)

Continued on next page

XCORE_C (2.0.0)

Copyright 2016 XMOS Ltd. 85

WWW.XmMOos.com
XM010504



®
l MOS XCORE_C (2.0.0)

Parameters | t Timer variable representing the initialised timer

ET_LOAD_STORE
invalid *t argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function hwtimer_free

Description | Deallocate a timer.
This function frees the hardware timer.

Type xcore_c_error_t hwtimer_freeChwtimer_t =*t)

Parameters | ¢ The timer to be freed

ET_ILLEGAL_RESOURCE
not an allocated timer.

ET_RESOURCE_DEP
another core is actively using the timer.

ET_LOAD_STORE
invalid *t argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function hwtimer_get_time

Description | Get the current time from the timer.
If there is a trigger time setup, the call will stall until after the trigger time. For select
and interrupt event, calling hwtimer_get_time() will clear the event.

Type xcore_c_error_t hwtimer_get_timeChwtimer_t t, uint32_t *now)

Continued on next page

Copyright 2016 XMOS Ltd. 86 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | ¢ The timer on which to input

now The time value (a 32-bit value)

ET_ILLEGAL_RESOURCE
not an allocated timer.

ET_RESOURCE_DEP
another core is actively using the timer.

ET_LOAD_STORE
invalid *now argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function hwtimer_set_trigger_time

Description | Setup an event trigger on a timer.

This will cause hwtimer_get_time() to pause until the specified time. The trigger may
be cleared using hwtimer_clear_trigger_time().

:c:func:‘hwtimer_wait_until’, :c:func:*hwtimer_delay’, :c:func:‘hwtimer_setup_select’
:c:func‘hwtimer_setup_select_callback’ and :c:func:*hwtimer_setup_interrupt_callback*
call :c:func:‘hwtimer_set_trigger_time*

Type xcore_c_error_t
hwtimer_set_trigger_timeChwtimer_t t,
uint32_t time)

Parameters | t The timer to setup a event trigger on.

time The time at which the timer will trigger an event. The default timer ticks
are at a 10ns resolution.

ET_TILLEGAL_RESOURCE
not a valid timer.

ET_RESOURCE_DEP
another core is actively using the timer.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function hwtimer_change_trigger_time

Description | Change the time at which a timer trigger will fire.
This function modifies the time at which a previously setup triggers fire. It is used to
set a new trigger time after a select or interrupt event has occurred.

Continued on next page
. ____________________________________________________________________________________________________________________________________|

Copyright 2016 XMOS Ltd. 87 WWW.Xmos.com
XMO010504




XMOS

Type

Xcore_c_error_t
hwtimer_change_trigger_timeChwtimer_t t,
uint32_t time)

Parameters

t The timer to change

time The time at which the timer will trigger an event. The default timer ticks

are at a 10ns resolution.

ET_ILLEGAL_RESOURCE
not a valid timer.

ET_RESOURCE_DEP
another core is actively using the timer.

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function

hwtimer_clear_trigger_time

Description

Clear an event trigger on a timer.

Makes sure no triggers are setup on a timer. Should be called when a timer is no
longer being used for select and interrupt events. Both hwtimer_wait_until() and hw-
timer_delay() call hwtimer_clear_trigger_time().

Type

Xcore_c_error_t
hwtimer_clear_trigger_timeChwtimer_t t)

Parameters

t The timer to tear down events on

ET_ILLEGAL_RESOURCE
not a valid timer.

ET_RESOURCE_DEP
another core is actively using the timer.

Returns

error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function

hwtimer_wait_until

Description

Wait until after a specified time.
This will destroy any select or interrupt event triggers set on this resource

Type

xcore_c_error_t hwtimer_wait_untilChwtimer_t t,
uint32_t until,
uint32_t *now)

Continued on next page

XCORE_C (2.0.0)

Copyright 2016 XMOS Ltd. 88

WWW.XmMOos.com
XM010504



®
l MOS XCORE_C (2.0.0)

Parameters | t The timer to use for timing
until The time to wait until
now The time we actually waited until

ET_ILLEGAL_RESOURCE
not an allocated timer.

ET_RESOURCE_DEP
another core is actively using the timer.

ET_LOAD_STORE
invalid *now argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function hwtimer_delay

Description | Delay for a specified time using a specific timer.
This will destroy any select or interrupt event triggers set on this resource

Type xcore_c_error_t hwtimer_delayChwtimer_t t, uint32_t period)
Parameters | t The timer resource to use
period The amount of time to wait (in reference time ticks, usually 10ns steps)

ET_ILLEGAL_RESOURCE
not an allocated timer.

ET_RESOURCE_DEP
another core is actively using the timer.

ET_LOAD_STORE
invalid *now argument.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function hwtimer_setup_select

Description | Setup select events on a timer.

Configures a timer to trigger select events when the timer has reached the speci-
fied time. It is used in combination with select_wait() et al functions, returning the
enum_id when the event is triggered.

Once the select event is setup you need to call hwtimer_enable_trigger() to enable it.

Continued on next page

Copyright 2016 XMOS Ltd. 89 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Type xcore_c_error_t hwtimer_setup_select(Chwtimer_t t,
uint32_t time,
uint32_t enum_id)

Parameters | The timer to setup the select event on

time The time at which the timer will trigger an event. The default timer ticks
are at a 10ns resolution.

enum_id The value to be returned by select_wait() et al when the timer event is
triggered.

ET_ILLEGAL_RESOURCE
not a valid timer.

ET_RESOURCE_DEP
another core is actively using the timer.

ET_ECALL when xassert enabled, on XS1 bit 16 not set in enum_id.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function hwtimer_setup_select_callback

Description | Setup select event on a timer where the events are handled by a function.

Same as hwtimer_setup_select() except that a callback function is used rather than
the event being passed back to the select_wait() et al functions.

Once the event is setup you need to call hwtimer_enable_trigger() to enable it.

Type Xcore_c_error_t
hwtimer_setup_select_callbackChwtimer_t t,
uint32_t time,
void =data,
select_callback_t func)

Continued on next page

Copyright 2016 XMOS Ltd. 90 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Parameters | t The timer to setup the select event on

time The time at which the timer will trigger an event. The default timer ticks
are at a 10ns resolution.

data The value to be passed to the select_callback_t function
func The select_callback_t function to handle the event

ET_ILLEGAL_RESOURCE
not a valid timer.

ET_RESOURCE_DEP
another core is actively using the timer.

ET_ECALL  when xassert enabled, on XS1 bit 16 not set in enum_id.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function hwtimer_setup_interrupt_callback

Description | Setup interrupt event on a timer.
Once the event is setup you need to call hwtimer_enable_trigger() to enable it.

Type xcore_c_error_t

hwtimer_setup_interrupt_callbackChwtimer_t t,
uint32_t time,
void =data,
interrupt_callback_t func)

Parameters | t The timer to setup the events on

time The time at which the timer will trigger an event. The default timer ticks
are at a 10ns resolution.

data The value to be passed to the interrupt_callback_t function
func The interrupt_callback_t function to handle the events

ET_ILLEGAL_RESOURCE
not a valid timer.

ET_RESOURCE_DEP
another core is actively using the timer.

ET_ECALL  when xassert enabled, on XS1 bit 16 not set in enum_id.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 91 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Function hwtimer_enable_trigger

Description | Enable select & interrupt events on a timer.

Prior to enabling, hwtimer_setup_select(), hwtimer_setup_select_callback() or
hwtimer_setup_interrupt_callback() must have been called. Events can be
temporarily disabled and re-enabled using hwtimer_disable_trigger() and hw-
timer_enable_trigger(). When the event fires, hwtimer_get_time() must be
called to clear the event. The time of the next event is set using hw-
timer_change_trigger_time().

Type xcore_c_error_t hwtimer_enable_triggerChwtimer_t t)

Parameters | ¢ The timer to enable events on

ET_TILLEGAL_RESOURCE
not a valid timer.

ET_RESOURCE_DEP
another core is actively using the timer.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Function hwtimer_disable_trigger

Description | Disable select & interrupt events for a given timer.

This function prevents any further select or interrupt events being triggered by a
given timer.

This does not clear the trigger setup

Type xcore_c_error_t hwtimer_disable_triggerChwtimer_t t)

Parameters | ¢ The timer to disable events on

ET_TILLEGAL_RESOURCE
not a valid timer.

ET_RESOURCE_DEP
another core is actively using the timer.

Returns error_none (or exception type if policy is XCORE_C_NO_EXCEPTION).

Copyright 2016 XMOS Ltd. 92 WWW.Xmos.com
XMO010504




XMOS

2.11 Select events

Macro ENUM_ID_BASE

Description | Starting value to use for the enum_id.
The enum_id is passed to the res_setup_select() and returned by select_wait() et
al
On XS1 the environment vectors (EVs) are only 16-bit and bit 16 will be set to 1 as it
is expected to be used as a memory address.

Function select_disable_trigger_all

Description | Disable all select events on this logical core.
This function is called before starting to configure select events for a new event loop.
This will ensure that no events set up by other code will be triggered
This affect events setup using res_setup_select() and
res_setup_select_callback() but not res_setup_interrupt_callback()

Type xcore_c_error_t select_disable_trigger_all(void)

Returns error_none

Function select_wait

Description | Wait for a select event to trigger.
This function waits for an event to trigger and then returns the value the user has
registered with the resource that triggered the event.

Type uint32_t select_wait(void)

Returns The enum_id registered with the resource when events were enabled

Function select_no_wait

Description | Check whether any select events have triggered, otherwise return.
This function tests for an event to being ready. If there is one ready then it returns
the enum_id the user has registered with the resource that triggered the event. If no
events are ready then returns the no_wait_id passed in by the user.
select_callback_t events are handled, but are not considered ‘select events’

Type uint32_t select_no_wait(uint32_t no_wait_id)

Parameters | no wait_id

The enum_id to return if no ‘select event’ is triggered

Continued on next page

XCORE_C (2.0.0)

Copyright 2016 XMOS Ltd. 93

WWW.XmMOos.com
XM010504



XMOS

Returns The enum_id registered with the resource which triggered an event or the no_wait_id
passed in if no event fired
Function select_wait_ordered
Description | Wait for an select event from a list of resources using an ordered enable sequence.
e Starts by clearing all select events that have been configured for this core. This
includes select_callback_t functions but not interrupt_callback_t functions.
e Enables select events on each resource in turn so that there is a defined order
in which pending events will be taken
This function:
Enabled select_callback_t resources will be taken, but will not terminate the pro-
cess. A user may wish to place these at the front of the list
Type uint32_t
select_wait_ordered(const resource_t ids[])
Parameters | jids Null-terminated list of resources to enable events on
ET_LOAD_STORE
invalid ids[] argument.
Returns The enum_id registered with the resource which triggers an event
Function select_no_wait_ordered
Description | Wait for a select event from a list of resources using an ordered enable sequence.
This function does the same as select_wait_ordered, but will return the no_wait_id if
no select event fires by the end of the enabling sequence.
select_callback_t events are handled, but are not considered ‘select events’
Type uint32_t
select_no_wait_ordered(uint32_t no_wait_id,
const resource_t ids[])
Parameters | no_wait_id
The enum_id to return if no ‘select event’ is triggered
ids Null-terminated list of resources to enable events on
ET_LOAD_STORE
invalid ids[] argument.
Returns The enum_id registered with the resource which triggered an event or the no_wait_id
passed in if no event fired

XCORE_C (2.0.0)

Copyright 2016 XMOS Ltd. 94

WWW.XmMOos.com
XM010504



®
l MOS XCORE_C (2.0.0)

Macro DEFINE_SELECT_CALLBACK

Description | Define a select callback handling function.

e An ordinary function that may be called directly Its signature will be ‘void call-
back ( void* data )’

e An select_callback_t function for passing to the res_setup_select_callback
functions The select_callback_t function name is accessed using the SE-
LECT_CALLBACK() macro

This macro will define two functions for you:
Example usage:
DEFINE_SELECT_CALLBACK(myfunc, arg)

{
// This is the body of 'void myfunc(void+ arg)'
}

Parameters | callback this is the name of the ordinary function

data the name to use for the void* argument

Macro DECLARE_SELECT_CALLBACK

Description | Declare a select callback handling function.
Use this macro when you require a declaration of your select callback function types
Example usage:

DECLARE_SELECT_CALLBACK(myfunc, arg);
chanend_setup_select_callback(c, 0 , SELECT_CALLBACK(myfunc));

Parameters | callback this is the name of the ordinary function

data the name to use for the void* argument

Macro SELECT_CALLBACK

Description | The name of the defined ‘select_callback_t’ function.
Use this macro for retriving the name of the declared select callback function. This is
the name that is passed to res_setup_select_callback() for registration.

Returns the name of the defined select_callback_t function

Copyright 2016 XMOS Ltd. 95 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

2.12 Interrupt events

Macro XCORE_C_KSTACK_WORDS

Description | Specify the minimum kernel stack size the interrupt permitting function should create.
The user may specify a minimum kstack size by setting the XCORE_C_KSTACK_WORDS
define in their Makefile. This should be done when the kstack is being used by more
than interrupt_callback_t functions.

Macro DEFINE_INTERRUPT_PERMITTED

Description | Define a function that allows interrpts to occur within its scope.
e An ordinary function that may be called directly Its signature will be ‘ret
root_function ( ... )’
e A function that will also reserve space for and set up a stack for handling inter-
rupts. The function name is accessed using the INTERRUPT_PERMITTED() macro
This macro will define two functions for you:
You would normally use this macro on the definition of the root function which will be
called in a par statement. The interrupt stack (kernel stack) is created on the core’s
stack with the ksp and sp being modified as necessary. When the functions exits,
neither the kernel stack nor ksp is valid.
The kernel stack allocated has enough space for the interrupt_callback_t function
(+callees) in the given ‘group’. The use of the ‘group’ identifier allows a kernel stack
to be no larger than that required by its greediest member.
The kernel stack is not re-entrant so kernel mode must not be masked from
within an interrupt_callback_t
The user may specify a larger kernel stack by defining XCORE_C_KSTACK_WORDS.
Example usage:

DEFINE_INTERRUPT_PERMITTED(groupA, int, rootfunc, chanend c, int i)

{
// This is the body of 'int rootfunc(chanend c, int i)'
}
Parameters | group this is the group of interrupt_callback_t function that may be safely en-
abled - see DEFINE_INTERRUPT_CALLBACK()
ret the return type of the ordinary function

root_function
the name of the ordinary function

the arguments of the ordinary function

Macro DECLARE_INTERRUPT_PERMITTED

Continued on next page

Copyright 2016 XMOS Ltd. 96 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Description | Declare an interrupt permitting function.
Use this macro when you require a declaration of your interrupt permitting function

types
Example usage:

// In another file:

//  DEFINE_INTERRUPT_PERMITTED(groupA, int, rootfunc, chanend c, int i)
// DEFINE_INTERRUPT_PERMITTED(groupB, void, anotherfunc, void)
DECLARE_INTERRUPT_PERMITTED(int, rootfunc, chanend c, int 1i);
DECLARE_INTERRUPT_PERMITTED(void, anotherfunc, void);

par {
int ret = INTERRUPT_PERMITTED(rootfunc)(c,i); // kstack for groupA.
INTERRUPT_PERMITTED(anotherfunc) (); // kstack for groupB.

Parameters | ret the return type of the ordinary function

root_function
the name of the ordinary function

the arguments of the ordinary function

Macro INTERRUPT_PERMITTED

Description | The name of the defined interrupt permitting function.
Use this macro for retriving the name of the declared interrupt function. This is the

name used to invoke the function.

Returns the name of the defined interrupt permitting function

Function interrupt_mask_all

Description | Mask all interrupts on this logical core.

Prevent any enabled res_setup_interrupt_callback() functions from triggering.
This has no effect on res_setup_select_callback() triggering. They can be re-
stored by using interrupt_unmask_all().

Type xcore_c_error_t interrupt_mask_all(void)
Returns error_none
Function interrupt_unmask_all

Description | Unmask all interrupts on this logical core.
Allow any res_setup_interrupt_callback() functions to trigger. They can be sup-
pressed by using interrupt_mask_all().

Continued on next page

Copyright 2016 XMOS Ltd. 97 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

Type xcore_c_error_t interrupt_unmask_all(void)
Returns error_none
Macro DEFINE_INTERRUPT_CALLBACK

Description | Define an interrupt handling function.

e An ordinary function that may be called directly Its signature will be ‘void intrpt
(void* data )’

e An interrupt_callback_t function for passing to a res_setup_interrupt_callback
function. The interrupt_callback_t function name is accessed using the INTER-
RUPT_CALLBACK() macro

This macro will define two functions for you:

The kernel stack is not re-entrant so kernel mode must not be masked from
within an interrupt_callback_t

Example usage:

DEFINE_INTERRUPT_CALLBACK(groupA, myfunc, arg)

{
// This is the body of 'void myfunc(void= arg)'
}
Parameters | group the group of interrupt_callback_t function we belong to see DE-
FINE_INTERRUPT_PERMITTED()
intrpt this is the name of the ordinary function
data the name to use for the void* argument
Macro DECLARE_INTERRUPT_CALLBACK

Description | Declare an interrupt handling function.
Use this macro when you require a declaration of your interrupt function types
Example usage:

DECLARE_INTERRUPT_CALLBACK(myfunc, arg);
chanend_setup_interrupt_callback(c, 0 , INTERRUPT_CALLBACK(myfunc));

Parameters | intrpt this is the name of the ordinary function
data the name to use for the void* argument
Macro INTERRUPT_CALLBACK

Description | The name of the defined ‘interrupt_callback_t’ function.
Use this macro for retriving the name of the declared interrupt callback function. This
is the name that is passed to res_setup_interrupt_callback() for registration.

Continued on next page
. ____________________________________________________________________________________________________________________________________|
Copyright 2016 XMOS Ltd. 98 WWW.Xmos.com
XM010504




®
l MOS XCORE_C (2.0.0)

Returns the name of the defined interrupt_callback_t function

Copyright 2016 XMOS Ltd. 99 WWW.Xmos.com
XMO010504




®
l MOS XCORE_C (2.0.0)

APPENDIX A - Known Issues

No known issues.

Copyright 2016 XMOS Ltd. 100 WWW.Xmos.com
XM010504




®
l MOS XCORE_C (2.0.0)

APPENDIX B - lib_xcore_c change log

B.1 2.0.0

e Alteration & extension of the API

e Changes to dependencies:
- lib_trycatch: Added dependency 1.0.0
- lib_xassert: Added dependency 2.0.1

B.2 1.0.1

e EVENT_DEFAULT change to EVENT_NONE

B.3 1.0.0

e |nitial release

XMOS

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 101 WWW.Xmos.com
XMO010504



	xCORE C Library
	Usage
	Using timers
	Using channels
	Local channels
	Inter-tile channels
	Streaming channels
	Channel transactions

	Using ports and clock blocks
	Example
	Ready signals

	Using hardware locks
	Using select events
	Example
	Select event handling with a default
	Select event callback functions
	Ordered select events

	Using interrupts
	Example


	API
	Opaque types used by the library
	Errors and exception
	Chanends
	Channels
	Streaming channels
	Channels with transactions
	Clock blocks
	Locks
	Ports
	Port protocol helpers

	Timers
	Select events
	Interrupt events

	Known Issues
	lib_xcore_c change log
	2.0.0
	1.0.1
	1.0.0


