lib_awe: AWE Core for xcore
|

Publication Date: 2024/8/2
Document Number: XM-015096-UG v1.0.0

2 MOS

lib_awe: AWE Core for xcore

IN THIS DOCUMENT

—

Introduction 2
Architecture 3
lib_awe APl . . o 4
3.1 APILIStINgG . . . o o 4
Integrating lib_awe into yourdesign 9
4.1 Data (Audiointerface) 9
4.2 Control (Tuninginterface) 10
43 Common QUeSHioONS L 1
Application Examples 12

1

Introduction

Audio Weaver comprises GUI tools (Designer) and libraries (Core) for implementing au-
dio Digital Signal Processing (DSP) algorithms. Developed by DSP Concepts (DSPC), it
delivers signal processing building blocks, referred to as “modules”. Module capabilties
range from simple filtering to data type conversions all the way to much more specialised
processing. These can be assembled, deleted and rearranged in the Designer GUI and
then executed on a device. A control library is available that enables on-line control of
the blocks.

xcore is a programmable multi-core device with flexible DSP and 10 interfaces. The 10
interfaces can be programmed to, for example, 12S, TDM, USB, ADAT or S/PDIF interfaces
(or indeed any other interface), and the DSP capability can be used to operate on data
that is received from or sent to these interfaces. In addition to interfaces and DSP, xcore
devices can also execute control code or even ML inference engines.

Lib_awe is a port of Audio Weaver Core for XMOS's powerful xcore.ai device. It con-
tains code for software threads which wrap the core library and provide easy interfacing
to both audio streaming components such as 12S and USB Audio as well as tuning inter-
facing to allow control and loading of pre-built designs from a host or internally from the
device.

It utilises xcore.ai’'s multi-threaded architecture and vector processing unit to provide very
high performance and predictable timing required by embedded systems.

Note: This document refers to the XMOS specific implementation details. DSP Con-
cepts provide several documents on the usage and integration of Audio Weaver into the
user's system. Please refer to https://documentation.dspconcepts.com for documenta-
tion specific to Audio Weaver.

For reference, we refer to the following repositories that you may want to use:

» <https://github.com/xmos/lib_awe.qgit> for the library that integrates Audio Weaver
and xcore.

» <https://github.com/xmos/lib_xua.git> for the USB Audio library design

Note: The 1ibAWECore.a file is not provided as part of the lib_awe repository for
commercial reasons. Please obtain this file from your XMOS or DSPC contact directly.

https://documentation.dspconcepts.com
https://github.com/xmos/lib_awe.git
https://github.com/xmos/lib_xua.git

lib_awe: AWE Core for xcore

2 Architecture

Lib_awe provides an interface to the audio streaming and tuning functions using xcore
channels which allow placement of the application blocks on different tiles from lib_awe.

Application

Contral ¢_tuning_to_host

AWE
Data
Transport

Application
audio

¢_tuning_from_host

lib_awe

Fig. 1: lib_awe thread diagram

lib_awe consists of a group of threads. There are a statically defined number (max-
imum 5) of DSP worker threads which perform the AWE core functionality within the
Audio Weaver runtime core.

To support audio streaming an audio transport thread provides a channel interface to the
Audio Weaver awe_audioImportSamples() and awe_audioExportSamples()
functions. The purpose of this thread is to simplify connection to XMOS audio stream-
ing components and user application logic and allows placement of the user application
logic on a different tile.

Finally, a tuning thread is provided which abstracts away the awe_packetProcess()"
function calls and provides a channel API and also presents a channel interface allow-
ing placement of control to be on a different tile. In AWE nomenclature, this provides a
tuning interface whichisdifferentfromacontrol interface inthatthe control
interface uses function calls whereas tuning is a remote operation. The same functional-
ity is available for both AWE control approaches however, for the xcore port, the tuning
interface method is default since it allows control logic to be placed on a remote tile
that does not share memory space with the AWE tile.

The channel-based tuning interface supports multiple clients. The USB/HID and internal
xawe_***xxx commands (see API) implement a mutex which allows multiple instances
of tuning to be used at the same time so long as they are all on the same tile. The major-
ity of the tuning commands consist of a command and a response however it should be
noted that, when loading an AWB file (which is essentially a block of commands) from
AWE Designer, interrupting the load with other commands may result in undefined behav-
ior. The internal awe_loadAWB*** commands that can be used from the firmware do
implement locking around the whole image load operation and so cannot be interrupted
by an external tuning command.

All of the described threads for lib_awe need to be placed on the same tile. Since the ma-
jority of one tile's RAM and many of the threads are typically used by lib_awe it is typical
to dedicate one tile to lib_awe and use the other tile for application logic. However, low-
memory usage tasks such as 12S may also be placed on the lib_awe tile (when required
by hardware 10 constraints) and this is demonstrated in the USB Audio Example.

An additional thread may be used in the case where the AWE Flash File System (FFS)
is enabled. The FFS can be used to store compiled AWE design files. The flash server
thread provides a remote flash memory access server meaning that the AWE Core and

lib_awe: AWE Core for xcore

the flash memory 10 may exist on different tiles. Use of the FFS is optional and can
be enabled or disabled using defines (see API). The flash server makes use of the flash
access API provided in the XMOS tools quadflashlib.h. Documentation regarding
this can be found in the XTC Tools Manual.

3 lib_awe API

In order to use the functions, one needs to configure the library to use the correct number
of audio channels, threads, and heaps. To this effect, create a file awe_conf . h in your
project that defines the values in Table 1. Note, the xcommon-cmake build system will
automatically find and use this header file.

Table 1: User defines

Define Values
AWE_DSP_THREAD_NUM 1.5
AWE_INPUT_CHANNELS 0 or more
AWE_OUTPUT_CHANNELS 0 or more
AWE_BLOCK_SIZE 32 (nominal)

AWE_HEAP_SIZE_LONG_WORDS 1024 or more

The AWE_BLOCK_SIZE value may be adjusted and designs can be created according to
this setting, however, a block size of 32 is recommended as a good trade-off between
system latency, memory usage and CPU efficiency which is higher for larger block sizes.

AWE_HEAP_SIZE_LONG_WORDS is dependent on your particular design requirements.
In configurations with a large number of modules, one may have no more space than 50k
32-bit words of heap size. In configurations with fewer modules, one can make heaps of
100k 32-bit words.

Some values are, at present, pre-set:

Table 2: Pre-set defines
Define Values

Samplerate 48,000 Hz

A single function is provided to wrap the entire 1ib_awe implementation and automat-
ically spawns all of the worker and helper threads. If the FFS is used then this thread
must be started by the user, as shown in the application example. In addition, where US-
B/HID is used as the control interface, an APl is provided which takes care of translating
messages to and from the HID endpoint and to and from the lib_awe tuning thread.

lib_awe also provides a number of remote tuning function APIs which allow loading of
AWB designs, profiling and the setting and getting of tuning parameters from firmware.
The external USB/HID interface may co-exist with internal tuning functions. Other inter-
faces may be used such as UART or I12C although these are not currently implemented.

3.1 API Listing

void awe_xcore_main(chanend_t c_tuning_from_host, chanend_t c_tuning_to_host,
chanend_t c_data)

https://www.xmos.com/documentation/XM-014363-PC-LATEST/html/tools-guide/tools-ref/libraries/libflash-api/libflash-api.html

lib_awe: AWE Core for xcore

Function that spawns all the child threads. This function does not return. It always
spawns at least one tuning thread, one data-transport thread, and one DSP thread.
Up to four additional DSP threads are spawned for a maximum of seven threads.

The data-transport thread has a channel to each DSP thread in order to start them
when data is available. A single channel-end is used to send audio-samples to the
data-transport thread and receive samples back.

The tuning thread occupies another channel-end, it is used for sending tuning pack-
ets to the AWE library. Part packets are sent over this channel and assembled in
the tuning thread; when a complete packet has arrived the tuning packet is handled
by AWE and a reply is sent back over the same channel-end.

You must create a awe_conf.h file to configure the AWE instantiation. This de-
fines the the number of channels that AWE expects (AWE_INPUT_CHANNELS,
AWE_OUTPUT_CHANNELS), and the number of threads that should be used for
DSP (AWE_DSP_THREAD_NUM).

Parameters

c_tuning_from_host — The channel end over which tuning
packets arrive. Qver this channel you will send a sequence [N, N
words, CT_END], and then receive an [CT_END] empty message
as ack. You do this until all data has been sent through.
c_tuning_to_host - A[CT_END] empty message will be sent
back over c_tuning, which you must acknowledge with a word M
for the maximum packet size you are willing to accept, whereupon
you will be sent [M words, CT_END] that you must acknowledge
with a [CT_END]. This is repeated until the reply has been sent
back.

c_data — The channelend over which audio is communicated.
Either use awe_offload_data_to_dsp_engine or output [
AWE_INPUT_CHANNELS words, CT_END] over c_data, then input
[AWE_OUTPUT_CHANNELS, CT_END] from c_data.

void awe_offload_data_to_dsp_engine(chanend_t c_to_awe, unsigned
sampsToAWE[, unsigned
sampFromAWE()

Convenience function that pushes an audio frame stored in an array to the AWE
stack. This function may be avoided and instead data can be pushed directly onto
the channelend.

Parameters

c_data — Channelend for audio communication

sampsToAWE - frame of data destined for AWE. This frame
should be AWE_INPUT_CHANNELS in size

sampsFromAWE - frame of data from AWE. This array should be
AWE_OUTPUT_CHANNELS in size and will be filled by the function

void init_awe_tuning_instance(chanend_t c_tuning_from_host, chanend_t
c_tuning_to_host)

Initialise the client side of the tuning interface which will typically connect to the
host. May be on the same or a different tile from AWE. All tuning clients must be
on the same tile.

Parameters

c_tuning_from_host - Channel end for tuning communica-
tion from host side (to AWE)

lib_awe: AWE Core for xcore

» c_tuning_from_host — Channel end for tuning communica-
tion to host side (from AWE)

INT32 xawe_ctrlGetValue (UINT32 handle, void *value, INT32 arrayOffset, UINT32
length)
Get a scalar or array value of a module variable by handle.

Parameters

» handle - [in] packed object handle

» value - [out] value(s) to get

» arrayOffset - [in] array index if array

» length - [in] number of elements. 1if scaler

Returns
E_SUCCESS, E_ARGUMENT_ERROR, E_BAD_MEMBER_INDEX,
E_CLASS_NOT_SUPPORTED, E_LINKEDLIST_CORRUPT,

E_NO_MORE_OBJECTS
INT32 xawe_ctrlSetValue(UINT32 handle, const void *value, INT32 arrayOffset,
UINT32 length)
Set a scalar or array value of a module variable by handle.

Parameters

» handle - [in] packed object handle

» value - [in] value(s) to set

» arrayOffset - [in] array index if array

» length — [in] number of elements. 1if scaler

Returns
E_SUCCESS, E_ARGUMENT_ERROR, E_BAD_MEMBER_INDEX,
E_CLASS_NOT_SUPPORTED, E_LINKEDLIST_CORRUPT,

E_NO_MORE_OBJECTS

INT32 xawe_ctrlSetStatus (UINT32 handle, UINT32 status)
Set the runtime status of a module. 0 = Active, 1= Bypass, 2 = Mute, 3 = Inactive.

Parameters

» handle - [in] packed object handle
» status — [in] status to set

Returns
E_SUCCESS, E_NOT_MODULE, E_LINKEDLIST_CORRUPT,

E_NO_MORE_OBJECTS

INT32 xawe_ctrlGetStatus (UINT32 handle, UINT32 *status)
Get the runtime status of a module. 0 = Active, 1= Bypass, 2 = Mute, 3 = Inactive.

Parameters

» handle - [in] packed object handle
» status - [out] status to get
Returns
E_SUCCESS, E_NOT_MODULE, E_LINKEDLIST_CORRUPT,
E_NO_MORE_OBJECTS, E_LPARAMETER_ERROR

INT32 xawe_ctrlSetValueMask (U/NT32 handle, const void *value, INT32
arrayOffset, UINT32 length, UINT32 mask)

lib_awe: AWE Core for xcore

Set a scalar or array value of a module variable by handle with mask. A mask allows
you to only call module’s set function for a single variable.

Parameters

handle - [in] packed object handle

» value - [in] value(s) to set

» arrayOffset - [in] array index if array

» length — [in] number of elements if array. 1if scaler
» mask — [in] mask to use - 0 to not call set function

v

Returns
E_SUCCESS, E_ARGUMENT_ERROR, E_BAD_MEMBER_INDEX,
E_CLASS_NOT_SUPPORTED, E_OBJECT_ID_NOT_FOUND,

E_NOT_MODULE

INT32 xawe_ctrlGetValueMask (U/NT32 handle, void *value, INT32 arrayOffset,
UINT32 length, UINT32 mask)

Get a scalar or array value of a module variable by handle with mask. A mask allows
you to only call module’s set function for a single variable.

Parameters

» handle - [in] packed object handle
» value - [out] value(s) to get
» arrayOffset - [in] array index if array
» length - [in] number of elements if array. 1if scaler
» mask - [in] mask to use - 0 to not call get function
Returns
E_SUCCESS, E_ARGUMENT_ERROR, E_BAD_MEMBER_INDEX,
E_CLASS_NOT_SUPPORTED, E_OBJECT_ID_NOT_FOUND,

E_NOT_MODULE

INT32 xawe_getAverageLayoutCycles (U/NT32 *average_cycles)

Get the profiling info of the signal processing. Returns cycles in 24.8 for-
mat, so shift right by 8 bits for integer value. To get CPU cycles, multi-
ply by target cpuSpeed / profileSpeed. If a previous pump is not complete
and the layout is ready to pump again, an overflow is detected. In when in
this state, the awe_getAveragelayoutCycles api will return the averageCycles =
AWE_PUMP_OVF_MAX_AVG_CYCLES (OxFFFFFFFF).

Parameters

» average_cycles — [in] Pointer the output (average layout cy-
cles)

Returns
E_SUCCESS, E_BADPACKET

INT32 xawe_GetHeapSize (UINT32 *heap_free)
Get the amount of main heap free. Returns the heap size in 32 bit words.

Parameters

» heap_free - [in] Pointer the output (heap free in 32 bit words)

Returns
E_SUCCESS, E_BADPACKET

lib_awe: AWE Core for xcore

INT32 xawe_loadAWBfromArray (const UINT32 *pCommands, UINT32 arraySize,
UINT32 *pPos)

Executes packet commands from anin-memory array. Designer can generate AWB
arrays directly from a layout. Effectively this loads an AWB array and checks that it
is valid. It automatically destroys any exitsing layout.

Parameters

» pCommands - [in] Buffer with commands to execute
» arraySize - [in] Number of DWords in command buffer
» pPos - [out] Report failing word index

Returns
E_SUCCESS E_EXCEPTION E_UNEXPECTED_EOF E_END_OF_FILE
E_MESSAGE_LENGTH_TOO_LONG E_BADPACKET E_NO_CORE

INT32 xawe_loadAWBfromFFS (const char *fileName)

Executes packet commands from a stored file in the FFS. Designer can generate
AWB arrays directly from a layout and add using AWE server -> Flash menu. Effec-
tively this loads an AWB array and checks that it is valid. It automatically destroys
any exitsing layout. Only available when AWE_USE_FLASH_FILE_SYSTEM is en-
abled and a valid .awb file has been pre-written into the FFS.

Parameters

» pAWE - [in] AWE instance pointer
» fileName — [in] The ASCII filename of the file to be loaded

Returns
E_SUCCESS E_INVALID_FILE E_NOSUCHFILE E_BADPACKET
E_NO_CORE

INT32
Type definition to make the xawe API reflect the AWE API.

UINT32
Type definition to make the xawe API reflect the AWE API.

AWE_DSP_MAX_THREAD_NUM

The maximum number of xcore processor threads supported by lib_awe which is
set to 5. Cannot be changed by the user.

AWE_DSP_THREAD_NUM

The number of xcore threads used by lib_awe. Modifiable by the user per project
between 1and 5.

AWE_HEAP_SIZE_LONG_WORDS

The amound of heap memory in long words (32 bit) that can be used by lib_awe.
Modifiable by the user per project.

AWE_USE_FLASH_FILE_SYSTEM

Enables use of the AWE Flash File System. Note this will consume in the order of
10 kB of memory on the AWE core and a similar amount for the code that handles
the low-level flash accesses.

lib_awe: AWE Core for xcore

AWE_HID_PACKET_BUFFER_SIZE

The size of the packet buffer in 32b words used for communicating with AWE over
tuning interface. This must be set to 264 normally but may be lowered in certain
cases where long commands (tuning and or flash file system) are not used. Please
see DSP Concepts documentation for further details.

AWE_BLOCK_SIZE

The number of audio samples per block processed by AWE. Normally set to 32.
Please see DSP Concepts documentation for further details.

FAST_HEAP_A_SIZE

The amount of heap in bytes allocated for FAST_HEAP_A usage. Please see DSP
Concepts documentation for further details.

FAST_HEAP_B_SIZE

The amount of heap in bytes allocated for FAST_HEAP_B usage. Please see DSP
Concepts documentation for further details.

SLOW_HEAP_SIZE

The amount of heap in bytes allocated for SLOW_HEAP usage. Please see DSP
Concepts documentation for further details.

4 Integrating lib_awe into your design

There are two main APIs for 1ib_awe; audio data path and control.

4.1 Data (Audio interface)

The data xcore-channel handles the passing of audio samples to and from lib_awe. It
consists of a single channel which allows a bi-directional exchange of samples. A conve-
nience function which is called from the user thread handling audio samples is provided
by the API:

void awe_offload_data_to_dsp_engine(chanend_t c_to_awe, unsigned
—toAWE[], unsigned fromAWE[])

This function passes a frame of samples over the channel to 1ib_awe and receives
processed samples back from 1ib_awe. It is sample based meaning that it should be
called at the native sample rate of the system which is nominally 48 kHz. The frame
size is the number of audio channels supported by the system. Processing of a block of
samples (typically 32 for AWE) is handled by a user design loaded into 1ib_awe which
is why a buffer up block is the first and last part of a pipeline. For a block size of 32,
the minimum latency for pushing samples into AWE and pulling them out is 64 which
represents the two buffer stages at the front and back of the user pipeline.

This convenience function is typically called from an isochronous streaming audio task
within the user design. For the case of the XMOS USB Audio Design it is called from the
12S thread which acts as the audio hub in USB Audio systems. The USB audio callback
function in USB Audio is:

void UserBufferManagement(unsigned sampsFromUsbToAudio[], unsigned
—sampsFromAudioToUsb[])

https://www.xmos.com/file/sw_usb_audio-sw_usb_audio-design-guide/?version=latest)

10

lib_awe: AWE Core for xcore

However, if USB audio is not required in your application then the
awe_offload_data_to_dsp_engine() function may be called from any
isochronous task running at 48 kHz. For example the following task is a minimal
example which sends zeros through the AWE stack:

DECLARE_JOB(data_path, (chanend_t));
void data_path(chanend_t c_data){

hwtimer_t tmr = hwtimer_alloc();
int time_trigger = hwtimer_get_time(tmr);

int sampsToAWE[AWE_INPUT_CHANNELS] = {0};
int sampsFromAWE[AWE_OUTPUT_CHANNELS] = {0};

while(1){
awe_offload_data_to_dsp_engine(c_data, sampsToAWE,
—>sampsFromAWE) ;
time_trigger += XS1_TIMER_HZ / 48600;
hwtimer_wait_until(t, time_trigger);

}

hwtimer_free(t);

This example task allocates a hardware timer (which are clocked at 100 MHz) and
then callsawe_offload_data_to_dsp_engine() once every 20.830 microseconds
which equates to a sample rate of 48008 Hz.

4.2 Control (Tuning interface)

A tuning interface is always required in the normal use of 1ib_awe. At a minimum, it is
needed for loading the user design into AWE. The tuning interface can be internal to the
firmware, external via a communications interface to a host or both.

The tuning interface exposed in 1ib_awe is xcore-channel based and uses two xcore-
channels; one for sending a control packet to lib_awe and one for receiving the response
from the sent packet. Two channels are used so that the receiving packet channel end
may be used in a select statement which allows use of the xcore event system efficiently.
All tuning packets always consist of the sending packet and a response. Even if the
command was not successful an error response is generated and so the full transaction
always consists of a send and a receive from the control host.

The packet protocol is described in the DSP Concepts documentation and is di-
rectly reflected in the data tokens sent over the channels c_tuning_from_host and
c_tuning_to_host. Inaddition, some control tokens are sent over the channels to ini-
tiate a transaction, synchronise and close the switch path following the communication.
The source code for these can be found in awe_tuning.cin 1ib_awe.

However, the finer details of these protocols is normally not required to be understood
for most applications. The reason for this is that 1ib_awe provides an application API
layer above the low level channel protocol which takes the form of a function API. This
client side API provides all typically required tuning functions including:

Loading AWB files (from memory or flash file system)
Getting and setting of control parameters

Profiling the system CPU usage and stack usage

https://w.dspconcepts.com/hubfs/Docs-AWECoreOS/AWECoreOS_UserGuide/a00075.html#message-structure

I

lib_awe: AWE Core for xcore

In addition to the firmware API, a USB/HID tuning interface task is provided which allows
direct connection of the firmware to the AWE designer software. The code defining the
task (normally run on a dedicated thread) can be found in awe_tuning_usb_hid.cin
lib_awe. A fixed HID report length and AWE packet sized is required to meet the protocol
from AWE designer and these requirements are all handled by that task. The application
examples in AN02016 utilise the USB/HID tuning interface and are the suggested entry
point for users who are new to 1ib_awe.

The firmware provides a locking mechanism to ensure that messages are atomic when
multiple tuning interfaces are used.

Please refer to lib_awe APl for more details.

4.3 Common Questions

Below is a list of common questions that typically arise before integrating 1ib_awe into
a design.

How many threads to define for lib_awe?

AWE supports multi-threaded operation meaning that a large pipeline may be split across
multiple threads. 1ib_awe implements this capability by offering multiple hardware
threads which can be used as stages for the user design. Simple designs may only re-
quire one thread, however, complex user designs may need to be split across multiple
threads. An AWE block, available in AWE Designer, called BufferUpV2 is available to
explicitly move the downstream blocks onto the next thread in 1ib_awe.

JRNNENES % T o—
—

BufferUpV2_3
[BufferUpV2]
[0:Native, Thread 1C]
Memory Usage: 96
Buffer Up Factor: x 1
LayoutSublD: D
Latency = 32 samples

Fig. 1: The AWE BufferUpV2 Function

The CPU usage metric in AWE Server (part of the AWE Designer soft-
ware) allows tracking of processor loading as does the firmware API
xawe_getAveragelLayoutCycles(UINT32 *average_cycles) call

By default, two threads are allocated to 1ib_awe for DSP work. The amount of MIPS
available per thread in the device is dependent on the core clock frequency and the max-
imum number of active threads. For designs using 5 or fewer threads the maximum
number of MIPS is f / 5, which is 160 MIPS per thread for a 800MHz core clock (i.e. 32
speed grade) part, or f / n for 6 to 8 active threads. Hence for AWE designs not exploiting
the multi-threaded capability, setting ANE_DSP_THREAD_NUM to to one, two, or three will
maximise the available performance for the single threads. Setting it to four or five will
maximise the throughput of the system as a whole.

How much HEAP to allocate?

This is design dependent. Large delay lines or filters with large numbers of coefficients
will significantly increase the required heap size. Simple biquad filtering designs may

4

http://www.xmos.com/file/an02016-integrating-audio-weaver-awe-core-into-usb-audio/

lib_awe: AWE Core for xcore

only require a few hundred words of heap whereas a large FIR or reverb block may take
tens of thousands of 32-bit words of HEAP.

A default implementation in lib_awe will provide at least 50 k words of HEAP which is
sufficient for many cases. The ANE_HEAP_SIZE_LONG_WORDS define (described in API
section) controls this and is statically allocated at compile time.

How to reduce lib_awe memory usage and allow for more memory of the AWE tile?

There are a number of ways to reduce the memory usage on the xcore tile where lib_awe
is placed and consequently allow more HEAP for AWE:

Disable the Flash File System. This saves around 10 kB on the AWE tile.

Reduce number of threads. Each DSP worker thread requires around 4 kB of support-
ing memory.

Remove application code from the AWE tile. (Application dependent)

Trim the number of compiled-in modules in 1ib_awe. 10s - 100s of kB may be saved
depending on the design.

The last point can potentially save a lot of memory, however, it limits the pool of available
modules. The file awe_module_list.S is an assembler file which lists the symbols
of each of the modules that should be compiled in with 1ib_awe. It ensures they are
linked in to the application binary. Any modules that are compiled in will automatically be
picked up by AWE Designer as being available on the target during the design process.
Once a design has been completed, and the known list of modules required has been
established, unused modules may be commented out.

Note: Removing supported modules from awe_module_list.S precludes their use
in future designs when updated compiled AWB files are downloaded. If a new module is
needed then a full DFU, including the required DSP modules, must be performed.

5 Application Examples

»MOS

A number of sample applications are provided to help you get up and running quickly.
These are based on the XK-AUDIO-316-MC hardware and standard USB Audio Reference
Design provided by XMOS in sw_usb_audio.

The application example source code and documentation may be found in application
note AN02016: Integrating Audio Weaver (AWE) Core into USB Audio.

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you "AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd. makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries and may not be used without written permission. Company and product names mentioned in this document
are the trademarks or registered trademarks of their respective owners.

12

4

http://www.xmos.com/file/an02016-integrating-audio-weaver-awe-core-into-usb-audio/

	Introduction
	Architecture
	lib_awe API
	API Listing

	Integrating lib_awe into your design
	Data (Audio interface)
	Control (Tuning interface)
	Common Questions

	Application Examples

