
The XMOS XS1 Architecture

David May

ii The XMOS XS1 Architecture

The XMOS XS1 Architecture
by David May

The authors have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for direct, indirect, incidential
or consequential damages in connection with or arising out of the use of the information or programs contained
herein. No representation is made that the information or programs are or will be free from any claims of
infringement and again, the authors shall have no liability in relation to any such claims.

Copyright © 2009 by XMOS Limited.
Cover photo by Jason Mayes, copyright © 2009 by XMOS Limited.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher.

Trademarks: XMOS and the XMOS logo are registered trademarks of XMOS Limited in the United Kingdom
and other countries, and may not be used without written permission. All other trademarks are property of
their respective owners. Where those designations appear in this book, and XMOS was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

XMOS also publishes its books in electronic formats. Some content that appears in print may not be available
in electronic books.

For information on XMOS products, visit us on the Web: www.xmos.com.

Because of the dynamic nature of the Internet, any Web addresses or links contained in this book may have
changed since publication and may no longer be valid.

Printed and bound by CPI Antony Rowe, Chippenham.

ISBN: 978-1-907361-01-2 (PBK)
ISBN: 978-1-907361-04-3

Published by XMOS Limited.

Contents iii

Contents

1 Background 1

2 Interconnect 1
2.1 XMOS Link Ports . 3
2.2 Serial XMOS Link . 3
2.3 Fast XMOS Link . 4

3 Concurrent Threads 5

4 The XCore Instruction Set 6

5 Instruction Issue and Execution 8
5.1 Scheduler Implementation . 9

6 Instruction Set Notation and Definitions 11
6.1 Instruction Prefixes . 11

7 Data Access 12

8 Expression Evaluation 14

9 Branching, Jumping and Calling 15

10 Resources and the Thread Scheduler 16

11 Concurrency and Thread Synchronisation 18

12 Communication 21

13 Locks 24

14 Timers and Clocks 24

15 Ports, Input and Output 26
15.1 Input and Output . 26
15.2 Port Configuration . 27
15.3 Configuring Ready and Clock Signals . 29
15.4 NOREADY mode . 29
15.5 HANDSHAKEN mode . 29
15.6 STROBED mode . 30
15.7 The Port Timer . 30

iv The XMOS XS1 Architecture

15.8 Conditions . 31
15.9 Synchronised Transfers . 31
15.10 Buffered Transfers . 32
15.11 Partial Transfers . 34
15.12 Changing Direction . 34

16 Events, Interrupts and Exceptions 35

17 Initialisation and Debugging 41

18 Specialised Instructions 42

19 Instruction Details 45
19.1 Instructions . 45
19.2 Instruction Format Specification . 226
19.3 Exceptions . 247

2 Interconnect 1

1 Background

An XS1 combines a number of XCore processors, each with its own memory, on a single
chip. The programmable processors are general purpose in the sense that they can
execute languages such as C; they also have direct support for concurrent processing
(multi-threading), communication and input-output. A high-performance switch supports
communication between the processors, and inter-chip XMOS Links are provided so that
systems can easily be constructed from multiple chips.

The XS1 products are intended to make it practical to use software to perform many
functions which would normally be done by hardware; an important example is interfac-
ing and input-output controllers.

2 Interconnect

The interconnect provides communication between all XCores on the chip (or system if
there is more than one chip). In conjunction with simple programs, it can also be used
to support access to the memory on any XCore from any other XCore, and to allow any
XCore to initiate programs on any other XCore.

The interface between an XCore and the interconnect is a group of XMOS Links which
carry control tokens and data tokens. The data tokens are simply bytes of data; the
control tokens are as follows.

• Tokens 0-127 (Application tokens). These are intended for use by compilers or
applications software to implement streamed, packetised and synchronised com-
munications, to encode data-structures and to provide run-time type-checking of
channel communications.

• Tokens 128-191 (Special tokens) are architecturally defined and may be interpreted
by hardware or software. They are used to give standard encodings of common
data types and structures.

• Tokens 192-223 (Privileged tokens) are architecturally defined and may be inter-
preted by hardware or privileged software. They are used to perform system func-
tions including hardware resource sharing, control, monitoring and debugging. An
attempt to transfer one of these tokens to or from unprivileged software will cause
an exception.

2 The XMOS XS1 Architecture

• Tokens 224-255 (Hardware tokens) are only used by hardware; they control the
physical operation of the link. An attempt to transfer one of these tokens using an
output instruction will cause an exception.

The four XMOS Links from each XCore connect directly to an on-chip switch which
provides non-blocking communication between the XCores. The switch also provides
16 off-chip XMOS Links allowing multiple XS1 chips to be combined in a system. The
structure and performance of the XMOS Link connections in a system can be varied to
meet the needs of applications.

The links between XCores and switches and the XMOS Links can be partitioned into
independent networks. This can be used, for example, to provide independent networks
carrying long and short messages or to provide independent networks for control and
data messages.

Messages are routed through the XMOS Links using a message header which contains
the number of the destination chip, the number of the destination processor and the
number of a destination channel within the processor. These can be encoded using
either 24 bits (16 bits chip and processor address, 8 bits channel address) or 8 bits (3
bits chip and processor address, 5 bits channel address).

Each switch has a configurable identifier and can also be configured to route messages
according to the first component of each message header. It compares this bit-by-bit
with its own switch identifier; if all bits match it then uses the second component to route
the message to the destination XCore. Otherwise it uses the number of the first non-
matching pair of bits to select an outgoing direction. The direction of each XMOS Link
is set when the switch is configured and it is possible for several XMOS Links to share
the same direction thereby providing several independent routes between the same two
switches.

The header establishes a route through the interconnect and subsequent tokens will
follow the same route until one of two special control tokens is sent: these are end-of-
message (END) and pause (PAUSE).

2 Interconnect 3

2.1 XMOS Link Ports

The ports used for inter-chip XMOS Link communication use a transition-based non
return-to-zero signalling scheme. Bits are sent at a rate derived from the XS1 clock; this
rate can be programmed to meet applications requirements.

The XMOS Links can be switched between between a fast, wide mode and a slower,
serial mode. Two encoding schemes are used.

2.2 Serial XMOS Link

The serial XMOS Link uses two data wires in each direction. A transition on one wire
represents a one bit and a transition on the other wire represents a zero bit. The first
bit of a control token is a one; the first bit of a data token is a zero; the next 8 bits are
the token value. The two signal wires are both at rest between tokens and the final bit
of each token is chosen to return the non-zero signal wire to the rest state; one of the
signal wires must be non-zero at this point as nine bits have been sent.

On the serial link, the END and PAUSE tokens are coded directly as application tokens
1 and 2.

The link also uses several hardware tokens. The credit tokens are transmitted by the
receiver to control the flow of data; each CREDITn token issues credit to the sender to
allow it to send n tokens. The LRESET token is used to cause the destination link to
reset and the CRESET is used to reset the issued credit to 0.

token use

224 CREDIT8
225 CREDIT64
226 LRESET
227 CRESET

4 The XMOS XS1 Architecture

2.3 Fast XMOS Link

The fast XMOS Link uses 1-of-5 codes with five data wires in each direction; a symbol
is transmitted by changing the state of one of the wires. Each symbol has the following
meaning:

symbol meaning

00001 value 00
00010 value 01
00100 value 10
01000 value 11

10000 escape

A sequence of symbols are used to encode each token. In the following e is an escape
and v is one of 00, 01, 10, 11.

token use

v v v v 256 data tokens
e v v v 64 control tokens 192-255
v e v v 64 control tokens 128-191
v v e v 64 control tokens 64-127
v v v e 64 control tokens 0-63

There are some additional codes in which more than one symbol is an escape. These
are used to code certain control tokens.

token use

e e v v END tokens
v v e e PAUSE tokens
e v v e NOP (return to zero) tokens
e 11 11 v NOP (return to zero) tokens

e 00 e 00 CREDIT8
e 01 e 01 CREDIT64
e 10 e 10 LRESET
e 11 e 11 CRESET

Because each token contains four symbols, at the end of each token there are always an
even number of signal wires in a non-zero state. To send an END or PAUSE, one of the

3 Concurrent Threads 5

END or PAUSE tokens is chosen to leave at most two signal wires in a non-zero state;
this can be followed by a NOP token which is chosen to leave all of the signal wires in a
zero state.

The encoding of the credit and reset tokens has been chosen so that the state of the
signal wires after the token is the same as it was before the token.

3 Concurrent Threads

Each XCore has hardware support for executing a number of concurrent threads. This
includes:

• a set of registers for each thread.

• a thread scheduler which dynamically selects which thread to execute.

• a set of synchronisers to synchronise thread execution.

• a set of channels used for communication with other threads.

• a set of ports used for input and output.

• a set of timers to control real-time execution.

• a set of clock generators to enable synchronisation of the input-output with an
external time domain.

Instructions are provided to support initialisation, termination, starting, synchronising
and stopping threads; also there are instructions to provide input-output and inter-thread
communication.

The set of threads on each XCore can be used:

• to implement input-output controllers executed concurrently with applications soft-
ware.

• to allow communications or input-output to progress together with processing.

• to allow latency hiding in the interconnect by allowing some threads to continue
whilst others are waiting for communication to or from remote XCores.

6 The XMOS XS1 Architecture

The instruction set includes instructions that enable the threads to communicate and
perform input and output. These:

• provide event-driven communications and input-output with waiting threads auto-
matically descheduled.

• support streamed, packetised or synchronised communication between threads
anywhere in a system.

• enable the processor to idle with clocks disabled when all of its threads are waiting
so as to save power.

• allow the interconnect to be pipelined and input-output to be buffered.

4 The XCore Instruction Set

The main features of the instruction set used by the XCore processors are as follows.

• Short instructions are provided to allow efficient access to the stack and other data
regions allocated by compilers; these also provide efficient branching and subrou-
tine calling. The short instructions have been chosen on the basis of extensive
evaluation to meet the needs of modern compilers.

• The memory is byte addressed; however all accesses must be aligned on natural
boundaries so that, for example, the addresses used in 32-bit loads and stores
must have the two least significant bits zero.

• The processor supports a number of threads each of which has its own set of
registers. Some registers are used for specific purposes such as accessing the
stack, the data region or large constants in a constant pool.

• Input and output instructions allow very fast communications between threads
within an XCore and between XCores. They also support high speed, low-latency,
input and output. They are designed to support high-level concurrent programming
techniques.

4 The XCore Instruction Set 7

Most instructions are 16-bit. Many instructions use operands in the range 0 ... 11 as
this allows sufficient three-address instructions to be encoded using 16 bit instructions.
Instruction prefixes are used to extend the range of immediate operands and to provide
more inter-register operations (and inter-register operations with more operands). The
prefixes are:

• PFIX which concatenates its 10-bit immediate with the immediate operand of the
next 16-bit instruction.

• EOPR which concatenates its 11-bit operation set with the following instruction.

The prefixes are inserted automatically by compilers and assemblers.

The normal state of a thread is represented by 12 operand registers, 4 access registers
and 2 control registers.

The twelve operand registers r0 ... r11 are used by instructions which perform arithmetic
and logical operations, access data structures, and call subroutines.

The access registers are:

register number use

cp 12 constant pool pointer
dp 13 data pointer
sp 14 stack pointer
lr 15 link register

The control registers are:

register number use

pc 16 program counter
sr 17 status register

Each thread has seven additional registers which have very specific uses:

register number use

spc 18 saved pc
ssr 19 saved status
et 20 exception type
ed 21 exception data
sed 22 saved exception data
kep 23 kernel entry pointer
ksp 24 kernel stack pointer

8 The XMOS XS1 Architecture

The status register sr contains the following information:

bit use

eeble event enable
ieble interrupt enable
inenb thread is enabling events
inint thread is in interrupt mode
ink thread is in kernel mode
sink saved ink
waiting thread waiting to execute current instruction
fast thread enabled for fast input-output

5 Instruction Issue and Execution

The processor is implemented using a short pipeline to maximise responsiveness. It is
optimised to provide deterministic execution of multiple threads. There is no need for
forwarding between pipeline stages and no need for speculative instruction issue and
branch prediction.

Typically over 80% of instructions executed are 16-bit, so that the XS1 processors fetch
two instructions every cycle. As typically less than 30% of instructions require a memory
access, each processor can run at full speed using a unified memory system.

5 Instruction Issue and Execution 9

5.1 Scheduler Implementation

The threads in an XCore are intended to be used to perform several simultaneous real-
time tasks such as input-output operations, so it is important that the performance of an
individual thread can be guaranteed. The scheduling method used allows any number
of threads to share a single unified memory system and input-output system whilst guar-
anteeing that with n threads able to execute, each will get at least 1/n processor cycles.
In fact, it is useful to think of a thread cycle as being n processor cycles.

From a software design standpoint, this means that the minimum performance of a
thread can be calculated by counting the number of concurrent threads at a specific
point in the program. In practice, performance will almost always be higher than this be-
cause individual threads will sometimes be delayed waiting for input or output and their
unused processor cycles taken by other threads. Further, the time taken to re-start a
waiting thread is always at most one thread cycle.

The set of n threads can therefore be thought of as a set of virtual processors each with
clock rate at least 1/n of the clock rate of the processor itself. The only exception to this
is that if the number of threads is less than the pipeline depth p, the clock rate is at most
1/p.

Each thread has a 64-bit instruction buffer which is able to hold four short instructions
or two long ones. Instructions are issued from the runnable threads in a round-robin
manner, ignoring threads which are not in use or are paused waiting for a synchronisation
or input-output operation.

The pipeline has a memory access stage which is available to all instructions. The rules
for performing an instruction fetch are as follows.

• Any instruction which requires data-access performs it during the memory access
stage.

• Branch instructions fetch their branch target instructions during the memory access
stage unless they also require a data access (in which case they will leave the
instruction buffer empty).

• Any other instruction (such as ALU operations) uses the memory access stage to
perform an instruction fetch. This is used to load the thread’s own instruction buffer
unless it is full.

• If the instruction buffer is empty when an instruction should be issued, a special
fetch no-op is issued; this will use its memory access stage to load the issuing
thread’s instruction buffer.

10 The XMOS XS1 Architecture

There are very few situations in which a fetch no-op is needed, and these can often
be avoided by simple instruction scheduling in compilers or assemblers. An obvious
example is to break long sequences of loads or stores by interspersing ALU operations.

Certain instructions cause threads to become non-runnable because, for example, an
input channel has no available data. When the data becomes available, the thread will
continue from the point where it paused. A ready request to a thread must be received
and an instruction issued rapidly in order to support a high rate of input and output.

To achieve this, each thread has an individual ready request signal. The thread identifier
is passed to the resource (port, channel, timer etc) and used by the resource to select
the correct ready request signal. The assertion of this will cause the thread to be re-
started, normally by re-entering it into the round-robin sequence and re-issuing the input
instruction. In most situations this latency is acceptable, although it results in a response
time which is longer than the virtual cycle time because of the time for the re-issued
instruction to pass through the pipeline.

To enable the virtual processor to perform one input or output per virtual cycle, a fast-
mode is provided. When a thread is in fast-mode, it is not de-scheduled when an instruc-
tion can not complete; instead the instruction is re-issued until it completes.

Events and interrupts are slightly different from normal input and output, because a vec-
tor must also be supplied and the target instruction fetched before execution can pro-
ceed. However, the same ready request system is used. The result will be to make the
thread runnable but with an empty instruction buffer.

A variation on the fetch no-op is the event no-op; this is used to access the resource
which generated the event (or interrupt) using the thread identifier; the resource can
then supply the appropriate vector in time for it to be used for instruction fetch during the
event no-op memory access stage. This means that at most one virtual cycle is used
to process the vector, so there will be at most two virtual cycles before instruction issue
following an event or interrupt.

The XCore scheduler therefore allows threads to be treated as virtual processors with
performance predicted by tools. There is no possibility that the performance can be
reduced below these predicted levels when virtual processors are combined.

6 Instruction Set Notation and Definitions 11

6 Instruction Set Notation and Definitions

In the following description

Bpw is the number of bytes in a word
bpw is the number of bits in a word

mem represents the memory

pc represents the program counter
sr represents the status register
sp represents the stack pointer
dp represents the data pointer
cp represents the constant pool pointer
lr represents the link register

r0 ... r11 represent specific operand registers

x (a single small letter) represents one of r0 ... r11
X (a single large letter) represents one of r0 ... r11, sp, dp, cp or lr
us is a small unsigned source operand in the range 0 ... 11
bitp is one of bpw , 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32 encoded as a us
u16 is a 16-bit source operand in the range 0 ... 65535
u20 is a 20-bit source operand in the range 0 ... 1048575 which

Some useful functions are

zext(x , n) = x ∧ (2n − 1) zero extend

sext(x , n) = −(2n−1 ∧ x) ∨ x sign extend

6.1 Instruction Prefixes

If the most significant 10 bits of a u16 or u20 instruction operand are non-zero, a 16-bit
prefix (PFIX) preceding the instruction is used to encode them. The least significant bits
are encoded within the instruction itself.

A different kind of 16-bit prefix (EOPR) is used to encode instructions with more than
three operands, or to encode the less common instructions.

12 The XMOS XS1 Architecture

7 Data Access

The data access instructions fall into several groups. One of these provides access via
the stack pointer.

LDWSP D ← mem[sp + u16 × Bpw] load word from stack
STWSP mem[sp + u16 × Bpw]← S store word to stack
LDAWSP D ← sp + u16 × Bpw load address of word in stack

Another is similar, but provides access via the data pointer.

LDWDP D ← mem[dp + u16 × Bpw] load word from data
STWDP mem[dp + u16 × Bpw]← S store word to data
LDAWDP D ← dp + u16 × Bpw load address of word in data

Access to constants and program addresses is provided by instructions which either load
values directly or load them from the constant pool.

LDC D ← u16 load constant
LDWCP D ← mem[cp + u16 × Bpw] load word from constant pool
LDAWCP r11← cp + u16 × Bpw] load word address in constant pool
LDWCPL r11← mem[cp + u20 × Bpw] load word from constant pool long
LDAPF r11← pc + u20 × 2 load address in program forward
LDAPB r11← pc − u20 × 2 load address in program backward

Access to data structures is provided by instructions which use any of the operand reg-
isters as a base address, and combine this with a scaled offset. In the case of word
accesses, the operand may be a small constant or another operand register, and the
instructions are as follows:

LDWI d ← mem[b + us × Bpw] load word
STWI mem[b + us × Bpw]← s store word
LDAWFI d ← b + us × Bpw load address of word forward
LDAWBI d ← b − us × Bpw load address of word backward

LDW d ← mem[b + i × Bpw] load word
STW mem[b + i × Bpw]← s store word
LDAWF d ← b + i × Bpw load address of word forward
LDAWB d ← b − i × Bpw load address of word backward

7 Data Access 13

In the case of access to 16-bit quantities, the base address is combined with a scaled
operand, which must be an operand register. The least significant bit of the resulting
address must be zero. The 16-bit item is loaded and sign extended into a 32-bit value.

LD16S d ← sext(mem[b + i × 2], 16) load 16-bit signed item
ST16 mem[b + i × 2]← s store 16-bit item
LDA16F d ← b + i × 2 load address of 16-bit item forward
LDA16B d ← b − i × 2 load address of 16-bit item backward

In the case of access to 8-bit quantities, the base address is combined with an unscaled
operand, which must be an operand register. The 8-bit item is loaded and zero extended
into a 32-bit value.

LD8U d ← zext(mem[b + i], 8) load byte unsigned
ST8 mem[b + i]← s store byte

Access to part words, including bit-fields, is provided by a small set of instructions which
are used in conjunction with the shift and bitwise operations described below. These
instructions provide for mask generation of any length up to 32 bits, sign extension and
zero-extension from any bit position, and clearing fields within words prior to insertion of
new values.

MKMSK d ← 2s − 1 make mask
MKMSKI d ← 2bitp − 1 make mask immediate

SEXT d ← sext(d , s) sign extend
SEXTI d ← sext(d , bitp) sign extend immediate
ZEXT d ← zext(d , s) zero extend
ZEXTI d ← zext(d , bitp) zero extend immediate

ANDNOT d ← d ∧ ¬s and not (clear field)

The SEXTI and ZEXTI instructions can also be used in conjunction with the LD16S and
LD8U instructions to load unsigned 16-bit and signed 8-bit values.

14 The XMOS XS1 Architecture

8 Expression Evaluation

ADDI d ← l + us add immediate
ADD d ← l + r add
SUBI d ← l − us subtract immediate
SUB d ← l − r subtract
NEG d ← −s negate

EQI d ← l = us equal immediate
EQ d ← l = r equal
LSU d ← l < r less than unsigned
LSS d ← l <sgn r less than signed

AND d ← l ∧ r and
OR d ← l ∨ r or
XOR d ← l ⊕ r exclusive or
NOT d ← (−1)⊕ s not

SHLI d ← l << bitp logical shift left immediate
SHL d ← l << r logical shift left
SHRI d ← l >> bitp logical shift right immediate
SHR d ← l >> r logical shift right
ASHRI d ← l >>sgn bitp arithmetic shift right immediate
ASHR d ← l >>sgn r arithmetic shift right

MUL d ← l × r multiply
DIVU d ← l ÷ r divide unsigned
DIVS d ← l ÷sgn r divide signed
REMU d ← l mod r remainder unsigned
REMS d ← l modsgn r remainder signed

BITREV d : ∀ix d [bit ix] = s[bit bpw − ix − 1] bit reverse
BYTEREV d : ∀ix d [byte ix] = s[byte Bpw − ix − 1] byte reverse
CLZ d : first d : s[bit bpw − d] = 1 count leading zeros

9 Branching, Jumping and Calling 15

9 Branching, Jumping and Calling

The branch instructions include conditional and unconditional relative branches. A branch
using the address in a register is provided; a relative branch which adds a scaled register
operand to the program counter is provided to support jump tables.

BRFT if c then pc ← pc + u16 × 2 branch relative forward true
BRFF if ¬c then pc ← pc + u16 × 2 branch relative forward false
BRBT if c then pc ← pc − u16 × 2 branch relative backward true
BRBF if ¬c then pc ← pc − u16 × 2 branch relative backward false

BRFU pc ← pc + u16 × 2 branch relative forward unconditional
BRBU pc ← pc − u16 × 2 branch relative backward unconditional
BRU pc ← pc + s × 2 branch relative unconditional (via register)

BAU pc ← s branch absolute unconditional (via register)

In some cases, the calling instructions described below can be used to optimise branches;
as they overwrite the link register they are not suitable for use in leaf procedures which
do not save the link register.

The procedure calling instructions include relative calls, calls via the constant pool, in-
dexed calls via a dedicated register (r11) and calls via a register. Most calls within a
single program module can be encoded in a single instruction; inter-module calling re-
quires at most two instructions.

BLRF lr ← pc; branch and link relative forward
pc ← pc + u20 × 2

BLRB lr ← pc; branch and link relative backward
pc ← pc − u20 × 2

BLACP lr ← pc; branch and link absolute via constant pool
pc ← mem[cp + u20 × Bpw]

BLAT lr ← pc; branch and link absolute via table
pc ← mem[r11 + u16 × Bpw]

BLA lr ← pc; branch and link absolute (via register)
pc ← s

Notice that control transfers which do not affect the link (required for tail calls to proce-
dures) can be performed using one of the LDWCP, LDWCPL, LDAPF or LDAPB instruc-
tions followed by BAU r11.

16 The XMOS XS1 Architecture

Calling may require modification of the stack. Typically, the stack is extended on proce-
dure entry and contracted on exit. The instructions to support this are shown below.

EXTSP sp ← sp − u16 × Bpw extend stack
EXTDP dp ← dp − u16 × Bpw extend data

ENTSP if u16 > 0 entry and extend stack
{mem[sp]← lr ; sp ← sp − u16 × Bpw}

RETSP if u16 > 0 then contract stack
{sp ← sp + u16 × Bpw ; lr ← mem[sp]}; and return

pc ← lr

Notice that the stack and data area can be contracted using the LDAWSP and LDAWDP
instructions.

In some situations, it is necessary to change to a new stack pointer, data pointer or pool
pointer on entry to a procedure. Saving or restoring any of the existing pointers can
be done using normal STWS, STWD, LDWS or LDWD instructions; loading them from
another register can be optimised using the following instructions.

SETSP sp ← s set stack pointer
SETDP dp ← s set data pointer
SETCP cp ← s set pool pointer

10 Resources and the Thread Scheduler

Each XCore manages a number of different types of resource. These include threads,
synchronisers, channel ends, timers and locks. For each type of resource a set of avail-
able items is maintained. The names of these sets are used to identify the type of
resource to be allocated by the GETR (get resource) instruction. When the resource is
no longer needed, it can be released for subsequent use by a FREER (free resource)
instruction.

GETR r ← first res ∈ setof (us) : ¬inuseres; get resource
inuser ← true

FREER inuser ← false free resource

In the above setof (r) returns the set corresponding to the source operand of r .

10 Resources and the Thread Scheduler 17

The resources are:

resource name set use

THREAD threads concurrent execution
SYNC synchronisers thread synchronisation
CHANEND channel ends thread communication
TIMER timers timing
LOCK locks mutual exclusion

Some resources have associated control modes which are set using the SETC instruc-
tion.

SETC controlr ← u16 set resource control

Many of the mode settings are defined only for a specific kind of resource and are de-
scribed in the appropriate section; the ones which are used for several different kinds of
resource are:

mode effect

OFF resource off
ON resource on

START resource active
STOP resource inactive

EVENT port will cause events
INTERRUPT port will raise interrupts

18 The XMOS XS1 Architecture

Execution of instructions from each thread is managed by the thread scheduler. This
maintains a set of runnable threads, run, from which it takes instructions in turn. When
a thread is unable to continue, it is paused by removing it from the run set. The reason
for this may be any of the following.

• Its registers are being initialised prior to it being able to run.

• It is waiting to synchronise with another thread before continuing.

• It is waiting to synchronise with another thread and terminate (a join).

• It has attempted an input from a channel which has no data available, or a port
which is not ready, or a timer which has not reached a specified time.

• It has attempted an output to a channel or a port which has no room for the data.

• It has executed an instruction causing it to wait for one of a number of events or
interrupts which may be generated when channels, ports or timers become ready
for input.

The thread scheduler manages the threads, thread synchronisation and timing (using
the synchronisers and timers). It is directly coupled to resources such as the ports and
channels so as to minimise the delay when a thread becomes runnable as a result of a
communication or input-output.

11 Concurrency and Thread Synchronisation

A thread can initiate execution on one or more newly allocated threads, and can sub-
sequently synchronise with them to exchange data or to ensure that all threads have
completed before continuing. Thread synchronisation is performed using hardware syn-
chronisers, and threads using a synchroniser will move between running states and
paused states. When a thread is first created, it is in a paused state and its access
registers can be initialised using the following instructions.

TINITPC pct ← s set thread pc
TINITSP spt ← s set thread stack
TINITDP dpt ← s set thread data
TINITCP cpt ← s set thread pool
TINITLR lrt ← s set thread link

11 Concurrency and Thread Synchronisation 19

These instructions can only be used when the thread is paused. The TINITLR instruction
is intended primarily to support debugging.

Data can be transferred between the operand registers of two threads using TSETR and
TSETMR instructions, which can be used even when the destination thread is running.

TSETR dt ← s set thread operand register
TSETMR dmstr (tid) ← s set master thread operand register

To start a synchronised slave thread a master must first acquire a synchroniser. This is
done using a GETR SYNC instruction. If there is a synchroniser available its resource ID
is returned, otherwise the invalid resource ID is returned. The GETST instruction is then
used to get a synchronised thread. It is passed the synchroniser ID and if there is a free
thread it will be allocated, attached to the synchroniser and its ID returned, otherwise the
invalid resource ID is returned.

The master thread can repeat this process to create a group of threads which will all syn-
chronise together. To start the slave threads the master executes an MSYNC instruction
using the synchroniser ID.

GETST d ← first thread ∈ threads : ¬inusethread ; get synchronised thread
inused ← true;
spaused ← spaused ∪ {d};
slavess ← slavess ∪ {d}
mstrs ← tid

MSYNC if (slavess \ spaused = ∅) master synchronise
then {

spaused ← spaused \ slavess }
else {

mpaused ← mpaused ∪ {tid};
msyns ← true }

The group of threads can synchronise at any point by the slaves executing the SSYNC
and the master the MSYNC. Once all the threads have synchronised they are unpaused
and continue executing from the next instruction. The processor maintains a set of
paused master threads mpaused and a set of paused slave threads spaused from which
it derives the set of runnable threads run:

run = {thread ∈ threads : inusethread} \ (spaused ∪mpaused)

Each synchroniser also maintains a record msyns of whether its master has reached a
synchronisation point.

20 The XMOS XS1 Architecture

SSYNC if (slavessyn(tid) \ spaused = {tid}) ∧msynsyn(tid) slave synchronise
then {

if mjoinsyn(tid)
then {

forall thread ∈ slavessyn(tid) : inusethread ← false;
mjoinsyn(tid) ← false }

else
spaused ← spaused \ slavessyn(tid);

mpaused ← mpaused \ {mstrsyn(tid)};
msynsyn(tid) ← false }

else
spaused ← spaused ∪ {tid}

To terminate all of the slaves and allow the master to continue the master executes an
MJOIN instruction instead of an MSYNC. When this happens, the slave threads are all
freed and the master continues.

MJOIN if (slavess \ spaused = ∅) master join
then {

forall thread ∈ slavess : inusethread ← false;
mjoinsyn(tid) ← false }

else {
mpaused ← mpaused ∪ {tid};
mjoins ← true;
msyns ← true }

A master thread can also create threads which can terminate themselves. This is done
by the master executing a GETR THREAD instruction. This instruction returns either a
thread ID if there is a free thread or the invalid resource ID. The unsynchronised thread
can be initialised in the same way as a synchronised thread using the TINITPC, TINITSP,
TINITDP, TINITCP, TINITLR and TSETR instructions.

The unsynchronised thread is then started by the master executing a TSTART instruction
specifying the thread ID. Once the thread has completed its task it can terminate itself
with the FREET instruction.

TSTART spaused ← spaused \ {tid} start thread

FREET inusetid ← false; free thread

The identifier of an executing thread can be accessed by the GETID instruction.

GETID t ← tid get thread identifier

12 Communication 21

12 Communication

Communication between threads is performed using channels, which provide full-duplex
data transfer between channel ends, whether the ends are both in the same XCore,
in different XCores on the same chip or in XCores on different chips. Channels carry
messages constructed from data and control tokens between the two channel ends.
The control tokens are used to encode communication protocols. Although most control
tokens are available for software use, a number are reserved for encoding the protocol
used by the interconnect hardware, and can not be sent and received using instructions.

A channel end can be used to generate events and interrupts when data becomes avail-
able as described below. This allows a thread to monitor several channels, ports or
timers, only servicing those that are ready.

To communicate between two threads, two channel ends need to be allocated, one for
each thread. This is done using the GETR c, CHANEND instruction. Each channel end
has a destination register which holds the identifier of the destination channel end; this is
initialised with the SETD instruction. It is also possible to use the identifier of a channel
end to determine its destination channel end.

SETD rdest ← s set destination
GETD d ← rdest get destination

The identifier of the channel end c1 is used to initialise the channel end for thread c2,
and vice versa. Each thread can then use the identifier of its own channel end to transfer
data and messages using output and input instructions.

The interconnect can be partitioned into several independent networks. This makes
it possible, for example, to allocate channels carrying short control messages to one
network whilst allocating channels carrying long data messages to another. There are
instructions to allocate a channel to a network and to determine which network a channel
is using.

SETN cnet ← s set network
GETN d ← cnet get network

22 The XMOS XS1 Architecture

In the following, c /s represents an output of s to channel c and c .d represents an input
from channel c to d .

OUTT c / dtoken(s) output token
OUTCT c / ctoken(s) output control token
OUTCTI c / ctoken(us) output control token immediate

INT if hasctoken(c) input token
then trap
else c . d

INCT if hasctoken(c) input control token
then c . d
else trap

CHKCT if hasctoken(c) ∧ (s = token(c)) check control token
then skiptoken(c)
else trap

CHKCTI if hasctoken(c) ∧ (s = token(c)) check control token immediate
then skiptoken(c)
else trap

OUT c / s output data word
IN if containsctoken(c) input token

then trap
else c . d

TESTCT d ← hasctoken(c) test for control token
TESTWCT d ← containsctoken(c) test word for control token

The channel connection is established when the first output is executed. If the destination
channel end is on another XCore, this will cause the destination identifier to be sent
through the interconnect, establishing a route for the subsequent data and control tokens.
The connection is terminated when an END control token is sent. If a subsequent output
is executed using the same channel end, the destination identifier will be used again to
establish a new route which will again persist until another END control token is sent.

A destination channel end can be shared by any number of outputting threads; they are
served in a round-robin manner. Once a connection has been established it will persist
until an END is received; any other thread attempting to establish a connection will be
queued. In the case of a shared channel end, the outputting thread will usually transmit
the identifier of its channel end so that the inputting thread can use it to reply.

12 Communication 23

The OUT and IN instructions are used to transmit words of data through the channel;
to transmit bytes of data the OUTT and INT instructions are used. Control tokens are
sent using OUTCT or OUTCTI and received using INCT. To support efficient runtime
checks that the type, length or structure of output data matches that expected by the
inputer, CHKCT and CHKCTI instructions are provided. The CHKCT instruction inputs
and discards a token provided that the input token matches its operand; otherwise it
traps. The normal IN and INT instructions trap if they encounter a control token. To input
a control token INCT is used; this traps if it encounters a data token.

The END control token is one of the 12 tokens which can be sent using OUTCTI and
checked using CHKCTI. By following each message output with an OUTCTI c, END and
each input with a CHKCTI c, END it is possible to check that the size of the message
is the same as the size of the message expected by the inputting thread. To perform
synchronised communication, the output message should be followed with (OUTCTI c,
END; CHKCTI c, END) and the input with (CHKCTI c, END; OUTCTI c, END).

Another control token is PAUSE. Like END, this causes the route through the interconnect
to be disconnected. However the PAUSE token is not delivered to the receiving thread.
It is used by the outputting thread to break up long messages or streams, allowing the
interconnect to be shared efficiently. The remaining control tokens are used for runtime
checking and for signalling the type of message being received; they have no effect on
the interconnect. Note that in addition to END and PAUSE, ten of these can be efficiently
handled using OUTCTI and CHKCTI.

A control token takes up a single byte of storage in the channel. On the receiving end the
software can test whether the next token is a control token using the TESTCT instruction,
which waits until at least one token is available. It is also possible to test whether the next
word contains a control token using the TESTWCT instruction. This waits until a whole
word of data tokens has been received (in which case it returns 0) or until a control token
has been received (in which case it returns the byte position after the position of the byte
containing the control token).

Channel ends have a buffer able to hold sufficient tokens to allow at least one word to be
buffered. If an output instruction is executed when the channel is too full to take the data
then the thread which executed the instruction is paused. It is restarted when there is
enough room in the channel for the instruction to successfully complete. Likewise, when
an input instruction is executed and there is not enough data available then the thread is
paused and will be restarted when enough data becomes available.

Note that when sending long messages to a shared channel, the sender should send a
short request and then wait for a reply before proceeding as this will minimise intercon-
nect congestion caused by delays in accepting the message.

24 The XMOS XS1 Architecture

When a channel end c is no longer required, it can be freed using a FREER c instruction.
Otherwise it can be used for another message.

It is sometimes necessary to determine the identifier of the destination channel end c2
stored in channel end c1. For example, this enables a thread to transmit the identifier
of a destination channel end it has been using to a thread on another processor. This
can be done using the GETD instruction. It is also useful to be able to determine quickly
whether a destination channel end c2 stored in channel end c1 is on the same processor
as c1; this makes it possible to optimise communication of large data structures where
the two communicating threads are executed by the same processor.

TESTLCL d ← islocal(c) test destination local

13 Locks

Mutual exclusion between a number of threads can be performed using locks. A lock is
allocated using a GETR l , LOCK instruction. The lock is initially free. It can be claimed
using an IN instruction and freed using an OUT instruction.

When a thread executes an IN on a lock which is already claimed, it is paused and placed
in a queue waiting for the lock. Whenever a lock is freed by an OUT instruction and the
lock’s queue is not empty, the next thread in the queue is unpaused; it will then succeed
in claiming the lock.

When inputting from a lock, the IN instruction always returns the lock identifier, so the
same register can be used as both source and destination operand. When outputting to
a lock, the data operand of the OUT instruction is ignored.

When the lock is no longer needed, it can be freed using a FREER l instruction.

14 Timers and Clocks

Each XCore executes instructions at a speed determined by its own clock input. In
addition, it provides a reference clock output which ticks at a standard frequency of
100MHz. A set of programmable timers is provided and all of these can be used by
threads to provide timed program execution relative to the reference clock.

14 Timers and Clocks 25

Each timer can be used by a thread to read its current time or to wait until a specified
time. A timer is allocated using the GETR t , TIMER instruction. It can be configured
using the SETC instruction; the only two modes which can be set are UNCOND and
AFTER.

mode effect

UNCOND timer always ready; inputs complete immediately
AFTER timer ready when its current time is after its DATA value

In unconditional mode, an IN instruction reads the current value of the timer. In AFTER
mode, the IN instruction waits until the value of its current time is after (later than) the
value in its DATA register. The value can be set using a SETD instruction. Timers can
also be used to generate events as described below.

A set of programmable clocks is also provided and each can be used to produce a clock
output to control the action of one or more ports and their associated port timers. The
ports are connected to a clock using the SETCLK instruction.

SETCLK clockd ← s set clock source

Each port p which is to be clocked from a clock c can be connected to it by executing a
SETCLK p, c instruction.

Each clock can use a one bit port as its clock source. A clock c which is to use a port
p as its clock source can be connected to it by executing a SETCLK c, p instruction.
Alternatively, a clock may use the reference clock as its clock source (by SETCLK c,
REF) and in this case the clock can be configured to divide the reference frequency
using an 8-bit divider. When this is set to 0, the reference clock passes directly to the
output. The falling edge of the clock is used to perform the division. Hence a setting
of 1 will result in an output from the clock which changes each falling edge of the input,
halving the input frequency f ; and a setting of n will produce an output frequency of f/2n.
The division factor is set using the SETD instruction. The lowest eight bits of the operand
are used and the rest ignored.

To ensure that the timers in the ports which are attached to the same clock all record
the same time, the clock should be started using a SETC c, START instruction after the
ports have all been attached to the clock. All of the clocks are initially stopped and a
clock can be stopped by a SETC c, STOP instruction.

The data output on the pins of an output port changes state synchronously with the port
clock. If several output ports are driven from the same clock, they will appear to operate
as a single output port, provided that the processor is able to supply new data to all of

26 The XMOS XS1 Architecture

them during each clock cycle. Similarly, the data input by an input port from the port pins
is sampled synchronously with the port clock. If several input ports are driven from the
same clock they will appear to operate as a single input port provided that the processor
is able to take the data from all of them during each clock cycle.

The use of clocked ports therefore decouples the internal timing of input and output
program execution from the operation of synchronous input and output interfaces.

15 Ports, Input and Output

Ports are interfaces to physical pins. A port can be used for input or output. It can use the
reference clock as its port clock or it can use one of the programmable clocks. Transfers
to and from the pins can be synchronised with the execution of input and output instruc-
tions, or the port can be configured to buffer the transfers and to convert automatically
between serial and parallel form. Ports can also be timed to provide precise timing of
values appearing on output pins or taken from input pins. When inputting, a condition
can be used to delay the input until the data in the port meets the condition. When the
condition is met the captured data is time stamped with the time at which it was captured.

The port clock input is initially the reference clock. It can be changed using the SETCLK
instruction with a clock ID as the clock operand. This port clock drives the port timer and
can also be used to determine when data is taken from or presented to the pins.

A port can be used to generate events and interrupts when input data becomes available
as described below. This allows a thread to monitor several ports, channels or timers,
only servicing those that are ready.

15.1 Input and Output

Each port has a transfer register. The input and output instructions used for channels, IN
and OUT, can also be used to transfer data to and from a port transfer register. The IN
instruction zero-extends the contents of a port transfer register and transfers the result
to an operand register. The OUT instruction transfers the least significant bits from an
operand register to a port transfer register.

15 Ports, Input and Output 27

Two further instructions, INSHR and OUTSHR, optimise the transfer of data. The INSHR
instruction shifts the contents of its destination register right, filling the left-most bits with
the data transferred from the port. The OUTSHR instruction transfers the least significant
bits of data from its source register to the port and shifts the contents of the source
register right.

OUTSHR p / s[bits 0 for trwidth(p)]; output to port
s ← s >> trwidth(p) and shift

INSHR s ← s >> trwidth(p); shift and
p . s[bits (bpw − trwidth(p)) for trwidth(p)] input from port

The transfer register is accessed by the processor; it is also accessed by the port when
data is moved to or from the pins. When the processor writes data into the transfer
register it fills the transfer register; when the processor takes data from the transfer
register it empties the transfer register.

15.2 Port Configuration

A port is initially OFF with its pins in a high impedance state. Before it is used, it must
be configured to determine the way it interacts with its pins, and set ON, which also
has the effect of starting the port. The port can subsequently be stopped and started
using SETC p, STOP and SETC p, START; between these the port configuration can be
changed.

The port configuration is done using the SETC instruction which is used to define several
independent settings of the port. Each of these has a default mode and need only
be configured if a different mode is needed. The effect of the SETC mode settings is
described below. The bold entry in each setting is the default mode.

28 The XMOS XS1 Architecture

mode effect

NOREADY no ready signals are used
HANDSHAKEN both ready input and ready output signals are used
STROBED one ready signal is used (output on master, input on slave)

SYNCHRONISED processor synchronises with pins
BUFFERED port buffers data between pins and processor

SLAVE port acts as a slave
MASTER port acts as a master

NOSDELAY input sample not delayed
SDELAY input sample delayed half a clock period

DATAPORT port acts as normal
CLOCKPORT the port outputs its source clock
READYPORT the port outputs a ready signal

DRIVE pins are driven both high and low
PULLDOWN pins pull down for 0 bits, are high impedance otherwise
PULLUP pins pull up for 1 bits, but are high impedance otherwise

NOINVERT data is not inverted
INVERT data is inverted

The DRIVE, PULLDOWN and PULLUP modes determine the way the pins are driven
when outputting, and the way they are pulled when inputting. The CLOCKPORT, READY-
PORT and INVERT settings can only be used with 1-bit ports.

Initially, the port is ready for input. Subsequently, it may change to output data when an
output instruction is executed; after outputting it may change back to inputting when an
input instruction is executed.

It is sometimes useful to read the data on the pins when the port is outputting; this can
be done using the PEEK instruction:

PEEK d ← pins(p) read port pins

15 Ports, Input and Output 29

15.3 Configuring Ready and Clock Signals

A port can be configured to use ready input and ready output signals.

A port’s ready input signal is input by an associated one-bit port. This association is
made using the SETRDY instruction.

SETRDY readyp ← s set source of port ready input

A port’s ready output signal is output by another associated one-bit port. A one-bit port
r which is to be used as a ready output must first be configured in READYPORT mode
by SETC r , READYPORT. This ready port r can then be associated with a port p by
SETRDY r , p.

A one-bit port can be used to output a clock signal by setting it into CLOCKPORT mode;
its clock source is set using the SETCLK instruction.

When a 1-bit port is configured to be in CLOCKPORT or READYPORT mode, the drive
mode and invert mode are configurable as normal.

15.4 NOREADY mode

If the port is in NOREADY mode, no ready signals are used and data is moved to and
from the pins either asynchronously (at times determined by the execution of input and
output instructions) or synchronously with the port clock, irrespective of whether the port
is in MASTER or SLAVE mode.

At most one input or output is performed per cycle of the port clock.

15.5 HANDSHAKEN mode

In HANDSHAKEN mode, ready signals are used to control when data is moved to or
from a port’s pins.

A port in MASTER HANDSHAKEN mode initiates an output cycle by moving data to the
pins and asserting the ready output (request); it then waits for the ready input (reply) to
be asserted. It initiates an input cycle by asserting the ready output (request) and waiting
for the ready input (reply) to be asserted along with the data; it then takes the data.

A port in SLAVE HANDSHAKEN mode waits for the ready input (request) to be asserted.

30 The XMOS XS1 Architecture

It performs an input cycle by taking the data and asserting the ready output (reply); it
performs an output cycle by moving data to the pins and asserting the ready output
(reply).

The ready signals accompany the data in each cycle of the port clock. The falling edge
of the port clock initiates the set up of data or a change of port direction; the port timer
also advances on this edge. On output, the data and the ready output will be valid on
the rising edge of the port clock. On input, data and the ready input will be sampled on
the rising edge of the port clock unless the port is configured as SDELAY, in which case
they are sampled on the falling edge.

15.6 STROBED mode

In STROBED mode only one ready signal is used and the port can be in MASTER or
SLAVE mode. A MASTER port asserts its ready output and the slave has to keep up; a
SLAVE port has to keep up with the ready input.

Note that a port in NOREADY mode behaves in the same way as a port in STROBED
mode which is always ready.

15.7 The Port Timer

A port has a timer which can be used to cause the transfer of data to or from the pins to
take place at a specified time. The time at which the transfer is to be performed is set
using the SETPT (set port time) instruction. Timed ports are often used together with
timestamping as this allows precise control of response times.

SETPT porttimep ← s set port time
CLRPT clearporttime(p) clear port time
GETTS d ← timestampp get port timestamp

The CLRPT instruction can be used to cancel a timed transfer.

The timestamp which is set when a port becomes ready for input can be read using the
GETTS instruction.

15 Ports, Input and Output 31

15.8 Conditions

A port has an associated condition which can be used to prevent the processor from
taking input from the port when the condition is not met. The conditions are set using
the SETC instruction. The value used for comparison in some of the conditions is held
in the port data register, which can be set using the SETD instruction.

mode port ready condition

NONE no condition
EQ value on pins equal to port data register value
NEQ value on pins not equal to port data register value

The simplest condition is NONE. The other conditions all involve comparing the value
from the pins with the value in the port data register.

When the condition is met a timestamp is set and the port becomes ready for input.

When a port is used to generate an event, the data which satisfied the condition is held
in the transfer register and the timestamp is set. The value returned by a subsequent
input on the port is guaranteed to meet the condition and to correspond to the timestamp
even if the value on the port has changed.

15.9 Synchronised Transfers

A port in SYNCHRONISED mode ensures that the signalling operation of the port pins
is synchronised with the processor instruction execution.

When a SETPT instruction is used, the movement of data between the pins and the
transfer register takes place when the current value of the port timer matches the time
specified with the SETPT instruction.

If the port is used for output and the transfer register is full, the SETPT instruction will
pause until the transfer register is empty. This ensures that the port time is not changed
until the pending output has completed.

If a condition other than NONE is used the port will only be ready for input when the
data in the transfer register matches the condition. If an input instruction is executed and
the specified condition is not met, the thread executing the input will be paused until the
condition is met; the thread then resumes and completes the input. The value of the port
timer corresponding to the data in the transfer register when a port condition is met is
recorded in the port timestamp register. The timestamp register is read at any time using
the GETTS instruction.

32 The XMOS XS1 Architecture

15.10 Buffered Transfers

A port in BUFFERED mode buffers the transfer of data between the processor and the
pins through the use of a shift register, which is situated between the transfer register
and the pins. A buffered port can be used to convert between parallel and serial form
using its shift register. The number of bits in the transfer register and the shift register
determines the width of the transfers (the transfer width) between the processor and
the port; this is a multiple of the port width (the number of pins) and can be set by the
SETTW instruction.

SETTW widthp ← s set port transfer width

For a 32-bit wordlength, the transfer width is normally 32, 8, 4 or 1 bit.

Note that in contrast to a synchronised transfer, where the transfer width and the port
width are equal, the transfer width of a buffered transfer can differ from the port width.

On input, the shift register is full when n values have been taken from the p pins, where
n × p is the transfer width; it will then be emptied to the transfer register ready for an
input instruction. On output the shift register is filled from the transfer register and will be
empty when n values have been moved to the p pins, where n × p is the transfer width.

The port operates as follows:

• HANDSHAKEN: A handshaken transfer only shifts data from the pins to the shift
register on input when the shift register is not full; on output it only shifts data from
the shift register to the pins when the shift register is not empty. On input, the shift
register will become full if the processor does not input data to empty the transfer
register; when the processor inputs the data, the transfer register is filled from the
shift register and the shift register will start to be re-filled from the pins. On output,
the shift register will become empty if the processor does fill the transfer register;
when the processor outputs data to fill the transfer register, the shift register will be
filled from the transfer register and the shift register will then start to be emptied to
the pins.

• STROBED SLAVE Input: Data is shifted into the shift register from the pins when-
ever the ready input is asserted. Provided that the transfer register is empty, when
the shift register is full the transfer register is filled from the shift register. When the
processor executes an input instruction to take data from the transfer register, the
transfer register is emptied.

If the processor does not take the data from the transfer register by the time the
shift register is next full, data will continue to be shifted into the shift register and

15 Ports, Input and Output 33

only the most recent values will be kept; as soon as an input instruction empties
the transfer register the transfer register will be filled from the shift register.

• STROBED SLAVE Output: Data is shifted out to the pins whenever the ready
input is asserted. Provided that the transfer register is full, when the shift register
is empty, it is filled from the transfer register. When the processor executes an
output instruction it fills the transfer register.

If the processor has not filled the transfer register by the time the shift register is
next empty, the data is held on the pins. As soon as the processor executes and
output instruction it fills the transfer register; the shift register is then filled from the
transfer register and the it will start to be emptied to the pins.

• STROBED MASTER: The transfer operates in the same way as a handshaken
transfer in which the ready input is always asserted.

The SETPT instruction can be used to delay the movement of data between the shift
register and the transfer register until the current value of the port timer matches the
time specified.

Note that this can be used to provide synchronisation with a stream of data in a BUFFERED
port in NOREADY mode, because exactly one item will be shifted to or from the pins in
each clock cycle.

If the port is outputting and the transfer register is full the SETPT instruction will pause
until it is empty. This ensures that the port time is not changed until the pending output
has completed.

The port condition can be used to locate the first item of data on the pins that matches
a condition. If the condition is different from NONE, data will be held in the shift register
until the data meets the condition; the data is then moved to the transfer register, the
timestamp is set and the port changes the condition to NONE so that data can continue
to fill the shift register in the normal way. Only the top port-width bits of the shift register
are used for comparison when the condition is checked.

34 The XMOS XS1 Architecture

15.11 Partial Transfers

Buffered transfers permit data of less than the transfer width to be moved between the
shift register and the transfer register. The length of the items in a buffered transfer
can be set by a SETPSC instruction, which sets the port shift register count. On input,
this will cause the shift register contents to be moved to the transfer register when the
specified amount of data has been shifted in; on output it will cause only the specified
amount of data to be shifted out before the shift register is ready to be re-loaded. This is
useful for handling the first and last items in a long transfer.

SETPSC shiftcountp ← s set port shift register count

A buffered input can be terminated by executing an ENDIN instruction which returns the
number of items buffered in the port (which will include the shift register and transfer reg-
ister contents) and also sets the port shift register count to the amount of data remaining
in the shift register, enabling a following input to complete.

ENDIN d ← buffercountp end input

To optimise the transfer of partwords two further instructions are provided:

OUTPW shiftcountp ← bitp; output part word
p / s

INPW shiftcountp ← bitp; input part word
p . d

These encode their immediate operand in the same way as the shift instructions.

15.12 Changing Direction

A SYNCHRONISED port can change from input to output, or from output to input. The
direction changes at the start of the next setup period. For a transfer initiated by a
SETPT instruction, the direction will be input unless an output is executed before the
time specified by the SETPT instruction.

A BUFFERED port can change direction only after it has completed a transfer. This is
done by stopping and re-starting the port using SETC p, STOP and SETC p, START
instructions.

16 Events, Interrupts and Exceptions 35

16 Events, Interrupts and Exceptions

Events and interrupts allow timers, ports and channel ends to automatically transfer con-
trol to a pre-defined event handler. The ability of a thread to accept events or interrupts
is controlled by information held in the thread status register (sr), and may be explicitly
controlled using SETSR and CLRSR instructions with appropriate operands.

SETSR sr ← sr ∨ u6 set thread state
CLRSR sr ← sr ∧ ¬u6 clear thread state
GETSR r11← sr ∧ u6 get thread state

The operand of these instructions should be one (or more) of

EEBLE enable events
IEBLE enable interrupts
INENB determine if thread is enabling events
ININT determine if thread is in interrupt mode
INK determine if thread is in kernel mode
SINK determine if thread was in kernel mode
WAITING determine if thread is waiting to execute the current instruction
FAST determine if thread is in fast mode

A thread normally enables one or more events and then waits for one of them to occur.
Hence, on an event all the thread’s state is valid, allowing the thread to respond rapidly
to the event. The thread can perform input and output operations using the port, channel
or timer which gave rise to an event whilst leaving some or all of the event information
unchanged. This allows the thread to complete handling an event and immediately wait
for another similar event.

Timers, ports and channel ends all support events, the only difference being the ready
conditions used to trigger the event. The program location of the event handler must be
set prior to enabling the event using the SETV instruction. The SETEV instruction can
be used to set an environment for the event handler; this will often be a stack address
containing data used by the handler. Timers and ports have conditions which determine
when they will generate an event; these are set using the SETC and SETD instructions.
Channel ends are considered ready as soon as they contain enough data.

Event generation by a specific port, timer or channel can be enabled using an event en-
able unconditional (EEU) instruction and disabled using an event disable unconditional
(EDU) instruction. The event enable true (EET) instruction enables the event if its con-
dition operand is true and disables it otherwise; conversely the event enable false (EEF)
instruction enables the event if its condition operand is false, and disables it otherwise.

36 The XMOS XS1 Architecture

These instructions are used to optimise the implementation of guarded inputs.

SETV vectorr ← s set event vector
SETEV envectorr ← s set event environment vector

SETD datar ← s set resource data
GETD d ← datar get resource data
SETC condr ← s set event condition

EET enbr ← c; threadr ← tid event enable true
EEF enbr ← ¬c; threadr ← tid event enable false
EDU enbr ← false; threadr ← tid event disable
EEU enbr ← true; threadr ← tid event enable

Having enabled events on one or more resources, a thread can use a WAITEU, WAITET
or WAITEF instruction to wait for at least one event. The WAITEU instruction waits
unconditionally; the WAITET instruction waits only if its condition operand is true, and
the WAITEF waits only if its condition operand is false.

WAITET if c then eebletid ← true event wait if true
WAITEF if ¬ c then eebletid ← true event wait if false
WAITEU eebletid ← true event wait

This may result in an event taking place immediately with control being transferred to
the event handler specified by the corresponding event vector with events disabled by
clearing the thread’s eeble flag. Alternatively the thread may be paused until an event
takes place with the eeble flag enabled; in this case the eeble flag will be cleared when
the event takes place, and the thread resumes execution.

event ed ← evres;
pc ← vres;
sr [bit inenb]← false;
sr [bit eeble]← false;
sr [bit waiting]← false

Note that the environment vector is transferred to the event data register, from where it
can be accessed by the GETED instruction. This allows it to be used to access data
associated with the event, or simply to enable several events to share the same event
vector.

To optimise the responsiveness of a thread to high priority resources the SETSR EEBLE
instruction can be used to enable events before starting to enable the ports, channels
and timers. This may cause an event to be handled immediately, or as soon as it is

16 Events, Interrupts and Exceptions 37

enabled. An enabling sequence of this kind can be followed either by a WAITEU instruc-
tion to wait for one of the events, or it can simply be followed by a CLRSR EEBLE to
continue execution when no event takes place. The WAITET and WAITEF instructions
can also be used in conjunction with a CLRSR EEBLE to conditionally wait or continue
depending on a guarding condition. The WAITET and WAITEF instructions can also be
used to optimise the common case of repeatedly handling events from multiple sources
until a terminating condition occurs.

All of the events which have been enabled by a thread can be disabled using a single
CLRE instruction. This disables event generation in all of the ports, channels or timers
which have had events enabled by the thread. The CLRE instruction also clears the
thread’s eeble flag.

CLRE eebletid ← false; disable all events
inenbtid ← false; for thread
forall res

if (threadres = tid ∧ eventres) then enbres ← false

Where enabling sequences include calls to input subroutines, the SETSR INENB instruc-
tion can be used to record that the processor is in an enabling sequence; the subroutine
body can use GETSR INENB to branch to its enabling code (instead of its normal in-
putting code). INENB is cleared whenever an event occurs, or by the CLRE instruction.

In contrast to events, interrupts can occur at any point during program execution, and
so the current pc and sr (and potentially also some or all of the other registers) must
be saved prior to execution of the interrupt handler. This is done using the spc and ssr
registers. On an interrupt generated by resource r the following occurs automatically:

int spc ← pc;
ssr ← sr ;
pc ← vres;
sed ← ed ;
ed ← evres
sr [bit inint]← true
sr [bit ink]← true;
sr [bit eeble]← false;
sr [bit ieble]← false
sr [bit waiting]← false

38 The XMOS XS1 Architecture

When the handler has completed, execution of the interrupted thread can be performed
by a KRET instruction.

KRET pc ← spc; return from interrupt
sr ← ssr
ed ← sed

Exceptions which occur when an error is detected during instruction execution are treated
in the same way as interrupts except that they transfer control to a location defined rela-
tive to the thread’s kernel entry point kep register.

except spc ← pc;
ssr ← sr ;
et ← traptype;
sed ← ed ;
ed ← trapdata;
pc ← kep;
sr [bit ink]← true;
sr [bit eeble]← false;
sr [bit ieble]← false

A program can force an exception as a result of a software detected error condition using
ECALLT or ECALLF.

ECALLT if e then { error on true
spc ← pc;
ssr ← sr ;
et ← error ;
sed ← ed ;
ed ← s;
pc ← kep;
sr [bit ink]← true;
sr [bit eeble]← false;
sr [bit ieble]← false }

16 Events, Interrupts and Exceptions 39

ECALLF if ¬e then { error on false
spc ← pc;
ssr ← sr ;
et ← error ;
sed ← ed ;
ed ← s
pc ← kep;
sr [bit ink]← true;
sr [bit eeble]← false;
sr [bit ieble]← false}

These have the same effect as hardware detected exceptions, transferring control to
the same location and indicating that an error has occurred in the exception type (et)
register.

A program can explicitly cause entry to a handler using one of the kernel call instructions.
These have a similar effect to exceptions, except that they transfer control to a location
defined relative to the thread’s kep register.

KCALLI spc ← pc; kernel call immediate
ssr ← sr ;
et ← kernelcall
sed ← ed
ed ← u6;
pc ← kep + 64;
sr [bit ink]← true;
sr [bit ieble]← false;
sr [bit eeble]← false

KCALL spc ← pc; kernel call
ssr ← sr ;
sed ← ed
ed ← s;
pc ← kep + 64;
sr [bit ink]← true;
sr [bit ieble]← false;
sr [bit eeble]← false

The spc, ssr , et and sed registers can be saved and restored directly to the stack.

40 The XMOS XS1 Architecture

LDSPC spc ← mem[sp + 1×Bpw] load exception pc
STSPC mem[sp + 1×Bpw]← spc store exception pc
LDSSR ssr ← mem[sp + 2×Bpw] load exception sr
STSSR mem[sp + 2×Bpw]← ssr store exception sr
LDSED sed ← mem[sp + 3×Bpw] load exception data
STSED mem[sp + 3×Bpw]← sed store exception data
STET mem[sp + 4×Bpw]← et store exception type

In addition, the et and ed registers can be transferred directly to a register.

GETET r11← et get exception type
GETED r11← ed get exception data

A handler can use the KENTSP instruction to save the current stack pointer into word 0
of the thread’s kernel stack (using the kernel stack pointer ksp) and change stack pointer
to point at the base of the thread’s kernel stack. KRESTSP can then be used to restore
the stack pointer on exit from the handler.

KENTSP n mem[ksp]← sp; switch to kernel stack
sp ← ksp − n×Bpw

KRESTSP n ksp ← sp + n×Bpw ; switch from kernel stack
sp ← mem[ksp]

A handler can detect whether or not it has been entered from kernel mode using GETSR
SINK.

The kep can be initialised using the SETKEP instruction; the ksp can be read using the
GETKSP instructions.

SETKEP kep ← r11 set kernel entry point

GETKSP r11← ksp get kernel stack pointer

The kernel stack pointer is initialised by the boot-ROM to point to a safe location near the
last location of RAM - the last few locations are used by the JTAG debugging interface.
ksp can be modified by using a sequence of SETSP followed by KRESTSP.

17 Initialisation and Debugging 41

17 Initialisation and Debugging

The state of the processor includes additional registers to those used for the threads.

register use

dspc debug save pc
dssr debug save sr
dssp debug save sp
dtype debug cause

dtid thread identifier used to access thread state
dtreg register identifier used to acccess thread state

All of the processor state can be accessed using the GETPS and SETPS instructions:

GETPS d ← state[s] get processor state
SETPS state[d]← s set processor state

To access the state of a thread, first SETPS is used to set dtid and dtreg to the thread
identifier and register number within the thread state. The contents of the register can
then be accessed by:

DGETREG d ← dtregdtid get thread register

The debugging state is entered by either executing a DCALL instruction, or by an ex-
ternal DEBUG event (such as a breakpoint or watchpoint). During debug, only thread 0
executes, all other threads are frozen. The debugging state is exited on DRET, which
causes thread 0 to resume at its saved PC, and all other threads to start where they
were stopped. Entry to a debug handler operates in a manner similar to an interrupt:

debug dspc ← pct0;
dssr ← srt0;
pct0 ← debugentry
dtype← cause
srt0[bit inint]← true
srt0[bit ink]← true;
srt0[bit eeble]← false;
srt0[bit ieble]← false
srt0[bit waiting]← false

42 The XMOS XS1 Architecture

The DCALL instruction has the same effect:

DCALL dspc ← pct0; debug call (breakpoint)
dssr ← srt0;
pct0 ← debugentry
dtype← dcallcause
srt0[bit inint]← true
srt0[bit ink]← true;
srt0[bit eeble]← false;
srt0[bit ieble]← false

DRET pct0 ← dspc; return from debug
srt0 ← dssr ;

DENTSP dssp ← sp; debug save stack pointer
sp ← ramend

DRESTSP sp ← dssp debug restore stack pointer

18 Specialised Instructions

The long arithmetic instructions support signed and unsigned arithmetic on multi-word
values. The long subtract instruction (LSUB) enables conversion between long signed
and long unsigned values by subtracting from long 0. The long multiply and long divide
operate on unsigned values.

The long add instruction is intended for adding multi-word values. It has a carry-in
operand and a carry-out operand. Similarly, the long subtract instruction is intended for
subtracting multi-word values and has a borrow-in operand and a borrow-out operand.

LADD d ← l + r + c[bit 0]; add with carry
e← carry (l + r + c[bit 0])

LSUB d ← l − r − b[bit 0]; subtract with borrow
e← borrow(l − r − b[bit 0])

The long multiply instruction multiplies two of its source operands, and adds two more
source operands to the result, leaving the unsigned double length result in its two des-
tination operands. The result can always be represented within two words because the
largest value that can be produced is (B − 1) × (B − 1) + (B − 1) + (B − 1) = B2 − 1

18 Specialised Instructions 43

where B = 2bpw . The two carry-in operands allow the component results of multi-length
multiplications to be formed directly without the need for extra addition steps.

LMUL d ← ((l × r) + s + t)[bits bpw for bpw]; long multiply
e← ((l × r) + s + t)[bits 0 for bpw]

The long division instruction (LDIV) is very similar to the short unsigned division instruc-
tion, except that it returns the remainder as well as the result; it also allows the remainder
from a previous step of a multi-length division to be loaded as the high part of the divi-
dend.

LDIV d ← (l � bpw + m)÷ r ; long divide unsigned
e← (l � bpw + m) mod r

The instruction traps if the result cannot be represented as a single word value; this
occurs when l ≤ r . Note that this instruction operates correctly if the most significant bit
of the divisor is 1 and the initial high part of the dividend is non-zero. A (fairly) simple
algorithm can be used to deal with a double length divisor. One method is to normalise
the divisor and divide first by the top 32 bits; this produces a very close approximation to
the result which can then be corrected.

The multiply-accumulate instructions perform a double length accumulation of products
of single length operands:

MACCU s ← ((l × r) + s � bpw + t)[bits bpw for bpw]; long multiply
t ← ((l × r) + t)[bits 0 for bpw] accumulate unsigned

MACCS s ← ((l ×sgn r) + s � bpw + t)[bits bpw for bpw]; long multiply
t ← ((l ×sgn r) + t)[bits 0 for bpw] accumulate signed

The MACCU instruction multiplies two unsigned source operands to produce a double
length result which it adds to its unsigned double length accumulator operand held in two
other operands. Similarly, the MACCS instruction multiplies two signed source operands
to produce a double length result which it adds to its signed double length accumulator
operand held in two other operands.

44 The XMOS XS1 Architecture

Cyclic redundancy check is performed using:

CRC for step = 0 for bpw word cyclic
if (r [bit 0] = 1) redundancy check
then r ← (s[bit step] : r [bits (bpw − 1) ... 1])⊕ p
else r ← (s[bit step] : r [bits (bpw − 1) ... 1])

CRC8 for step = 0 for 8 8 step cyclic
if (r [bit 0] = 1) redundancy check
then r ← (s[bit step] : r [bits 31 ... 1])⊕ p
else r ← (s[bit step] : r [bits 31 ... 1]);

d ← s � 8

The CRC8 instruction operates on the least significant 8 bits of its data operand, ignoring
the most significant 24 bits. It is useful when operating on a sequence of bytes, especially
where these are not word-aligned in memory.

19 Instruction Details 45

19 Instruction Details

This section details the semantics and encoding of all instructions of the XCore instruc-
tion set architecture. The meaning and assembly syntax of each instruction is docu-
mented in alphabetical order in Section 19.1. Section 19.2 presents the encoding of
each instruction; the information in this chapter is needed for the construction of low-
level tools such as assemblers and debuggers. Section 19.3 presents all exceptions,
and lists which instructions can trigger each specific exception.

The instructions use the following registers:

r0 ... r11 operand registers
pc program counter. The program counter is pre incremented, that is, it

contains the address of the next instruction in the program. All instruc-
tions that use an address offset relative to the program counter (such
as relative branches, load address relative, etc) use an offset of ’0’ to
address the next instruction.

sr status register
sp stack pointer
dp data pointer
cp constant pool pointer
lr link register

19.1 Instructions

This section presents the instructions in alphabetical order. Each instruction is presented
a short textual description, followed by the assembly syntax, its meaning in a more formal
notation, its encoding(s) and potential exceptions that can be raised by this exception.

The processor operates on words - registers are one-word wide, data can be transferred
to ports and channels in words, and most memory operations operate on words. A word
is bpw bits long, or Bpw bytes long.

46 The XMOS XS1 Architecture

The following notation is used in the description to describe operands and constants:

bitp denotes a bit-position - one of bpw , 1, 2, 3, 4, 5,
6, 7, 8, 16, 24, and 32; these are encoded using
numbers 0...11.

b register used as a base address.
c register used as a conditional.
d , e register used as a destination.
r register used as a resource identifier.
s register used as a source.
t register used as a thread identifier.
us a small unsigned constant in the range 0...11
ux an unsigned constant in the range 0...(2x − 1)
v , w , x , y registers used for two or more sources.

All mathematical operators are assumed to work on Integers (Z) and, unless otherwise
stated, bit patterns found in registers are interpreted unsigned. Signed numbers are
represented using two’s complement, and if an operand is interpreted as a signed num-
ber, this is denoted by a subscript signed . In addition to the standard numerical operators
following bitwise operators are assumed:

∨bit Bitwise or.
∧bit Bitwise and.
⊕bit Bitwise xor.
¬bit Bitwise complement.

Square brackets are used for two purposes. When preceded with the word mem square
brackets address a memory location. Otherwise, they indicate that one or more bits are
sliced out of a bit pattern. Bits can be spliced together using a “:” operator. The bit
pattern x : y is a pattern where x are the higher order bits and y are the lower order bits.

The notation mem[x] represents word-based access to memory, and the address x must
be word-aligned (that is, the address must be a multiple of Bpw). Instructions that read
or write data to memory that is not a word in size (such as a byte or a 16-bit value)
explicitly specify which bits in memory are accessed.

The instruction encoding specifies the opcode bits of the encoding - the way that the
operands are encoded is specified on the corresponding page in the instruction formats
section. Each operand in the instruction section maps positionally on an operand in the
format section.

19 Instruction Details 47

ADD Integer unsigned add

Adds two unsigned integers together. There is no check for overflow. Where it occurs,
overflow is ignored.

To add with carry the LADD instruction should be used instead.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

ADD d , x , y

Operation:

d ← (x + y) mod 2bpw

Encoding:

0 0 0 1 03r

48 The XMOS XS1 Architecture

ADDI Integer unsigned add immediate

Adds two unsigned integers together. There is no check for overflow. Where it occurs,
overflow is ignored.

To add with carry the LADD instruction should be used instead.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 us An integer in the range 0...11

Mnemonic and operands:

ADDI d , x , us

Operation:

d ← (x + us) mod 2bpw

Encoding:

1 0 0 1 02rus

19 Instruction Details 49

AND Bitwise and

Produces the bitwise AND of two words.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

AND d , x , y

Operation:

d ← x ∧bit y

Encoding:

0 0 1 1 13r

50 The XMOS XS1 Architecture

ANDNOT And not

ANDNOT clears bits in a word. Given the bits set a bit pattern (s), ANDNOT clears the
equivalent bits in the destination operand (d). ANDNOT is a two operand instruction
where the first operand acts as both source and destination.

ANDNOT can be used to efficiently operate on bit patterns that span a non-integral
number of bytes.

See MKMSK for how to build masks efficiently.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

ANDNOT d , s

Operation:

d ← d ∧bit ¬bits

Encoding:

0 0 1 0 1 02r

19 Instruction Details 51

ASHR Arithmetic shift right

Right shifts a signed integer and performs sign extension. The shift distance (y) is an
unsigned integer. If the shift distance is larger than the size of a word, the result will only
be the sign extension.

If sign extension is not required, the SHR instruction should be used instead. Note that
ASHR is not the same as a DIVS by 2y because ASHR rounds towards minus infinity,
whereas DIVS rounds towards zero.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

ASHR d , x , y

Operation:

d ←

 0 < y < bpw , x [bpw − 1] : ... : x [bpw − 1] : x [bpw − 1...y]
y = 0, x
y ≥ bpw , x [bpw − 1] : ... : x [bpw − 1]

Encoding:

1 1 1 1 1
0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0

l3r

52 The XMOS XS1 Architecture

ASHRI Arithmetic shift right immediate

Right shifts a signed integer and performs sign extension. The shift distance (bitp) is an
unsigned integer. If the shift distance is larger than the size of a word, the result will only
be the sign extension.

If sign extension is not required, the SHR instruction should be used instead. Note that
ASHR is not the same as a DIVS by 2bitp because ASHR rounds towards minus infinity,
whereas DIVS rounds towards zero.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 bitp A bit position; one of bpw , 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

ASHRI d , x , bitp

Operation:

d ←

 0 < bitp < bpw , x [bpw − 1] : ... : x [bpw − 1] : x [bpw − 1...bitp]
bitp = 0, x
bitp ≥ bpw , x [bpw − 1] : ... : x [bpw − 1]

Encoding:

1 1 1 1 1

1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0
l2rus

19 Instruction Details 53

BAU Branch absolute unconditional register

Branches to the address given in a general purpose register. The register value must be
even, and should point to a valid memory location.

The instruction has one operand:

op1 s Operand register, one of r0...r11

Mnemonic and operands:

BAU s

Operation:

pc ← s

Encoding:

0 0 1 0 0 1 1 1 1 1 1 11r

Conditions that raise an exception:

ET ILLEGAL PC The address specified was not 16-bit aligned or did not
point to a memory location.

54 The XMOS XS1 Architecture

BITREV Bit reverse

Reverses the bits in a word; the most significant bit of the source operand will be pro-
duced in the least significant bit of the destination operand, the value of the least signifi-
cant bit of the source operand will be produced in the most significant bit of the destina-
tion operand.

This instruction can be used in conjunction with BYTEREV in order to translate between
different ordering conventions such as big-endian and little-endian.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

BITREV d , s

Operation:

d [bpw − 1...0] ← s[0] : s[1] : s[2] : ... : s[bpw − 1]

Encoding:

1 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0

l2r

19 Instruction Details 55

BLA Branch and link absolute via register

This instruction implements an procedure call to an absolute address. The program
counter is saved in the link-register (lr) and the program counter is set to the given
address. This address must be even and point to a valid memory address, otherwise an
exception is raised. On execution of BLA, the processor will read the target instruction
so that the invoked procedure will start without delay.

On entry to the procedure, the Link Register can be saved on the stack using the ENTSP
instruction. RETSP performs the opposite of this instruction, returning from a procedure
call.

The instruction has one operand:

op1 s Operand register, one of r0...r11

Mnemonic and operands:

BLA s

Operation:

lr ← pc
pc ← s

Encoding:

0 0 1 0 0 1 1 1 1 1 1 01r

Conditions that raise an exception:

ET ILLEGAL PC The address specified was not 16-bit aligned or did not
point to a memory location.

56 The XMOS XS1 Architecture

BLACP Branch and link absolute via constant pool

This instruction implements a call to a procedure via the constant pool lookup table. The
program counter is saved in the link-register (lr). The program counter is loaded from the
constant pool table. The constant pool register (cp) is used as the base address for the
table. An offset (u20) specifies which word in the table to use. Because the instruction
requires access to memory, the execution of the target instruction may be delayed by
one instruction in order to fetch the target instruction.

On entry to the procedure, the Link Register can be saved on the stack using the ENTSP
instruction. RETSP performs the opposite of this instruction, returning from a procedure
call.

The instruction has one operand:

op1 u20 A 20-bit immediate in the range 0...1048575.
If u20 < 1024, the instruction requires no prefix

Mnemonic and operands:

BLACP u20

Operation:

lr ← pc
pc ← mem[cp + u20 × Bpw]

Encoding:

1 1 1 0 0 0u10

or prefixed for long immediates:

1 1 1 1 0 0

1 1 1 0 0 0
lu10

Conditions that raise an exception:

ET ILLEGAL PC Loaded value was not 16-bit aligned or did not point to a
memory location (trapped during next cycle).

ET LOAD STORE Register cp points to an unaligned address, or the in-
dexed address does not point to a valid memory address.

19 Instruction Details 57

BLAT Branch and link absolute via table

This instruction implements a call to a procedure via a lookup table. The program counter
is saved in the link-register (lr). The program counter is loaded from the lookup table.
The lookup table base address is taken from r11. An offset (u16) specifies which word
in the table to use. Because the instruction requires access to memory, the execution of
the target instruction may be delayed by one instruction to fetch the target instruction.

On entry to the procedure, the Link Register can be saved on the stack using the ENTSP
instruction. RETSP performs the opposite of this instruction, returning from a procedure
call.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535.
If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

BLAT u16

Operation:

lr ← pc
pc ← mem[r11 + u16 × Bpw]

Encoding:

0 1 1 1 0 0 1 1 0 1u6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 0 0 1 1 0 1

lu6

Conditions that raise an exception:

ET ILLEGAL PC Loaded value was not 16-bit aligned or did not point to a
memory location (trapped during the next cycle).

ET LOAD STORE Register r11 points to an unaligned address, or the in-
dexed address does not point to a valid memory address.

58 The XMOS XS1 Architecture

BLRB Branch and link relative backwards

This instruction performs a call to a procedure: the address of the next instruction is
saved in the link-register (lr) An unsigned offset is subtracted from the program counter.
This implements a relative jump.

On entry to the procedure, the Link Register can be saved on the stack using the ENTSP
instruction. RETSP performs the opposite of this instruction, returning from a procedure
call. The counterpart forward call is called BLRF.

The instruction has one operand:

op1 u20 A 20-bit immediate in the range 0...1048575.
If u20 < 1024, the instruction requires no prefix

Mnemonic and operands:

BLRB u20

Operation:

lr ← pc
pc ← pc − u20 × 2

Encoding:

1 1 0 1 0 1u10

or prefixed for long immediates:

1 1 1 1 0 0

1 1 0 1 0 1
lu10

Conditions that raise an exception:

ET ILLEGAL PC The new PC is not pointing to a valid memory location.

19 Instruction Details 59

BLRF Branch and link relative forwards

This instruction performs a call to a procedure: the address of the next instruction is
saved in the link-register (lr) An unsigned offset is added to the program counter. This
implements a relative jump.

On entry to the procedure, the Link Register can be saved on the stack using the ENTSP
instruction. RETSP performs the opposite of this instruction, returning from a procedure
call. The counterpart backward call is called BLRB.

The instruction has one operand:

op1 u20 A 20-bit immediate in the range 0...1048575.
If u20 < 1024, the instruction requires no prefix

Mnemonic and operands:

BLRF u20

Operation:

lr ← pc
pc ← pc + u20 × 2

Encoding:

1 1 0 1 0 0u10

or prefixed for long immediates:

1 1 1 1 0 0

1 1 0 1 0 0
lu10

Conditions that raise an exception:

ET ILLEGAL PC The new PC is not pointing to a valid memory location.

60 The XMOS XS1 Architecture

BRBF Branch relative backwards false

This instruction implements a conditional relative jump backwards. A condition (c) is
tested whether it represents 0 (false) and if this is the case an offset (u16) is subtracted
from the program counter.

This instruction is part of a group of four instructions that conditionally jump forwards or
backwards on true or false conditions: BRBF, BRBT, BRFF, and BRFT.

The instruction has two operands:

op1 c Operand register, one of r0...r11
op2 u16 A 16-bit immediate in the range 0...65535.

If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

BRBF c, u16

Operation:

if c = 0 then pc ← pc − u16 × 2

Encoding:

0 1 1 1 1 1ru6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 1 1

lru6

Conditions that raise an exception:

ET ILLEGAL PC The new PC is not pointing to a valid memory location.

19 Instruction Details 61

BRBT Branch relative backwards true

This instruction implements a conditional relative jump backwards. A condition (c) is
tested whether it is not 0 (true) and if this is the case an offset (u16) is subtracted from
the program counter.

This instruction is part of a group of four instructions that conditionally jump forwards or
backwards on true or false conditions: BRBF, BRBT, BRFF, and BRFT.

The instruction has two operands:

op1 c Operand register, one of r0...r11
op2 u16 A 16-bit immediate in the range 0...65535.

If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

BRBT c, u16

Operation:

if c 6= 0 then pc ← pc − u16 × 2

Encoding:

0 1 1 1 0 1ru6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 0 1

lru6

Conditions that raise an exception:

ET ILLEGAL PC The new PC is not pointing to a valid memory location.

62 The XMOS XS1 Architecture

BRBU Branch relative backwards unconditional

This instruction implements a relative jump backwards. The operand specifies the offset
that should be subtracted from the program counter.

The counterpart forward relative jump is BRFU.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535.
If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

BRBU u16

Operation:

pc ← pc − u16 × 2

Encoding:

0 1 1 1 0 1 1 1 0 0u6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 0 1 1 1 0 0

lu6

Conditions that raise an exception:

ET ILLEGAL PC The new PC is not pointing to a valid memory location.

19 Instruction Details 63

BRFF Branch relative forward false

This instruction implements a conditional relative jump forwards. A condition (c) is tested
whether it represents 0 (false) and if this is the case an offset (u16) is added to the
program counter.

This instruction is part of a group of four instructions that conditionally jump forwards or
backwards on true or false conditions: BRBF, BRBT, BRFF, and BRFT.

The instruction has two operands:

op1 c Operand register, one of r0...r11
op2 u16 A 16-bit immediate in the range 0...65535.

If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

BRFF c, u16

Operation:

if c = 0 then pc ← pc + u16 × 2

Encoding:

0 1 1 1 1 0ru6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 1 0

lru6

Conditions that raise an exception:

ET ILLEGAL PC The new PC is not pointing to a valid memory location.

64 The XMOS XS1 Architecture

BRFT Branch relative forward true

This instruction implements a conditional relative jump forwards. A condition (c) is tested
whether it is not 0 (true) and if this is the case an offset (u16) is added to the program
counter.

This instruction is part of a group of four instructions that conditionally jump forwards or
backwards on true or false conditions: BRBF, BRBT, BRFF, and BRFT.

The instruction has two operands:

op1 c Operand register, one of r0...r11
op2 u16 A 16-bit immediate in the range 0...65535.

If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

BRFT c, u16

Operation:

if c 6= 0 then pc ← pc + u16 × 2

Encoding:

0 1 1 1 0 0ru6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 0 0

lru6

Conditions that raise an exception:

ET ILLEGAL PC The new PC is not pointing to a valid memory location.

19 Instruction Details 65

BRFU Branch relative forward unconditional

This instruction implements a relative jump forwards. The operand specifies the offset
that should be added to the program counter.

The counterpart backward relative jump is BRBU.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535.
If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

BRFU u16

Operation:

pc ← pc + u16 × 2

Encoding:

0 1 1 1 0 0 1 1 0 0u6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 0 0 1 1 0 0

lu6

Conditions that raise an exception:

ET ILLEGAL PC The new PC is not pointing to a valid memory location.

66 The XMOS XS1 Architecture

BRU Branch relative unconditional register

This instruction implements a jump using a signed offset stored in a register. Because
instructions are aligned on 16-bit boundaries, the offset in the register is multiplied by 2.
Negative values cause backwards jumps.

The instruction has one operand:

op1 s Operand register, one of r0...r11

Mnemonic and operands:

BRU s

Operation:

pc ← pc + ssigned × 2

Encoding:

0 0 1 0 1 1 1 1 1 1 1 01r

Conditions that raise an exception:

ET ILLEGAL PC The new PC is not pointing to a valid memory location.

19 Instruction Details 67

BYTEREV Byte reverse

This instruction reverses the bytes of a word.

Together with the BITREV instruction this can be used to resolve requirements of differ-
ent ordering conventions such as little-endian and big-endian.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

BYTEREV d , s

Operation:

d [bpw − 1...0] ← s[7...0] : s[15...8] : ... : s[bpw − 1 : bpw − 8]

Encoding:

1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0

l2r

68 The XMOS XS1 Architecture

CHKCT Test for control token

If the next token on a channel is the specified control token, then this token is discarded
from the channel. If not, the instruction raises an exception.

This instruction pauses if the channel does not have a token available to be read.

This instruction can be used together with OUTCT in order to implement robust protocols
on channels; each OUTCT must have a matching CHKCT or INCT. TESTCT tests for a
control token without trapping, and does not discard the control token.

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

CHKCT r , s

Operation:

if hasctoken(r) ∧ (s = token(r))
then skiptoken(r)
else raiseexception

Encoding:

1 1 0 0 1 02r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a channel resource, or the resource is

not in use.
ET ILLEGAL RESOURCE r contains a data token.
ET ILLEGAL RESOURCE r contains a control token different to s.

19 Instruction Details 69

CHKCTI Test for control token immediate

If the next token on a channel is the specified control token, then this token is discarded
from the channel. If not, the instruction raises an exception.

This instruction pauses if the channel does not have a token available to be read.

This instruction can be used together with OUTCT in order to implement robust protocols
on channels; each OUTCT must have a matching CHKCT or INCT. TESTCT tests for a
control token without trapping, and does not discard the control token.

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 us An integer in the range 0...11

Mnemonic and operands:

CHKCTI r , us

Operation:

if hasctoken(r) ∧ (us = token(r))
then skiptoken(r)
else raiseexception

Encoding:

1 1 0 0 1 1rus

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a channel resource, or the resource is

not in use.
ET ILLEGAL RESOURCE r contains a data token.
ET ILLEGAL RESOURCE r contains a control token different to us.

70 The XMOS XS1 Architecture

CLRE Clear all events

Clears the thread’s Event-Enable and In-Enabling flags, and disables all individual events
for the thread. Any resource (port, channel, timer) that was enabled for this thread will
be disabled.

The instruction has no operands.

Mnemonic and operands:

CLRE

Operation:

sr [eeble]← 0
sr [inenb]← 0
forall res

if (threadres = tid) ∧ eventres then enbres ← 0

Encoding:

0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 10r

19 Instruction Details 71

CLRPT Clear the port time

Clears the timer that is used to determine when the next output on a port will happen.

The instruction has one operand:

op1 r Operand register, one of r0...r11

Mnemonic and operands:

CLRPT r

Operation:

clearporttime(r)

Encoding:

1 0 0 0 0 1 1 1 1 1 1 01r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a port resource, or the resource is not

in use.

72 The XMOS XS1 Architecture

CLRSR Clear bits SR

Clear bits in the thread’s status register (sr). The mask supplied specifies which bits
should be cleared.

SETSR is used to set bits in the status register.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535.
If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

CLRSR u16

Operation:

sr ← sr ∧bit ¬bitu16

Encoding:

0 1 1 1 1 0 1 1 0 0u6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 1 0 1 1 0 0

lu6

19 Instruction Details 73

CLZ Count leading zeros

Counts the number of leading zero bits in its operand. If the operand is zero, then
bpw is produced. If the operand starts with a ’1’ bit (ie, a negative signed integer, or a
large unsigned integer), then 0 is produced. This instruction can be used to efficiently
normalise integers.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

CLZ d , s

Operation:

d ←

 s = 0 bpw
s[bpw − 1] = 0, bpw − 1− blog2 sc
s[bpw − 1] = 1, 0

Encoding:

1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0

l2r

74 The XMOS XS1 Architecture

CRC word CRC

Incorporates a word into a Cyclic Redundancy Checksum. The instruction has three
operands. The first operand (r) is used both as a source to read the initial value of the
checksum and a destination to leave the updated checksum. The other operands are
the data to compute the CRC over (d) and the polynomial to use when computing the
CRC (p).

Note - this instruction may not be available in cores where bpw exceeds 32. A CRC32
instruction may be provided with four arguments and a structure identical to CRC8.

The instruction has three operands:

op1 r Operand register, one of r0...r11
op2 d Operand register, one of r0...r11
op3 p Operand register, one of r0...r11

Mnemonic and operands:

CRC r , d , p

Operation:

for step = 0 for bpw
if (r [0] = 1)
then r ← (d [step] : r [bpw − 1...1])⊕bit p
else r ← (d [step] : r [bpw − 1...1])

Encoding:

1 1 1 1 1

1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0
l3r

19 Instruction Details 75

CRC8 8-step CRC

Incorporates the CRC over 8-bits of a 32-bit word into a Cyclic Redundancy Checksum.
The instruction has four operands. Similar to CRC the first operand is used both as a
source to read the initial value of the checksum and a destination to leave the updated
checksum, and there are operands to specify the the polynomial (p) to use when com-
puting the CRC, and the data (d) to compute the CRC over. Since on completion of
the instruction the part of the data that has not yet been incorporated into the CRC, the
most significant 24-bits of the data are stored in a second destination register (r). This
enables repeated execution of CRC8 over a part-word.

Executing Bpw CRC8 instructions in a row is identical to executing a single CRC instruc-
tion. The CRC8 instruction is provided to complete the checksum over messages that
have a number of bytes that is not a multiple of Bpw , or for messages where the start is
not aligned.

The instruction has four operands:

op1 o Operand register, one of r0...r11
op4 r Operand register, one of r0...r11
op2 d Operand register, one of r0...r11
op3 p Operand register, one of r0...r11

Mnemonic and operands:

CRC8 o, r , d , p

Operation:

for step = 0 for 8
if (r [0] = 1)
then r ← (d [step] : r [31...1])⊕bit p
else r ← (d [step] : r [31...1])

o[bpw − 1...0]← 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : d [bpw − 1 : 8]

Encoding:

1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 0

l4r

76 The XMOS XS1 Architecture

DCALL Call a debug interrupt

Switches to debug mode, saving the current program counter and stack pointer of thread
0 in debug registers. Thread 0 is deemed to have taken an interrupt and is therefore
removed from the multicycle unit and lock resources, and all of its resources are informed
such that it is removed from any resources it was inputting/outputting/eventing on.

DRET returns from a debug interrupt. DENTSP and DRESTSP instructions are used to
switch to and from the debug SP.

The instruction has no operands.

Mnemonic and operands:

DCALL

Operation:

dspc ← pct0

dssr ← srt0

pct0 ← debugentry
dtype ← dcallcause

srt0[inint] ← 1
srt0[ink] ← 1

srt0[eeble] ← 0
srt0[ieble] ← 0

srt0[inenb] ← 0
srt0[waiting] ← 0
dbgint [indbg] ← 1

Encoding:

0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 00r

19 Instruction Details 77

DENTSP Save and modify stack pointer for debug

Causes thread 0 to use the Debug SP rather than the SP in debug mode. Saves the
SP in debug saved stack pointer (DSSP), and loads the SP with the top word location in
RAM.

DRESTSP is used to use the restore the original SP from the DSSP.

The instruction has no operands.

Mnemonic and operands:

DENTSP

Operation:

dssp ← sp
sp ← ramend

Encoding:

0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 00r

Conditions that raise an exception:

ET ILLEGAL INSTRUCTION not in debug mode.

78 The XMOS XS1 Architecture

DGETREG Debug read of another thread’s register

The contents of any thread’s register can then be accessed for debugging purpose. To
access the state of a thread, first used SETPS to set dtid and dtreg to the thread identifier
and register number within the thread state.

The instruction has one operand:

op1 s Operand register, one of r0...r11

Mnemonic and operands:

DGETREG s

Operation:

s ← dtregdtid

Encoding:

0 0 1 1 1 1 1 1 1 1 1 01r

Conditions that raise an exception:

ET ILLEGAL INSTRUCTION not in debug mode.

19 Instruction Details 79

DIVS Signed division

Produces the result of dividing two signed words, rounding the result towards zero. For
example 5÷ 3 is 1, −5÷ 3 is −1, −5÷−3 is 1, and 5÷−3 is −1.

This instruction does not execute in a single cycle, and multiple threads may share the
same division unit. The division may take up to bpw thread-cycles.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

DIVS d , x , y

Operation:

dsigned ← xsigned ÷ ysigned

Encoding:

1 1 1 1 1
0 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0

l3r

Conditions that raise an exception:

ET ARITHMETIC Division by 0.
ET ARITHMETIC Division of −2bpw−1 by −1

80 The XMOS XS1 Architecture

DIVU Unsigned divide

Computes an unsigned integer division, rounding the answer down to 0. For example
5÷ 3 is 1.

This instruction does not execute in a single cycle, and multiple threads may share the
same division unit. The division may take up to bpw thread-cycles.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

DIVU d , x , y

Operation:

d ← x ÷ y

Encoding:

1 1 1 1 1
0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0

l3r

Conditions that raise an exception:

ET ARITHMETIC Division by 0.

19 Instruction Details 81

DRESTSP Restore non debug stack pointer

Causes thread 0 to use the original SP rather than the debug SP. Restores the SP from
the debug saved stack pointer (DSSP)

DENTSP is used to use the save the original SP to the DSSP.

The instruction has no operands.

Mnemonic and operands:

DRESTSP

Operation:

sp ← dssp

Encoding:

0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 10r

Conditions that raise an exception:

ET ILLEGAL INSTRUCTION not in debug mode.

82 The XMOS XS1 Architecture

DRET Return from debug interrupt

Exits debug mode, restoring thread 0’s program counter and stack pointer from the start
of the debug interrupt.

DCALL calls a debug interrupt. DENTSP and DRESTSP instructions are used to switch
to and from the debug SP.

The instruction has no operands.

Mnemonic and operands:

DRET

Operation:

pct0 ← dspc
srt0 ← dssr

Encoding:

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 00r

Conditions that raise an exception:

ET ILLEGAL INSTRUCTION not in debug mode.
ET ILLEGAL PC The return address is invalid.

19 Instruction Details 83

ECALLF Throw exception if zero

This instruction checks whether the operand is 0 (false) and raises an exception if it is
the case. It can be used to implement assertions, and to implement array bound checks
together with the LSU instruction.

The instruction has one operand:

op1 c Operand register, one of r0...r11

Mnemonic and operands:

ECALLF c

Operation:

nop

Encoding:

0 1 0 0 1 1 1 1 1 1 1 01r

Conditions that raise an exception:

ET ECALL c = 0.

84 The XMOS XS1 Architecture

ECALLT Throw exception if non-zero

This instruction checks whether a condition is not 0, and raises an exception if it is the
case. It can be used to implement assertions.

The instruction has one operand:

op1 c Operand register, one of r0...r11

Mnemonic and operands:

ECALLT c

Operation:

nop

Encoding:

0 1 0 0 1 1 1 1 1 1 1 11r

Conditions that raise an exception:

ET ECALL c 6= 0.

19 Instruction Details 85

EDU Unconditionally disable event

Clears the event enabled status of a resource, disabling events and interrupts from that
resource.

The instruction has one operand:

op1 r Operand register, one of r0...r11

Mnemonic and operands:

EDU r

Operation:

enbr ← 0
threadr ← tid

Encoding:

0 0 0 0 0 1 1 1 1 1 1 01r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not referring to a legal resource, or the resource is

not in use.

86 The XMOS XS1 Architecture

EEF Enables events conditionally

Sets or clears the enabled event status of a resource. If the condition is 0 (false), events
and interrupts are enabled, if the condition is not 0, events and interrupts are disabled.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

EEF d , r

Operation:

enbr ← d = 0
threadr ← tid

Encoding:

0 0 1 0 1 12r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not referring to a legal resource, or the resource is

not in use.

19 Instruction Details 87

EET Enable events conditionally

Sets or clears the enabled event status of a resource. If the condition is 0 (false), events
and interrupts are disabled, if the condition is not 0, events and interrupts are enabled.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

EET d , r

Operation:

enbr ← d 6= 0
threadr ← tid

Encoding:

0 0 1 0 0 12r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not referring to a legal resource, or the resource is

not in use.

88 The XMOS XS1 Architecture

EEU Unconditionally enable event

Sets the event enabled status of a resource, enabling events and interrupts from that
resource.

The instruction has one operand:

op1 r Operand register, one of r0...r11

Mnemonic and operands:

EEU r

Operation:

enbr ← 1
threadr ← tid

Encoding:

0 0 0 0 0 1 1 1 1 1 1 11r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE op2 is not referring to a legal resource, or the resource is

not in use.

19 Instruction Details 89

ENDIN End a current input

Allows any remaining input bits to be read of a port, and produces an integer stating how
much data is left. The produced integer is the number of bits of data remaining; ie, This
assumes that the port is buffering and shifting data.

The port-shift-count is set to the number of bits present, so an ENDIN instruction can be
followed directly by an IN instruction without having to perform a SETPSC.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

ENDIN d , r

Operation:

d ← buffercountr

Encoding:

1 0 0 1 0 12r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not referring to a legal resource, or the resource is

not in use.
ET ILLEGAL RESOURCE r is referring to a port which is not in BUFFERS mode.
ET ILLEGAL RESOURCE r is referring to a port which is not in INPUT mode.

90 The XMOS XS1 Architecture

ENTSP Adjust stack and save link register

Stores the link register on the stack then adjusts the stack pointer creating enough space
for the procedure call that has just been entered.

See RETSP for the operation that restores the link-register.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535.
If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

ENTSP u16

Operation:

if u16 > 0
mem[sp]← lr
sp ← sp − u16 × Bpw

Encoding:

0 1 1 1 0 1 1 1 0 1u6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 0 1 1 1 0 1

lu6

Conditions that raise an exception:

ET LOAD STORE The indexed address is unaligned, or does not point to a
valid memory address.

19 Instruction Details 91

EQ Equal

Performs a test on whether two words are equal. If the two operands are equal, 1 is
produced in the destination register, otherwise 0 is produced.

The instruction has three operands:

op1 c Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

EQ c, x , y

Operation:

c ←
{

x = y , 1
x 6= y , 0

Encoding:

0 0 1 1 03r

92 The XMOS XS1 Architecture

EQI Equal immediate

Performs a test on whether two words are equal. If the two operands are equal, 1 is
produced in the destination register, otherwise 0 is produced.

The instruction has three operands:

op1 c Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 us An integer in the range 0...11

Mnemonic and operands:

EQI c, x , us

Operation:

c ←
{

x = us, 1
x 6= us, 0

Encoding:

1 0 1 1 02rus

19 Instruction Details 93

EXTDP Extend data

Extends the data area by moving the data pointer to a lower address

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535.
If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

EXTDP u16

Operation:

dp ← dp − u16 × Bpw

Encoding:

0 1 1 1 0 0 1 1 1 0u6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 0 0 1 1 1 0

lu6

94 The XMOS XS1 Architecture

EXTSP Extend stack

Extends the stack by moving the stack pointer to a lower address.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535.
If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

EXTSP u16

Operation:

sp ← sp − u16 × Bpw

Encoding:

0 1 1 1 0 1 1 1 1 0u6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 0 1 1 1 1 0

lu6

19 Instruction Details 95

FREER Free a resource

Frees a resource so that it can be reused. Only resources that have been previously
allocated with GETR can be freed; in particular, ports and clock-blocks cannot be freed
since they are not allocated.

FREER pauses when freeing a channel end that has outstanding transmit data.

The instruction has one operand:

op1 r Operand register, one of r0...r11

Mnemonic and operands:

FREER r

Operation:

inuser ← 0

Encoding:

0 0 0 1 0 1 1 1 1 1 1 01r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not referring to a legal resource
ET ILLEGAL RESOURCE r is referring to a resource that cannot be freed
ET ILLEGAL RESOURCE r is referring to a running thread
ET ILLEGAL RESOURCE r is referring to a channel end on which no terminating

CT END token has been input and/or output, or which
has data pending for input, or which has a thread waiting
for input or output.

96 The XMOS XS1 Architecture

FREET Free unsynchronised thread

Stops the thread that executes this instruction, and frees it. This must not be used by
synchronised threads, which should terminate by using a combination of an SSYNC on
the slave and an MJOIN on the master.

The instruction has no operands.

Mnemonic and operands:

FREET

Operation:

sr [inuse] ← 0

Encoding:

0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 10r

19 Instruction Details 97

GETD Get resource data

Gets the contents of the data/dest/divide register of a resource. This data register is set
using SETD. The way that a resource depends on its data register is resource dependent
and described at SETD.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

GETD d , r

Operation:

d ← datar

Encoding:

1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0

l2r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE d is not referring to a legal resource, or a resource which

doesn’t have a DATA register.

98 The XMOS XS1 Architecture

GETED Get ED into r11

Obtains the value of ed , exception data, into r11. In the case of an event, ed is set to
the environment vector stored in the resource by SETEV. The data that is stored in ed
in the case of an exception is given in Chapter 19.3.

The instruction has no operands.

Mnemonic and operands:

GETED

Operation:

r11 ← ed

Encoding:

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 00r

19 Instruction Details 99

GETET Get ET into r11

Obtains the value of ET (exception type) into r11.

The instruction has no operands.

Mnemonic and operands:

GETET

Operation:

r11 ← et

Encoding:

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 10r

100 The XMOS XS1 Architecture

GETID Get the thread’s ID

Get the thread ID of this thread into r11.

The instruction has no operands.

Mnemonic and operands:

GETID

Operation:

r11 ← tid

Encoding:

0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 00r

19 Instruction Details 101

GETKEP Get the Kernel Entry Point

Get the kernel entry point of this thread into r11.

The instruction has no operands.

Mnemonic and operands:

GETKEP

Operation:

r11 ← kep

Encoding:

0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 10r

102 The XMOS XS1 Architecture

GETKSP Get Kernel Stack Pointer

Gets the thread’s Kernel Stack Pointer ksp into r11. There is no instruction to set ksp
directly since it is normally not moved. SETSP followed by KRESTSP will set both sp
and ksp. By saving sp beforehand, ksp can be set to the value found in r0 by using the
following code sequence:

LDAWSP r1, sp[0] // Save SP into R1
SETSP r0 // Set SP, and place old SP...
STW r1, sp[0] // ...where KRESTSP expects it
KRESTSP 0 // Set KSP, restore SP

The kernel stack pointer is initialised by the boot-ROM to point to a safe location near the
last location of RAM - the last few locations are used by the JTAG debugging interface.
If debugging is not required, then the KSP can safely be moved to the top of RAM.

The instruction has no operands.

Mnemonic and operands:

GETKSP

Operation:

r11 ← ksp

Encoding:

0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 00r

19 Instruction Details 103

GETN Get network

Gets the network identifier that this channel-end belongs to.

The network identifier is set using SETN.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

GETN d , r

Operation:

d ← netr

Encoding:

1 1 1 1 1 1
0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0

l2r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE d is not referring to a legal channel end, or the channel

end is not in use.

104 The XMOS XS1 Architecture

GETPS Get processor state

Obtains internal processor state; used for low level debugging. The operand is a proces-
sor state resource; the register to be read is encoded in bits 15...8, and bits 7...0 should
contain the resource type associated with processor state.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

GETPS d , r

Operation:

d ← PS[r]

Encoding:

1 1 1 1 1 1
0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0

l2r

Conditions that raise an exception:

ET ILLEGAL PS d is not referring to a legal processor state register

19 Instruction Details 105

GETR Get a resource

Gets a resource of a specific type. This instruction dynamically allocates a resource from
the pools of available resources. Not all resources are dynamically allocated; resources
that refer to physical objects (IO pins, clock blocks) are used without allocating. The
resource types are:

RES TYPE PORT Ports 0 cannot be allocated
RES TYPE TIMER Timers 1
RES TYPE CHANEND Channel ends 2
RES TYPE SYNC Synchronisers 3
RES TYPE THREAD Threads 4
RES TYPE LOCK Lock 5
RES TYPE CLKBLK Clock source 6 cannot be allocated
RES TYPE PS Processor state 11 cannot be allocated
RES TYPE CONFIG Configuration messages 12 cannot be allocated

The returned identifier comprises a 32-bit word, where the most significant 16-bits are
resource specific data, followed by an 8-bit resource counter, and 8-bits resource-type.
The resource specific 16 bits have the following meaning:

Port The width of the port.

Timer Reserved, returned as 0.

Channel end The node id (8-bits) and the core id (8-bits).

Synchroniser Reserved, returned as 0.

Thread Reserved, returned as 0.

Lock Reserved, returned as 0.

Clock source Reserved, should be set to 0.

Processor state Reserved, should be set to 0.

Configuration Reserved, should be set to 0.

If no resource of the requested type is available, then the destination operand is set to
zero, otherwise the destination operand is set to a valid resource id.

106 The XMOS XS1 Architecture

If a channel end is allocated, a local channel end is returned. In order to connect to a
remote channel end, a program normally receives a channel-end over an already con-
nected channel, which is stored using SETD. To connect the first remote channel, a
channel-end identifier can be constructed (by concatenating a node id, core id, channel-
end and the value ’2’).

When allocated, resources are freed using FREER to allow them to be available for
reallocation.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 us An integer in the range 0...11

Mnemonic and operands:

GETR d , us

Operation:

d ← first res ∈ setof (us) : ¬inuseres

inused ← 1

Encoding:

1 0 0 0 0 0rus

19 Instruction Details 107

GETSR Get bits from SR

Get bits from the thread’s Status Register. The mask supplied specifies which bits should
be extracted.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535.
If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

GETSR u16

Operation:

r11 ← sr ∧bit u16

Encoding:

0 1 1 1 1 1 1 1 0 0u6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 1 1 1 1 0 0

lu6

108 The XMOS XS1 Architecture

GETST Get a synchronised thread

Gets a new thread and binds it to a synchroniser. The synchroniser ID is passed as an
operand to this instruction, and the destination register is set to the resulting thread ID.
If no threads are available then the destination register is set to 0.

The thread is started on execution of MSYNC by the master thread.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

GETST d , r

Operation:

d ← first thread ∈ threads : ¬inusethread

inused ← 1
spaused ← spaused ∪ {d}

slavesr ← slavesr ∪ {d}
mstrr ← tid

Encoding:

0 0 0 0 0 12r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not referring to a synchroniser that is in use

19 Instruction Details 109

GETTS Get the time stamp

Gets the time stamp of a port. This is the value of the port timer at which the previous
transfer between the Shift and Transfer registers for input or output occurred. The port
timer counts ticks of the clock associated with this port, and returns a 16-bit value. In
the case of a conditional input, this instruction should be executed between a WAIT and
its associated IN instruction; the value returned by GETTS will be the timestamp of the
data that will be input using the IN instruction.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

GETTS d , r

Operation:

d ← timestampr

Encoding:

0 0 1 1 1 02r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not referring to a port, or the port is not in use.

110 The XMOS XS1 Architecture

IN Input data

Inputs data from a resource (r) into a destination register (d). The precise effect depends
on the resource type:

Port Read data from the port. If the port is buffered, a whole word of data is returned.
If the port is unbuffered, the most significant bits of the data will be set to 0. The
thread pauses if the data is not available.

Timer Reads the current time from the timer, or pauses until after a specific time return-
ing that time.

Channel end Reads Bpw data tokens from the channel, and concatenate them to a
single word of data. The bytes are assumed to be transmitted most significant byte
first. The thread pauses if there are not enough data tokens available.

Lock Lock the resource. The instruction pauses if the lock has been taken by another
thread, and is released when the out is released.

This instruction may pause.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

IN d , r

Operation:

r . d

Encoding:

1 0 1 1 0 02r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not a valid resource, not in use, or it does not support

IN.
ET ILLEGAL RESOURCE r is a channel end which contains a Control Token in the

first 4 tokens in its input buffer.

19 Instruction Details 111

INCT Input control tokens

If the next token on a channel is a control token, then this token is input to the destination
register. If not, the instruction raises an exception.

This instruction pauses if the channel does not have a token of data available to input.

This instruction can be used together with OUTCT in order to implement robust protocols
on channels.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

INCT d , r

Operation:

if hasctoken(r)
then r . d
else raiseexception

Encoding:

1 0 0 0 0 12r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a channel resource, or the resource is

not in use.
ET ILLEGAL RESOURCE r is a channel end which contains a data token in the first

entry in its input buffer.

112 The XMOS XS1 Architecture

INPW Input a part word

Inputs an incomplete word that is stored in the input buffer of a port. Used in conjunction
with ENDIN. ENDIN is used to determine how many bits are left on the port, and this
number is passed to INPW in order to read those remaining bits.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11
op3 bitp A bit position; one of bpw , 1, 2, 3, 4, 5, 6, 7, 8, 16,

24, 32

Mnemonic and operands:

INPW d , r , bitp

Operation:

shiftcountr ← bitp
r . d

Encoding:

1 1 1 1 1

1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0
l2rus

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a port resource, or the resource is not

in use, or bitp is an unsupported width, or the port is not
in BUFFERS mode.

19 Instruction Details 113

INSHR Input and shift right

Inputs a value from a port, and shifts the data read into the most significant bits of the
destination register. The bottom port-width bits of the destination register are lost.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

INSHR d , r

Operation:

r . x
d ← x : d [bpw − 1...portwidthr]

Encoding:

1 0 1 1 0 12r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a port resource, or the resource is not

in use.

114 The XMOS XS1 Architecture

INT Input a token of data

If the next token on a channel is a data token, then this token is input into the destination
register. If not, the instruction raises an exception.

This instruction pauses if the channel does not have a token of data available to input.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

INT d , r

Operation:

if hastoken(r)
then r . d
else raiseexception

Encoding:

1 0 0 0 1 12r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a channel resource, or the resource is

not in use.
ET ILLEGAL RESOURCE r contains a control token in the first entry in its input

buffer.

19 Instruction Details 115

KCALL Kernel call

Performs a kernel call. The program counter, status register and exception data are
stored in save-registers spc, ssr , and sed and the program continues at the kernel entry
point. Similar to exceptions, the program counter that is saved on KCALL is the program
counter of this instruction - hence an kernel call handler using KRET has to adjust spc
prior to returning.

The instruction has one operand:

op1 s Operand register, one of r0...r11

Mnemonic and operands:

KCALL s

Operation:

spc ← pc
ssr ← sr
et ← ET KCALL

sed ← ed
ed ← s
pc ← kep + 64

sr [ink] ← 1
sr [ieble] ← 0

sr [eeble] ← 0

Encoding:

0 1 0 0 0 1 1 1 1 1 1 01r

Conditions that raise an exception:

ET KCALL Kernel call.

116 The XMOS XS1 Architecture

KCALLI Kernel call immediate

Performs a kernel call. The program counter, status register and exception data are
stored in save-registers spc, ssr , and sed and the program continues at the kernel entry
point. Similar to exceptions, the program counter that is saved on KCALL is the program
counter of this instruction - hence an kernel call handler using KRET has to adjust spc
prior to returning.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535.
If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

KCALLI u16

Operation:

spc ← pc
ssr ← sr
et ← ET KCALL

sed ← ed
ed ← u16

pc ← kep + 64
sr [ink] ← 1

sr [ieble] ← 0
sr [eeble] ← 0

Encoding:

0 1 1 1 0 0 1 1 1 1u6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 0 0 1 1 1 1

lu6

Conditions that raise an exception:

ET KCALL Kernel call.

19 Instruction Details 117

KENTSP Switch to kernel stack

Saves the stack pointer on the kernel stack, then sets the stack pointer to the kernel
stack.

KRESTSP is used to use the restore the original stack pointer from the kernel stack.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535.
If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

KENTSP u16

Operation:

mem[ksp] ← sp
sp ← ksp − n × Bpw

Encoding:

0 1 1 1 1 0 1 1 1 0u6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 1 0 1 1 1 0

lu6

Conditions that raise an exception:

ET LOAD STORE Register ksp points to an unaligned address, or does not
point to a valid memory location.

118 The XMOS XS1 Architecture

KRESTSP Restore stack pointer from kernel stack

Restores the stack pointer from the address saved on entry to the kernel by KENTSP.
This instruction is also used to initialise the kernel-stack-pointer.

KENTSP is used to save the stack pointer on entry to the kernel.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535.
If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

KRESTSP u16

Operation:

ksp ← sp + n × Bpw
sp ← mem[ksp]

Encoding:

0 1 1 1 1 0 1 1 1 1u6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 1 0 1 1 1 1

lu6

Conditions that raise an exception:

ET LOAD STORE The indexed address points to an unaligned address, or
the indexed address does not point to a valid memory
location.

19 Instruction Details 119

KRET Kernel Return

Returns from the kernel after an interrupt, kernel call, or exception.

The instruction has no operands.

Mnemonic and operands:

KRET

Operation:

pc ← spc
sr ← ssr
ed ← sed

Encoding:

0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 10r

Conditions that raise an exception:

ET ILLEGAL PC The register spc was not 16-bit aligned or did not point to
a valid memory location.

120 The XMOS XS1 Architecture

LADD Long unsigned add with carry

Adds two unsigned integers and a carry, and produces both the unsigned result and the
possible carry. For this purpose, the instruction has five operands, two registers that
contain the numbers to be added (x and y); the carry which is stored in the last bit of
a third source operand (v); one destination register which is used to store the carry (e),
and a destination register for the sum (d).

The instruction has five operands:

op1 d Operand register, one of r0...r11
op4 e Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11
op5 v Operand register, one of r0...r11

Mnemonic and operands:

LADD d , e, x , y , v

Operation:

d ← r [bpw − 1...0]
e ← r [bpw]

where r ← x + y + v [0]

Encoding:

1 1 1 1 1
0 0 0 0 0 1

l5r

19 Instruction Details 121

LD16S Load signed 16 bits

Loads a signed 16-bit integer from memory extending the sign into the whole word. The
address is computed using a base address (b) and index (i). The base address should
be word-aligned.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 b Operand register, one of r0...r11
op3 i Operand register, one of r0...r11

Mnemonic and operands:

LD16S d , b, i

Operation:

d ← word [bnum + 15] : ... : word [bnum + 15] : word [bnum + 15...bnum]
where ea← b + i × 2

bytenum← ea mod Bpw
bnum← 16× (bytenum ÷ 2)
word ← mem[ea− bytenum]

Encoding:

1 0 0 0 03r

Conditions that raise an exception:

ET LOAD STORE b is not 16-bit aligned (unaligned load), or does not point
to a valid memory location.

122 The XMOS XS1 Architecture

LD8U Load unsigned 8 bits

Loads an unsigned 8-bit value from memory. The address is computed using a base
address (b) and index (i).

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 b Operand register, one of r0...r11
op3 i Operand register, one of r0...r11

Mnemonic and operands:

LD8U d , b, i

Operation:

d ← 0 : ... : 0 : word [bnum + 7...bnum]
where ea← b + i

bytenum← ea mod Bpw
bnum← 8× bytenum
word ← mem[ea− bytenum]

Encoding:

1 0 0 0 13r

Conditions that raise an exception:

ET LOAD STORE The indexed address does not point to a valid memory
location.

19 Instruction Details 123

LDA16B Subtract from 16-bit address

Load effective address for a 16-bit value based on a base-address (b) and an index (i)

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 b Operand register, one of r0...r11
op3 i Operand register, one of r0...r11

Mnemonic and operands:

LDA16B d , b, i

Operation:

d ← b − i × 2

Encoding:

1 1 1 1 1
0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0

l3r

124 The XMOS XS1 Architecture

LDA16F Add to a 16-bit address

Load effective address for a 16-bit value based on a base-address (b) and an index (i)

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 b Operand register, one of r0...r11
op3 i Operand register, one of r0...r11

Mnemonic and operands:

LDA16F d , b, i

Operation:

d ← b + i × 2

Encoding:

1 1 1 1 1
0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0

l3r

19 Instruction Details 125

LDAPB Load backward pc-relative address

Load effective address relative to the program counter. This operation scales the index
(u20) so that it counts 16-bit entities.

The instruction has one operand:

op1 u20 A 20-bit immediate in the range 0...1048575.
If u20 < 1024, the instruction requires no prefix

Mnemonic and operands:

LDAPB u20

Operation:

r11 ← pc − u20 × 2

Encoding:

1 1 0 1 1 1u10

or prefixed for long immediates:

1 1 1 1 0 0

1 1 0 1 1 1
lu10

126 The XMOS XS1 Architecture

LDAPF Load forward pc-relative address

Load effective address relative to the program counter. This operation scales the index
(u20) so that it counts 16-bit entities.

The instruction has one operand:

op1 u20 A 20-bit immediate in the range 0...1048575.
If u20 < 1024, the instruction requires no prefix

Mnemonic and operands:

LDAPF u20

Operation:

r11 ← pc + u20 × 2

Encoding:

1 1 0 1 1 0u10

or prefixed for long immediates:

1 1 1 1 0 0

1 1 0 1 1 0
lu10

19 Instruction Details 127

LDAWB Subtract from word address

Load effective address for word given a base-address (b) and an index (i)

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 b Operand register, one of r0...r11
op3 i Operand register, one of r0...r11

Mnemonic and operands:

LDAWB d , b, i

Operation:

d ← b − i × Bpw

Encoding:

1 1 1 1 1
0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0

l3r

128 The XMOS XS1 Architecture

LDAWBI Subtract from word address immediate

Load effective address for word given a base-address (b) and an index (us)

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 b Operand register, one of r0...r11
op3 us An integer in the range 0...11

Mnemonic and operands:

LDAWBI d , b, us

Operation:

d ← b − us × Bpw

Encoding:

1 1 1 1 1

1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0
l2rus

19 Instruction Details 129

LDAWCP Load address of word in constant pool

Loads the address of a word relative to the constant pointer.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535.
If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

LDAWCP u16

Operation:

r11 ← cp + u16 × Bpw

Encoding:

0 1 1 1 1 1 1 1 0 1u6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 1 1 1 1 0 1

lu6

130 The XMOS XS1 Architecture

LDAWDP Load address of word in data pool

Loads the address of a word relative to the data pointer.

The instruction has two operands:

op1 d Any of r0...r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535.

If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

LDAWDP d , u16

Operation:

d ← dp + u16 × Bpw

Encoding:

0 1 1 0 0 0ru6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 0 0 0

lru6

19 Instruction Details 131

LDAWF Add to a word address

Load effective address for word given a base-address (b) and an index (i).

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 b Operand register, one of r0...r11
op3 i Operand register, one of r0...r11

Mnemonic and operands:

LDAWF d , b, i

Operation:

d ← b + i × Bpw

Encoding:

1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0

l3r

132 The XMOS XS1 Architecture

LDAWFI Add to a word address immediate

Load effective address for word given a base-address (b) and an index (i).

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 b Operand register, one of r0...r11
op3 i An integer in the range 0...11

Mnemonic and operands:

LDAWFI d , b, i

Operation:

d ← b + i × Bpw

Encoding:

1 1 1 1 1

1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0
l2rus

19 Instruction Details 133

LDAWSP Load address of word on stack

Loads the address of a word relative to the stack pointer.

The instruction has two operands:

op1 d Any of r0...r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535.

If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

LDAWSP d , u16

Operation:

d ← sp + u16 × Bpw

Encoding:

0 1 1 0 0 1ru6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 0 0 1

lru6

134 The XMOS XS1 Architecture

LDC Load constant

Load a constant into a register

The instruction has two operands:

op1 d Any of r0...r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535.

If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

LDC d , u16

Operation:

d ← u16

Encoding:

0 1 1 0 1 0ru6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 0 1 0

lru6

19 Instruction Details 135

LDET Load ET from the stack

Restores the value of ET from the stack from offset 4.

The value was typically saved using STET. Together with LDSPC, LDSSR, and LDSED
all or part of the state can be restored.

The instruction has no operands.

Mnemonic and operands:

LDET

Operation:

set ← mem[sp + 4× Bpw]

Encoding:

0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 00r

Conditions that raise an exception:

ET LOAD STORE The indexed address does not point to a valid memory
location.

136 The XMOS XS1 Architecture

LDIVU Long unsigned divide

ONLY AVAILABLE IN REVISION-B

Divides a double word operand by a single word operand. This will result in a single word
quotient and a single word remainder. This instruction has three source operands and
two destination operands. The LDIVU instruction can take up to bpw thread-cycles to
complete; the divide unit is shared between threads.

The operation only works if the division fits in a 32-bit word, that is, if the higher word of
the double word input is less than the divisor. This operation is intended to be used for
the implementation of long division.

The instruction has five operands:

op1 d Operand register, one of r0...r11
op4 e Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11
op5 v Operand register, one of r0...r11

Mnemonic and operands:

LDIVU d , e, x , y , v

Operation:

d ← (v : x)÷ y
e ← (v : x) mod y

Encoding:

1 1 1 1 1
0 0 0 0 0 0

l5r

Conditions that raise an exception:

ET ARITHMETIC y = 0 ∨ v ≥ y .

19 Instruction Details 137

LDSED Load SED from stack

Restores the value of SED from the stack from offset 3.

The value was typically saved using STSED. Together with LDSPC, LDSSR, and LDET
all or part of the state can be restored.

The instruction has no operands.

Mnemonic and operands:

LDSED

Operation:

sed ← mem[sp + 3× Bpw]

Encoding:

0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 10r

Conditions that raise an exception:

ET LOAD STORE The indexed address does not point to a valid memory
location.

138 The XMOS XS1 Architecture

LDSPC Load the SPC from the stack

Restores the value of SPC from the stack from offset 1.

The value was typically saved using STSPC. Together with LDSED, LDSSR, and LDET
all or part of the state can be restored.

The instruction has no operands.

Mnemonic and operands:

LDSPC

Operation:

spc ← mem[sp + 1× Bpw]

Encoding:

0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 00r

Conditions that raise an exception:

ET LOAD STORE The indexed address does not point to a valid memory
location.

19 Instruction Details 139

LDSSR Load SSR from stack

Restores the value of SSR from the stack from offset 2.

The value was typically saved using STSSR. Together with LDSED, LDSED, and LDET
all or part of the state can be restored.

The instruction has no operands.

Mnemonic and operands:

LDSSR

Operation:

ssr ← mem[sp + 2× Bpw]

Encoding:

0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 00r

Conditions that raise an exception:

ET LOAD STORE The indexed address does not point to a valid memory
location.

140 The XMOS XS1 Architecture

LDW Load word

Loads a word from memory, using two registers as a base register and an index register.
The index register is scaled in order to translate the word-index into a byte-index. The
base address must be word-aligned. The immediate version, LDWI, implements a load
from a structured data type; the version with registers only, LDW, implements a load from
an array.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 b Operand register, one of r0...r11
op3 i Operand register, one of r0...r11

Mnemonic and operands:

LDW d , b, i

Operation:

d ← mem[b + i × Bpw]

Encoding:

0 1 0 0 13r

Conditions that raise an exception:

ET LOAD STORE b is not word aligned, or the indexed address does not
point to a valid memory location.

19 Instruction Details 141

LDWI Load word immediate

Loads a word from memory, using two registers as a base register and an index register.
The index register is scaled in order to translate the word-index into a byte-index. The
base address must be word-aligned. The immediate version, LDWI, implements a load
from a structured data type; the version with registers only, LDW, implements a load from
an array.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 b Operand register, one of r0...r11
op3 i An integer in the range 0...11

Mnemonic and operands:

LDWI d , b, i

Operation:

d ← mem[b + i × Bpw]

Encoding:

0 0 0 0 12rus

Conditions that raise an exception:

ET LOAD STORE b is not word aligned, or the indexed address does not
point to a valid memory location.

142 The XMOS XS1 Architecture

LDWCP Load word from constant pool

Loads a word relative to the constant pool pointer.

The instruction has two operands:

op1 d Any of r0...r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535.

If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

LDWCP d , u16

Operation:

d ← mem[cp + u16 × Bpw]

Encoding:

0 1 1 0 1 1ru6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 0 1 1

lru6

Conditions that raise an exception:

ET LOAD STORE cp is not word aligned, or the indexed address does not
point to a valid memory location.

19 Instruction Details 143

LDWCPL Load word from large constant pool

Loads a word relative to the constant pool pointer into R11. The offset can be larger than
the offset specified in LDWCP.

The instruction has one operand:

op1 u20 A 20-bit immediate in the range 0...1048575.
If u20 < 1024, the instruction requires no prefix

Mnemonic and operands:

LDWCPL u20

Operation:

r11 ← mem[cp + u20 × Bpw]

Encoding:

1 1 1 0 0 1u10

or prefixed for long immediates:

1 1 1 1 0 0

1 1 1 0 0 1
lu10

Conditions that raise an exception:

ET LOAD STORE cp is not word aligned, or the indexed address does not
point to a valid memory location.

144 The XMOS XS1 Architecture

LDWDP Load word form data pool

Loads a word relative to the data pointer.

The instruction has two operands:

op1 d Any of r0...r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535.

If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

LDWDP d , u16

Operation:

d ← mem[dp + u16 × Bpw]

Encoding:

0 1 0 1 1 0ru6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 0 1 1 0

lru6

Conditions that raise an exception:

ET LOAD STORE dp is not word aligned, or the indexed address does not
point to a valid memory location.

19 Instruction Details 145

LDWSP Load word from stack

Loads a word relative to the stack pointer.

The instruction has two operands:

op1 d Any of r0...r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535.

If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

LDWSP d , u16

Operation:

d ← mem[sp + u16 × Bpw]

Encoding:

0 1 0 1 1 1ru6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 0 1 1 1

lru6

Conditions that raise an exception:

ET LOAD STORE sp is not word aligned, or the indexed address does not
point to a valid memory location.

146 The XMOS XS1 Architecture

LMUL Long multiply

Multiplies two words to produce a double-word, and adds two single words. Both the
high word and the low word of the result are produced. This multiplication is unsigned
and cannot overflow.

The instruction has six operands:

op1 d Operand register, one of r0...r11
op4 e Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11
op5 v Operand register, one of r0...r11
op6 w Operand register, one of r0...r11

Mnemonic and operands:

LMUL d , e, x , y , v , w

Operation:

e ← r [bpw − 1...0]
d ← r [2bpw − 1...bpw]

where r ← x × y + v + w

Encoding:

1 1 1 1 1
0 0 0 0 0

l6r

19 Instruction Details 147

LSS Less than signed

Tests whether one signed value is less than another signed value. The test result is
produced in the destination register (c) as 1 (true) or 0 (false).

The instruction has three operands:

op1 c Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

LSS c, x , y

Operation:

c ←
{

xsigned < ysigned , 1
xsigned ≥ ysigned , 0

Encoding:

1 1 0 0 03r

148 The XMOS XS1 Architecture

LSU Less than unsigned

Tests whether one unsigned value is less than another unsigned value. The result is
produced in the destination register (c) as 1 (true) or 0 (false). It can be used to perform
efficient bound checks against values in the range 0...(y − 1)

The instruction has three operands:

op1 c Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

LSU c, x , y

Operation:

c ←
{

x < y , 1
x ≥ y , 0

Encoding:

1 1 0 0 13r

19 Instruction Details 149

LSUB Long unsigned subtract

Subtracts unsigned integers and a borrow from an unsigned integer, producing both the
unsigned result and the possible borrow. The instruction has five operands: two registers
that contain the numbers to be subtracted (x and y), the borrow input which is stored in
the last bit of a third source operand (v), one destination register which is used to store
the borrow-out (e), and a destination register for the difference (d).

The instruction has five operands:

op1 d Operand register, one of r0...r11
op4 e Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11
op5 v Operand register, one of r0...r11

Mnemonic and operands:

LSUB d , e, x , y , v

Operation:

d ← r [bpw − 1...0]
e ← r [bpw]

where r ← x − y − v [0]

Encoding:

1 1 1 1 1
0 0 0 0 1 0

l5r

150 The XMOS XS1 Architecture

MACCS Multiply and accumulate signed

ONLY AVAILABLE IN REVISION-B

Multiplies two signed words, and adds the double word result into a signed double word
accumulator. The double word accumulator comprises two registers that are used both
as a source and destination. Two other operands are the values that are to be multiplied.

The instruction has four operands:

op1 d Operand register, one of r0...r11
op4 e Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

MACCS d , e, x , y

Operation:

e ← r [bpw − 1...0]
d ← r [2bpw − 1...bpw]

where r ← ((dsigned : e) + xsigned × ysigned) mod 22bpw

Encoding:

1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 0

l4r

19 Instruction Details 151

MACCU Multiply and accumulate unsigned

ONLY AVAILABLE IN REVISION-B. IN REVISION-A USE MACC h, l , x , y , hi , lo WHICH COM-
PUTES (h : l) = x × y + (hi : lo).

Multiplies two unsigned words, and adds the double word result into an unsigned double
word accumulator. The double word accumulator comprises two registers that are used
both as a source and destination. Two other operands are the values that are to be
multiplied.

MACCU can be used to correct word alignment issues by repeatedly operating on words
of a stream. For example, multiplying with 0x00010000 will result in the high word of the
accumulator to produce the same stream of words offset by half a word.

The instruction has four operands:

op1 d Operand register, one of r0...r11
op4 e Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

MACCU d , e, x , y

Operation:

e ← r [bpw − 1...0]
d ← r [2bpw − 1...bpw]

where r ← ((d : e) + x × y) mod 22bpw

Encoding:

1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1

l4r

152 The XMOS XS1 Architecture

MJOIN Synchronise and join

Synchronises the master thread that executes this instruction with all the slave threads
associated with its synchroniser operand (r), and frees those slave threads when the
synchronisation completes. This is used to end a group of parallel threads. Note this
clears the EEBLE bit. If the ININT bit is set, then MJOIN will not block; MJOIN should
not be used inside an interrupt handler.

The slaves execute an SSYNC instruction to synchronise. The master can execute an
MSYNC instruction to synchronise without freeing the slave threads.

The instruction has one operand:

op1 r Operand register, one of r0...r11

Mnemonic and operands:

MJOIN r

Operation:

sr [eeble]← 0
if (slavesr \ spaused = ∅)
then

forall thread ∈ slavesr : inusethread ← 0
mjoinsyn(tid) ← 0

else
mpaused ← mpaused ∪ {tid}
mjoinr ← 1
msynr ← 1

Encoding:

0 0 0 1 0 1 1 1 1 1 1 11r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not a synchroniser resource, or the resource is not in

use.

19 Instruction Details 153

MKMSK Make n-bit mask

Makes an n-bit mask that can be used to extract a bit field from a word. The resulting
mask consists of s1 bits aligned to the right.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

MKMSK d , s

Operation:

d ←
{

s < bpw , 2s − 1
s ≥ bpw , 1 : 1 : ... : 1

Encoding:

1 0 1 0 0 02r

154 The XMOS XS1 Architecture

MKMSKI Make n-bit mask immediate

Makes an n-bit mask that can be used to extract a bit field from a word. The resulting
mask consists of bitp1 bits aligned to the right.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 bitp A bit position; one of bpw , 1, 2, 3, 4, 5, 6, 7, 8, 16,

24, 32

Mnemonic and operands:

MKMSKI d , bitp

Operation:

d ←
{

bitp < bpw , 2bitp − 1
bitp ≥ bpw , 1 : 1 : ... : 1

Encoding:

1 0 1 0 0 1rus

19 Instruction Details 155

MSYNC Master synchronise

Synchronise a master thread with the slave threads associated with its synchroniser (r).
If the slave threads have just been created (with GETST), then MSYNC starts all slaves.
This clears the EEBLE bit. If the ININT bit is set, then MSYNC will not block; MSYNC
should not be used inside an interrupt handler.

The slaves execute an SSYNC instruction to synchronise. The master can execute an
MJOIN instruction to free the slave threads after synchronisation.

The instruction has one operand:

op1 r Operand register, one of r0...r11

Mnemonic and operands:

MSYNC r

Operation:

sr [eeble]← 0
if (slavesr \ spaused = ∅)
then

spaused ← spaused \ slavesr

else
mpaused ← mpaused ∪ {tid}
msynr ← 1

Encoding:

0 0 0 1 1 1 1 1 1 1 1 11r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not a synchroniser resource, or the resource is not in

use.
ET ILLEGAL PC One or more of the slave threads do not have a legal

program counter.

156 The XMOS XS1 Architecture

MUL Unsigned multiply

Performs a single word unsigned multiply. Any overflow is discarded, and only the last
bpw bits of the result are produced.

If overflow is important, one of the LMUL, MACCU or MACCS instructions should be
used.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

MUL d , x , y

Operation:

d ← (x × y) mod 2bpw

Encoding:

1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0

l3r

19 Instruction Details 157

NEG Two’s complement negate

Performs a signed negation in two’s complement, ie, it computes 0 − s. Overflow is
ignored, ie, Negating −2bpw−1 will produce −2bpw−1.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

NEG d , s

Operation:

dsigned ← 2bpw − s

Encoding:

1 0 0 1 0 02r

158 The XMOS XS1 Architecture

NOT Bitwise not

Produces the bitwise not of its source operand.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

NOT d , s

Operation:

d ← ¬bits;

Encoding:

1 0 0 0 1 02r

19 Instruction Details 159

OR Bitwise or

Produces the bitwise or of its two source operands.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

OR d , x , y

Operation:

d ← x ∨bit y

Encoding:

0 1 0 0 03r

160 The XMOS XS1 Architecture

OUT Output data

Output data to a resource. The precise effect of this instruction depends on the resource:

Port Output a word to the port - if the port is buffered the data will be shifted out piece-
meal, if the port is unbuffered the most significant bits of the data outputted will be
ignored. The instruction pauses if the out data cannot be accepted.

Channel end Output Bpw data tokens to the destination associated with this channel-
end (see SETD) - the most significant byte of the word is output first. The instruc-
tion pauses if the out data cannot be accepted.

Lock Releases the lock.

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

OUT r , s

Operation:

r / s

Encoding:

1 0 1 0 1 0r2r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not a valid resource, not in use, or it does not support

OUT.
ET LINK ERROR r is a channel end, and the destination has not been set.

19 Instruction Details 161

OUTCT Output a control token

Outputs a control token to a channel.

The instruction pauses if the control token cannot be accepted by the channel.

Each OUTCT must have a matching CHKCT or INCT

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

OUTCT r , s

Operation:

r / ctoken(s)

Encoding:

0 1 0 0 1 02r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not a channel end, or not in use.
ET LINK ERROR r is a channel end, and the destination has not been set.
ET LINK ERROR r is a channel end, and the control token is a reserved

hardware token.

162 The XMOS XS1 Architecture

OUTCTI Output a control token immediate

Outputs a control token to a channel.

The instruction pauses if the control token cannot be accepted by the channel.

Each OUTCT must have a matching CHKCT or INCT

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 us An integer in the range 0...11

Mnemonic and operands:

OUTCTI r , us

Operation:

r / ctoken(us)

Encoding:

0 1 0 0 1 1rus

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not a channel end, or not in use.
ET LINK ERROR r is a channel end, and the destination has not been set.
ET LINK ERROR r is a channel end, and the control token is a reserved

hardware token.

19 Instruction Details 163

OUTPW Output a part word

Outputs a partial word to a port. This is useful to send the last few port-widths of data.

The instruction pauses if the out data cannot be accepted.

The instruction has three operands:

op1 s Operand register, one of r0...r11
op2 r Operand register, one of r0...r11
op3 bitp A bit position; one of bpw , 1, 2, 3, 4, 5, 6, 7, 8, 16,

24, 32

Mnemonic and operands:

OUTPW s, r , bitp

Operation:

shiftcountr ← bitp
r / s

Encoding:

1 1 1 1 1

1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1
l2rus

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a port resource, or the resource is not

in use, or bitp is an unsupported width, or the port is not
in BUFFERS mode.

164 The XMOS XS1 Architecture

OUTSHR Output data and shift

Outputs the least significant port-width bits of a register to a port, shifting the register
contents to the right by that number of bits.

The instruction pauses if the out data cannot be accepted.

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 d Operand register, one of r0...r11

Mnemonic and operands:

OUTSHR r , d

Operation:

r / d [portwidthr − 1...0]
d ← 0 : ... : 0 : d [bpw − 1...portwidthr]

Encoding:

1 0 1 0 1 1r2r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a port resource, or the resoruce is not

in use.

19 Instruction Details 165

OUTT Output a token

Output a data token to a channel.

The instruction pauses if the output token cannot be accepted.

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

OUTT r , s

Operation:

r / dtoken(s)

Encoding:

0 0 0 0 1 1r2r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not a channel end or not in use.
ET LINK ERROR r is a channel end, and the destination has not been set.

166 The XMOS XS1 Architecture

PEEK Peek at port data

Looks at the value of the port pins, by-passing all input logic. Peek will not pause.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

PEEK d , r

Operation:

d ← pins(r)

Encoding:

1 0 1 1 1 02r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not a port resource, or the resource is not in use.

19 Instruction Details 167

REMS Signed remainder

Computes a signed integer remainder. The remainder is negative if the dividend is neg-
ative. For example 5 rem 3 is 2, -5 rem 3 is -2, -5 rem -3 is -2, and 5 rem -3 is 2.

This instruction does not execute in a single cycle, and multiple threads may share the
same division unit. The remainder may take up to bpw thread-cycles.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

REMS d , x , y

Operation:

dsigned ← xsigned mod ysigned

Encoding:

1 1 1 1 1

1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0
l3r

Conditions that raise an exception:

ET ARITHMETIC Remainder of X by 0.
ET ARITHMETIC Remainder of −2bpw−1 by −1

168 The XMOS XS1 Architecture

REMU Unsigned remainder

Computes an unsigned integer remainder.

This instruction does not execute in a single cycle, and multiple threads may share the
same division unit. The division may take up to bpw thread-cycles.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

REMU d , x , y

Operation:

d ← x mod y

Encoding:

1 1 1 1 1

1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0
l3r

Conditions that raise an exception:

ET ARITHMETIC Remainder of X by 0.

19 Instruction Details 169

RETSP Return

Returns to the caller of this procedure, and (optionally) adjusts the stack. This instruction
assumes that the return address is stored in LR (where call instructions leave the return
address).

This instruction is used with ENTSP. The BLA, BLACP, BLAT, BLRB and BLRF instruc-
tions perform the opposite of this instruction, calling a procedure.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535.
If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

RETSP u16

Operation:

if u16 > 0 then
sp ← sp + u6× Bpw
lr ← mem[sp]

pc ← lr

Encoding:

0 1 1 1 0 1 1 1 1 1u6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 0 1 1 1 1 1

lu6

Conditions that raise an exception:

ET LOAD STORE Register sp points to an unaligned address, or the in-
dexed address does not point to a valid memory address.

170 The XMOS XS1 Architecture

SETCI Set resource control bits immediate

Sets the resource control bits. The control bits that can be set with SETC are the follow-
ing:

CTRL INUSE OFF 0x0000 CTRL RUN CLRBUF 0x0017
CTRL INUSE ON 0x0008 CTRL MS MASTER 0x1007
CTRL COND NONE 0x0001 CTRL MS SLAVE 0x100f
CTRL COND FULL 0x0001 CTRL BUF NOBUFFERS 0x2007
CTRL COND AFTER 0x0009 CTRL BUF BUFFERS 0x200f
CTRL COND EQ 0x0011 CTRL RDY NOREADY 0x3007
CTRL COND NEQ 0x0019 CTRL RDY STROBED 0x300f
CTRL COND GREATER 0x0021 CTRL RDY HANDSHAKE 0x3017
CTRL COND LESS 0x0029 CTRL SDELAY NOSDELAY 0x4007
CTRL IE MODE EVENT 0x0002 CTRL SDELAY SDELAY 0x400f
CTRL IE MODE INTERRUPT 0x000a CTRL PORT DATAPORT 0x5007
CTRL DRIVE DRIVE 0x0003 CTRL PORT CLOCKPORT 0x500f
CTRL DRIVE PULL DOWN 0x000b CTRL PORT READYPORT 0x5017
CTRL DRIVE PULL UP 0x0013 CTRL INV NOINVERT 0x6007
CTRL RUN STOPR 0x0007 CTRL INV INVERT 0x600f
CTRL RUN STARTR 0x000f

The precise effect depends on the resource type:

Port See the chapter on Ports in the architecture manual for a description of the port
modes.

Timer Only two of the modes, COND AFTER and COND NONE, can be used. When
COND AFTER is set, the next IN operation on this resource will block until the
timer has reached the value set with SETD. Note that any value between the set
time and the set time - 2bpw−1 is accepted for the after condition.

Clock source Only the modes INUSE ON and INUSE OFF can be used - the resource
must be switched on before it is used, and switch off when the program is finished
with it.

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 u16 A 16-bit immediate in the range 0...65535.

If u16 < 64, the instruction requires no prefix

19 Instruction Details 171

Mnemonic and operands:

SETCI r , u16

Operation:

controlr ← u16

Encoding:

1 1 1 0 1 0ru6

or prefixed for long immediates:

1 1 1 1 0 0

1 1 1 0 1 0
lru6

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE op1 is not a valid resource, or the resource is not in use,

or not a resource on which SETC can be used
ET ILLEGAL RESOURCE op2 is not a valid mode, or not a mode that can be used

on op1.

172 The XMOS XS1 Architecture

SETC Set resource control bits

Sets the resource control bits. The control bits that can be set with SETC are the follow-
ing:

CTRL INUSE OFF 0x0000 CTRL RUN CLRBUF 0x0017
CTRL INUSE ON 0x0008 CTRL MS MASTER 0x1007
CTRL COND NONE 0x0001 CTRL MS SLAVE 0x100f
CTRL COND FULL 0x0001 CTRL BUF NOBUFFERS 0x2007
CTRL COND AFTER 0x0009 CTRL BUF BUFFERS 0x200f
CTRL COND EQ 0x0011 CTRL RDY NOREADY 0x3007
CTRL COND NEQ 0x0019 CTRL RDY STROBED 0x300f
CTRL COND GREATER 0x0021 CTRL RDY HANDSHAKE 0x3017
CTRL COND LESS 0x0029 CTRL SDELAY NOSDELAY 0x4007
CTRL IE MODE EVENT 0x0002 CTRL SDELAY SDELAY 0x400f
CTRL IE MODE INTERRUPT 0x000a CTRL PORT DATAPORT 0x5007
CTRL DRIVE DRIVE 0x0003 CTRL PORT CLOCKPORT 0x500f
CTRL DRIVE PULL DOWN 0x000b CTRL PORT READYPORT 0x5017
CTRL DRIVE PULL UP 0x0013 CTRL INV NOINVERT 0x6007
CTRL RUN STOPR 0x0007 CTRL INV INVERT 0x600f
CTRL RUN STARTR 0x000f

The precise effect depends on the resource type:

Port See the chapter on Ports in the architecture manual for a description of the port
modes.

Timer Only two of the modes, COND AFTER and COND NONE, can be used. When
COND AFTER is set, the next IN operation on this resource will block until the
timer has reached the value set with SETD. Note that any value between the set
time and the set time - 2bpw−1 is accepted for the after condition.

Clock source Only the modes INUSE ON and INUSE OFF can be used - the resource
must be switched on before it is used, and switch off when the program is finished
with it.

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

19 Instruction Details 173

Mnemonic and operands:

SETC r , s

Operation:

controlr ← s

Encoding:

1 1 1 1 1 1
0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0

l2r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not a valid resource, or the resource is not in use, or

not a resource on which SETC can be used
ET ILLEGAL RESOURCE s is not a valid mode, or not a mode that can be used on

r .

174 The XMOS XS1 Architecture

SETCLK Set clock for a resource

Sets the clock for a resource. The precise meaning of this instruction depends on the
resource.

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

SETCLK r , s

Operation:

clkr ← s

Encoding:

1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0

lr2r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not a port or clock source resource, or the resource

is not in use.
ET ILLEGAL RESOURCE s is not a port or clock source resource.
ET ILLEGAL RESOURCE r is a running clock-block.

19 Instruction Details 175

SETCP Set constant pool

Sets the base address of the constant pool, held in cp. The value that is written into cp
should be word-aligned, otherwise subsequent loads and stores relative to cp will raise
an exception.

SETCP is used in conjunction with LDWCP and LDAWCP.

The instruction has one operand:

op1 s Operand register, one of r0...r11

Mnemonic and operands:

SETCP s

Operation:

cp ← s

Encoding:

0 0 1 1 0 1 1 1 1 1 1 11r

176 The XMOS XS1 Architecture

SETD Set event data

Sets the contents of the data/dest/divide register of a resource. Its data register is read
using GETD. The way that a resource depends on the data register is resource depen-
dent:

Port specifies the value for the input condition (see SETC)

Timer specifies the value to wait for (see SETC)

Channel end specifies the destination channel for OUT operations. The value written
should be a channel identifier, constructed as specified for GETR.

Clock source specifies the value to divide the clock input by.

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

SETD r , s

Operation:

datar ← s

Encoding:

0 0 0 1 0 1r2r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not a channel, timer, port or clock resource, or the

resource is not in use.
ET ILLEGAL RESOURCE r is a running clock-block.
ET ILLEGAL RESOURCE r is a channel-end, and s is not a channel-end or a con-

figuration resource.

19 Instruction Details 177

SETDP Set the data pointer

Sets the base address of the global data area, held in dp. The value that is written into
dp should be word-aligned, otherwise subsequent loads and stores relative to dp will
raise an exception.

SETDP is used in conjunction with LDWDP, STWDP, and LDAWDP

The instruction has one operand:

op1 s Operand register, one of r0...r11

Mnemonic and operands:

SETDP s

Operation:

dp ← s

Encoding:

0 0 1 1 0 1 1 1 1 1 1 01r

178 The XMOS XS1 Architecture

SETEV Set environment vector

Sets the environment vector related to a resource. When a resource issues an event
to a thread, this environment vector will overwrite ed . SETEV can be used to pass
data specific to a resource to the event handler. SETEV can be used to share a single
handler between multiple resources. The event handlers can be set-up once when all
event handlers are installed.

SETEV is used in conjunction with SETV, and any of the WAITEU instructions.

The instruction has one operand:

op1 r Operand register, one of r0...r11

Mnemonic and operands:

SETEV r

Operation:

evr ← r11

Encoding:

0 0 1 1 1 1 1 1 1 1 1 11r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not a port, timer or channel resource, or the resource

is not in use.

19 Instruction Details 179

SETKEP Set the kernel entry point

Sets the kernel entry point. The kernel entry point should be aligned on a 64-byte bound-
ary.

The instruction has no operands.

Mnemonic and operands:

SETKEP

Operation:

kep ← r11

Encoding:

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 10r

180 The XMOS XS1 Architecture

SETN Set network

Sets the logical network over which a channel should communicate.

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

SETN r , s

Operation:

netr ← s

Encoding:

1 1 1 1 1 0
0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0

lr2r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not a channel end or not in use.

19 Instruction Details 181

SETPS Set processor state

Sets a processor internal register. Only used when configuring the core.

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

SETPS r , s

Operation:

ps[r] ← s

Encoding:

1 1 1 1 1 0
0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0

lr2r

Conditions that raise an exception:

ET ILLEGAL PS s is not referring to a legal processor state register
ET ILLEGAL PS s is not referring to a read-only processor state register
ET ILLEGAL PS s is referring to RAMBASE and r is set to the ROM ad-

dress

182 The XMOS XS1 Architecture

SETPSC Set the port shift count

Sets the port shift count for input and output operations.

OUTPW and INPW can be used instead of a combination of SETPSC and INPW/IN.

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

SETPSC r , s

Operation:

shiftcountr ← s

Encoding:

1 1 0 0 0 0r2r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a port resource, or the resoruce is not

in use.
ET ILLEGAL RESOURCE s is not a valid shift count for the transfer width of the port,

or the port is not in BUFFERED mode.

19 Instruction Details 183

SETPT Set the port time

Specifies the time when the next port input or output will be performed. The time is
specified in terms of the number of edges of the clock associated with this port. The port
timer stores a 16-bit value hence the largest delay is 65535 edges of the port-clock.

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

SETPT r , s

Operation:

porttimerr ← s

Encoding:

0 0 1 1 1 1r2r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a port resource, or the resource is not

in use.

184 The XMOS XS1 Architecture

SETRDY Set ready input for a port

Sets ready input pin to be used by a port for strobing or handshaking.

If r is a clock block, then s should be the 1-bit port to be used as ready input. r should
be associated with a dataport using SETCLK.

Otherwise, if r is a port, then this port should be in mode READY OUT, and s is the data
port from which the ready out will be generated.

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

SETRDY r , s

Operation:

rdyr ← s

Encoding:

1 1 1 1 1 0
0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0

lr2r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a port or clock resource, or the re-

source is not in use.
ET ILLEGAL RESOURCE s is not pointing to a port resource, or the port is not a

1-bit port.

19 Instruction Details 185

SETSP Set the stack pointer

Sets the end address of the stack, held in sp. The value that is written into sp should be
word-aligned, otherwise subsequent loads and stores relative to sp will raise an excep-
tion.

SETSP is used in conjunction with ENTSP, RETSP, LDWSP and STWSP.

The instruction has one operand:

op1 s Operand register, one of r0...r11

Mnemonic and operands:

SETSP s

Operation:

sp ← s

Encoding:

0 0 1 0 1 1 1 1 1 1 1 11r

Conditions that raise an exception:

ET ILLEGAL PC The address was not 16-bit aligned or did not point to a
memory location.

186 The XMOS XS1 Architecture

SETSR Set bits in SR

Set bits in the thread’s Status Register. The mask supplied specifies which bits should
be set. Note that setting the EEBLE bit may cause an event to be issued, causing sub-
sequent instructions to not be executed (since events do not save the program counter).
Setting IEBLE may cause an interrupt to be issued.

CLRSR is used to clear bits in the status register.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535.
If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

SETSR u16

Operation:

sr ← sr ∨bit u16

Encoding:

0 1 1 1 1 0 1 1 0 1u6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 1 1 1 0 1 1 0 1

lu6

19 Instruction Details 187

SETTW Set transfer width for a port

Sets the number of bits that is transferred on an IN or OUT operation on a port that is
buffered. The buffering will shift the data.

The instruction has two operands:

op1 r Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

SETTW r , s

Operation:

transferwidthr ← s

Encoding:

1 1 1 1 1 1
0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0

lr2r

Conditions that raise an exception:

ET ILLEGAL RESOURCE r is not pointing to a port resource, or the port is not in
use.

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE s is not legal width for the port, or the port is not in

BUFFERS mode.

188 The XMOS XS1 Architecture

SETV Set event vector

Sets the vector related to a resource. When a resource issues an event to a thread, this
vector is used to determine which instruction to issue. The vector is typically set up once
when all event handlers are installed. Note that if an illegal vector is supplied, this will
not raise an exception until an actual event is handled.

SETV is used in conjunction with SETEV, and any of the WAITEU instructions.

The instruction has one operand:

op1 r Operand register, one of r0...r11

Mnemonic and operands:

SETV r

Operation:

vr ← r11

Encoding:

0 1 0 0 0 1 1 1 1 1 1 11r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a port, timer or channel resoruce, or

the resource is not in use.

19 Instruction Details 189

SEXT Sign extend an n-bit field

Sign extends an n-bit field stored in a register. The first operand is both a source and
destination operand. The second operand contains the bit position. All bits at a position
higher or equal are set to the value of the bit one position lower. In effect, the lower n
bits are interpreted as a signed integer, and produced in the destination register.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

SEXT d , s

Operation:

d ←
{

s ≤ 0 ∨ s ≥ bpw , d
s > 0 ∧ s < bpw , d [s − 1] : ... : d [s − 1] : d [s − 1...0]

Encoding:

0 0 1 1 0 02r

190 The XMOS XS1 Architecture

SEXTI Sign extend an n-bit field immediate

Sign extends an n-bit field stored in a register. The first operand is both a source and
destination operand. The second operand contains the bit position. All bits at a position
higher or equal are set to the value of the bit one position lower. In effect, the lower n
bits are interpreted as a signed integer, and produced in the destination register.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 bitp A bit position; one of bpw , 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

SEXTI d , bitp

Operation:

d ←
{

bitp ≤ 0 ∨ bitp ≥ bpw , d
bitp > 0 ∧ bitp < bpw , d [bitp − 1] : ... : d [bitp − 1] : d [bitp − 1...0]

Encoding:

0 0 1 1 0 1rus

19 Instruction Details 191

SHL Shift left

Shifts a word left by y bits, filling the least significant y bits with zeros. Shift left multiplies
signed and unsigned integers by 2y .

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

SHL d , x , y

Operation:

d ←
{

y < bpw , x [bpw − y ...0] : 0 : ... : 0
y ≥ bpw , 0

Encoding:

0 0 1 0 03r

192 The XMOS XS1 Architecture

SHLI Shift left immediate

Shifts a word left by bitp bits, filling the least significant bitp bits with zeros. Shift left
multiplies signed and unsigned integers by 2bitp.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 bitp A bit position; one of bpw , 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

SHLI d , x , bitp

Operation:

d ←
{

bitp < bpw , x [bpw − bitp...0] : 0 : ... : 0
bitp ≥ bpw , 0

Encoding:

1 0 1 0 02rus

19 Instruction Details 193

SHR Shift right

Shifts a word right by y positions, filling the most significant y bits with zeros. This
implements an unsigned divide by 2y .

For signed shifts, use ASHR.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

SHR d , x , y

Operation:

d ←
{

y < bpw , 0 : ... : 0 : x [bpw − 1...y]
y ≥ bpw , 0

Encoding:

0 0 1 0 13r

194 The XMOS XS1 Architecture

SHRI Shift right immediate

Shifts a word right by bitp positions, filling the most significant bitp bits with zeros. This
implements an unsigned divide by 2bitp.

For signed shifts, use ASHR.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 bitp A bit position; one of bpw , 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

SHRI d , x , bitp

Operation:

d ←
{

bitp < bpw , 0 : ... : 0 : x [bpw − 1...bitp]
bitp ≥ bpw , 0

Encoding:

1 0 1 0 12rus

19 Instruction Details 195

SSYNC Slave synchronise

Synchronises this thread with all threads associated with a synchroniser. SSYNC is
used together with MSYNC to implement a barrier, or together with MJOIN in order to
terminate a group of processes. SSYNC uses the synchroniser that was used to create
this process in order to establish which other processes to synchronise with.

SSYNC clears the EEBLE bit, disabling any events from being issued; this commits the
thread to synchronising. If the ININT bit is set, then SSYNC will not block; SSYNC should
not be used inside an interrupt handler.

The instruction has no operands.

Mnemonic and operands:

SSYNC

Operation:

sr [eeble]← 0
if (slavessyn(tid) \ spaused = {tid}) ∧msynsyn(tid)

then
if mjoinsyn(tid)

then
forall thread ∈ slavessyn(tid) : inusethread ← 0
mjoinsyn(tid) ← 0

else
spaused ← spaused \ slavessyn(tid)

mpaused ← mpaused \ {mstrsyn(tid)}
msynsyn(tid) ← 0

else
spaused ← spaused ∪ {tid}

Encoding:

0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 00r

196 The XMOS XS1 Architecture

ST16 16-bit store

Stores 16 bits of a register into memory. The least significant 16 bits of the register are
stored into the address computed using a base address (b) and index (i). The base
address should be word-aligned, the index is multiplied by 2.

The instruction has three operands:

op1 s Operand register, one of r0...r11
op2 b Operand register, one of r0...r11
op3 i Operand register, one of r0...r11

Mnemonic and operands:

ST16 s, b, i

Operation:

mem[ea− bytenum][bitnum + 15...bitnum]← s[15...0]
where ea← b + i × 2

bytenum← ea mod Bpw
bitnum← 16× (bytenum ÷ 2)

Encoding:

1 1 1 1 1

1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0
l3r

Conditions that raise an exception:

ET LOAD STORE b is not 16-bit aligned (unaligned load), or does not point
to a valid memory location.

19 Instruction Details 197

ST8 8-bit store

Stores eight bits of a register into memory. The least significant 8 bits of the register are
stored into the address computed using a base address (b) and index (i).

The instruction has three operands:

op1 s Operand register, one of r0...r11
op2 b Operand register, one of r0...r11
op3 i Operand register, one of r0...r11

Mnemonic and operands:

ST8 s, b, i

Operation:

mem[ea− bytenum][bitnum + 7...bitnum]← s
where ea← b + i × 2

bytenum← ea mod Bpw
bitnum← 8× bytenum

Encoding:

1 1 1 1 1

1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0
l3r

Conditions that raise an exception:

ET LOAD STORE The indexed address does not point to a valid memory
location.

198 The XMOS XS1 Architecture

STET Store ET on the stack

Stores the value of ET on the stack at offset 4.

The value can be restored using LDET. Together with STSPC, STSSR, and STSED all
or part of the state copied during an interrupt can be placed on the stack.

The instruction has no operands.

Mnemonic and operands:

STET

Operation:

mem[sp + 4× Bpw] ← set

Encoding:

0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 10r

Conditions that raise an exception:

ET LOAD STORE The indexed address does not point to a valid memory
location.

19 Instruction Details 199

STSED Store SED on the stack

Stores the value of SED on the stack at offset 3.

The value can be restored using LDSED. Together with STSPC, STSSR, and STET all
or part of the state copied during an interrupt can be placed on the stack.

The instruction has no operands.

Mnemonic and operands:

STSED

Operation:

mem[sp + 3× Bpw] ← sed

Encoding:

0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 00r

Conditions that raise an exception:

ET LOAD STORE The indexed address does not point to a valid memory
location.

200 The XMOS XS1 Architecture

STSPC Store SPC on the stack

Stores the value of SPC on the stack at offset 1.

The value can be restored using LDSPC. Together with STET, STSSR, and STSED all
or part of the state copied during an interrupt can be placed on the stack.

The instruction has no operands.

Mnemonic and operands:

STSPC

Operation:

mem[sp + 1× Bpw] ← spc

Encoding:

0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 10r

Conditions that raise an exception:

ET LOAD STORE The indexed address does not point to a valid memory
location.

19 Instruction Details 201

STSSR Store the SSR to the stack

Stores the value of SSR on the stack at offset 2.

The value can be restored using LDSSR. Together with STET, STSPC, and STSED all
or part of the state copied during an interrupt can be placed on the stack.

The instruction has no operands.

Mnemonic and operands:

STSSR

Operation:

mem[sp + 2× Bpw] ← ssr

Encoding:

0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 10r

Conditions that raise an exception:

ET LOAD STORE The indexed address does not point to a valid memory
location.

202 The XMOS XS1 Architecture

STW Store word

Stores a word in memory, at a location specified by a base address and an index. The
index is multiplied by the size of a word, the base address must be word aligned.

The immediate version, STWI, implements a store into a structured data type, the version
with registers only, STW, implements a store into an array.

The instruction has three operands:

op1 s Operand register, one of r0...r11
op2 b Operand register, one of r0...r11
op3 i Operand register, one of r0...r11

Mnemonic and operands:

STW s, b, i

Operation:

mem[b + i × Bpw] ← s

Encoding:

1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0

l3r

Conditions that raise an exception:

ET LOAD STORE b is not word aligned, or the indexed address does not
point to a valid memory location.

19 Instruction Details 203

STWI Store word immediate

Stores a word in memory, at a location specified by a base address and an index. The
index is multiplied by the size of a word, the base address must be word aligned.

The immediate version, STWI, implements a store into a structured data type, the version
with registers only, STW, implements a store into an array.

The instruction has three operands:

op1 s Operand register, one of r0...r11
op2 b Operand register, one of r0...r11
op3 i An integer in the range 0...11

Mnemonic and operands:

STWI s, b, i

Operation:

mem[b + i × Bpw] ← s

Encoding:

0 0 0 0 02rus

Conditions that raise an exception:

ET LOAD STORE b is not word aligned, or the indexed address does not
point to a valid memory location.

204 The XMOS XS1 Architecture

STWDP Store word in data pool

Stores a word in the data area, using a constant offset from the data pointer. The offset
is specified in words. STWDP can be used to write to global variables.

The instruction has two operands:

op1 s Any of r0...r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535.

If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

STWDP s, u16

Operation:

mem[dp + u16 × Bpw] ← s

Encoding:

0 1 0 1 0 0ru6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 0 1 0 0

lru6

Conditions that raise an exception:

ET LOAD STORE dp is not word aligned, or the indexed address does not
point to a valid memory location.

19 Instruction Details 205

STWSP Store word on stack

Stores a word on the stack, using a constant offset from the stack pointer. The offset is
specified in words. STWSP used to write to stack variables.

The instruction has two operands:

op1 s Any of r0...r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535.

If u16 < 64, the instruction requires no prefix

Mnemonic and operands:

STWSP s, u16

Operation:

mem[sp + u16 × Bpw] ← s

Encoding:

0 1 0 1 0 1ru6

or prefixed for long immediates:

1 1 1 1 0 0
0 1 0 1 0 1

lru6

Conditions that raise an exception:

ET LOAD STORE sp is not word aligned, or the indexed address does not
point to a valid memory location.

206 The XMOS XS1 Architecture

SUB Integer unsigned subtraction

Computes the difference between two words. No check on overflow is performed, and
the result is produced modulo 2bpw .

If a borrow is required, then the LSUB instruction should be used. LSU and LSS should
be used to compare signed and unsigned integers.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

SUB d , x , y

Operation:

d ← (2bpw + x − y) mod 2bpw

Encoding:

0 0 0 1 13r

19 Instruction Details 207

SUBI Integer unsigned subtraction immediate

Computes the difference between two words. No check on overflow is performed, and
the result is produced modulo 2bpw .

If a borrow is required, then the LSUB instruction should be used. LSU and LSS should
be used to compare signed and unsigned integers.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 us An integer in the range 0...11

Mnemonic and operands:

SUBI d , x , us

Operation:

d ← (2bpw + x − us) mod 2bpw

Encoding:

1 0 0 1 12rus

208 The XMOS XS1 Architecture

SYNCR Synchronise a resource

Synchronise with a port to ensure all data has been output. This instruction completes
once all data has been shifted out of the port, and the last port width of data has been
held for one clock period.

The instruction has one operand:

op1 r Operand register, one of r0...r11

Mnemonic and operands:

SYNCR r

Operation:

syncr (r)

Encoding:

1 0 0 0 0 1 1 1 1 1 1 11r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not a port resource, or the resource is not in use.

19 Instruction Details 209

TESTLCL Test local

Tests if a channel end is connected to a local channel end or to a remote channel end. It
produces 1 (true) in the destination register if the channel end is local, and 0 (false) if the
channel end is remote. The instruction will raise an exception if the resource supplied is
not a channel end or an unconnected channel end.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

TESTLCLd , r

Operation:

d ←
{

dr [bpw − 1..16] = r [bpw − 1..16], 1
dr [bpw − 1..16] 6= r [bpw − 1..16], 0

Encoding:

1 1 1 1 1 0
0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0

l2r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a channel resource, or the resource is

not in use.
ET ILLEGAL RESOURCE r is a channel end, and the destination has not been set.

210 The XMOS XS1 Architecture

TESTCT Test for control token

Test whether the next token on a channel (r) is a control token. If the channel contains
a control token, then 1 (true) will be produced in the destination register, otherwise 0
(false) will be produced.

This instruction pauses if the channel does not have a token available to be read.

In contrast to CHKCT this test does not trap, and does not discard the control token.
TESTCT can be used to implement complex protocols over channels.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

TESTCT d , r

Operation:

d ←
{

hasctoken(r), 1
¬hasctoken(r), 0

Encoding:

1 0 1 1 1 12r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a channel resource, or the resource is

not in use.

19 Instruction Details 211

TESTWCT Test for position of control token

Test whether the next word contains a control token, and produces the position (1-4) of
the first control token in the word, or 0 if it contains no control tokens.

This instruction pauses if the channel has not received enough tokens to determine
what value to return. So if less than four tokens have been received, but one of them is
a control token, the instruction will not pause.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 r Operand register, one of r0...r11

Mnemonic and operands:

TESTWCT d , r

Operation:

d ←

¬hasctoken(r), 0
firsttokenisctoken, 1
secondtokenisctoken, 2
thirdtokenisctoken, 3
fourthtokenisctoken, 4

Encoding:

1 1 0 0 0 12r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE r is not pointing to a channel resource, or the resource is

not in use.

212 The XMOS XS1 Architecture

TINITCP Initialise a thread’s CP

Sets the constant pool pointer for a specific thread. This operation may be used after a
thread has been allocated (using GETST or GETR), but prior to the thread starting its
execution.

The instruction has two operands:

op1 s Operand register, one of r0...r11
op2 t Operand register, one of r0...r11

Mnemonic and operands:

TINITCP s, t

Operation:

cps ← t

Encoding:

0 0 0 1 1 02r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE t is not pointing to a thread resource, or the thread is not

in use, or the thread is not SSYNC.

19 Instruction Details 213

TINITDP Initialise a thread’s DP

Sets the data pointer for a specific thread. This operation may be used after a thread has
been allocated (using GETST or GETR), but prior to the thread starting its execution.

The instruction has two operands:

op1 s Operand register, one of r0...r11
op2 t Operand register, one of r0...r11

Mnemonic and operands:

TINITDP s, t

Operation:

dps ← t

Encoding:

0 0 0 0 1 02r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE t is not pointing to a thread resource, or the thread is not

in use, or the thread is not SSYNC.

214 The XMOS XS1 Architecture

TINITLR Initialise a thread’s LR

Sets the link register for a specific thread. This operation may be used after a thread has
been allocated (using GETST or GETR), but prior to the thread starting its execution.

The instruction has two operands:

op1 s Operand register, one of r0...r11
op2 t Operand register, one of r0...r11

Mnemonic and operands:

TINITLR s, t

Operation:

lrs ← t

Encoding:

1 1 1 1 1 0
0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0

l2r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE t is not pointing to a thread resource, or the thread is not

in use, or the thread is not SSYNC.

19 Instruction Details 215

TINITPC Initialise a thread’s PC

Sets the program counter for a specific thread. This operation may be used after a thread
has been allocated (using GETST or GETR), but prior to the thread starting its execution.

The instruction has two operands:

op1 s Operand register, one of r0...r11
op2 t Operand register, one of r0...r11

Mnemonic and operands:

TINITPC s, t

Operation:

pcs ← t

Encoding:

0 0 0 0 0 02r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE t is not pointing to a thread resource, or the thread is not

in use, or the thread is not SSYNC.

216 The XMOS XS1 Architecture

TINITSP Initialise a thread’s SP

Sets the stack pointer for a specific thread. This operation may be used after a thread
has been allocated (using GETST or GETR), but prior to the thread starting its execution.

The instruction has two operands:

op1 s Operand register, one of r0...r11
op2 t Operand register, one of r0...r11

Mnemonic and operands:

TINITSP s, t

Operation:

sps ← t

Encoding:

0 0 0 1 0 02r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE t is not pointing to a thread resource, or the thread is not

in use, or the thread is not SSYNC.

19 Instruction Details 217

TSETMR Set the master’s register

Writes data to a register of the master thread. This instruction should be used with care,
and only when the other thread is known to be not using that register. Typically used to
transfer results from a slave thread back to the master prior to a MJOIN.

TSETMR uses the synchroniser that was used to create this process in order to establish
which thread’s register to write to.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

TSETMR d , s

Operation:

mtidd ← s

Encoding:

0 0 0 1 1 12r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE Master thread is not in use.

218 The XMOS XS1 Architecture

TSETR Set register in thread

Writes data to a register of another thread. This instruction should be used with care,
and only when the other thread is known to be not using that register.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 s Operand register, one of r0...r11
op3 t Operand register, one of r0...r11

Mnemonic and operands:

TSETR d , s, t

Operation:

dt ← s

Encoding:

1 0 1 1 13r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE t is not pointing to a thread resource, or the thread is not

in use.

19 Instruction Details 219

TSTART Start thread

Starts an unsynchronised thread. An unsynchronised thread runs independently from
the starting thread.

The unsynchronised thread must have been allocated with GETR, and the program
counter should have been initialised with TINITPC.

The instruction has one operand:

op1 t Operand register, one of r0...r11

Mnemonic and operands:

TSTART t

Operation:

spaused ← spaused \ {t}
waitingt ← 0

Encoding:

0 0 0 1 1 1 1 1 1 1 1 01r

Conditions that raise an exception:

ET RESOURCE DEP Resource illegally shared between threads
ET ILLEGAL RESOURCE t is not pointing to a thread, or the thread is not in use, or

the thread is not SSYNC.
ET ILLEGAL PC Thread t does not have a legal program counter.

220 The XMOS XS1 Architecture

WAITEF If false wait for event

Waits for an event when a condition is false. If the condition is 0 (false), then the EEBLE
is set, and, if no event is ready it will suspend the thread until an event becomes ready.
When an event is available, the thread will continue at the address specified by the event.
If the condition is not 0, the next instruction will be executed. The current PC is not saved
anywhere.

The instruction has one operand:

op1 c Operand register, one of r0...r11

Mnemonic and operands:

WAITEF c

Operation:

if c = 0 then srtid [eeble]← 1

Encoding:

0 0 0 0 1 1 1 1 1 1 1 11r

19 Instruction Details 221

WAITET If true wait for event

Waits for an event when a condition is true. If the condition not 0, then the EEBLE is set,
and, if no event is ready it will suspend the thread until an event becomes ready. When
an event is available, the thread will continue at the address specified by the event. If the
condition is 0 (false), the next instruction will be executed. The current PC is not saved
anywhere.

The instruction has one operand:

op1 c Operand register, one of r0...r11

Mnemonic and operands:

WAITET c

Operation:

if c 6= 0 then srtid [eeble]← 1

Encoding:

0 0 0 0 1 1 1 1 1 1 1 01r

222 The XMOS XS1 Architecture

WAITEU Wait for event

Waits for an event. This instruction sets EEBLE and, if no event is ready it will suspend
the thread until an event becomes ready. When an event is available, the thread will
continue at the address specified by the event. The current PC is not saved anywhere.

The instruction has no operands.

Mnemonic and operands:

WAITEU

Operation:

srtid [eeble] ← 1

Encoding:

0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 00r

19 Instruction Details 223

XOR Bitwise exclusive or

Produces the bitwise exclusive-or of two words.

The instruction has three operands:

op1 d Operand register, one of r0...r11
op2 x Operand register, one of r0...r11
op3 y Operand register, one of r0...r11

Mnemonic and operands:

XOR d , x , y

Operation:

d ← x ⊕bit y

Encoding:

1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0

l3r

224 The XMOS XS1 Architecture

ZEXT Zero extend

Zero extends an n-bit field stored in a register. The first operand of this instruction is both
a source and destination operand. The second operand contains the bit position. All bits
at a position higher or equal are cleared.

The instruction has two operands:

op1 d Operand register, one of r0...r11
op2 s Operand register, one of r0...r11

Mnemonic and operands:

ZEXT d , s

Operation:

d ←
{

s ≤ 0 ∨ s ≥ bpw , d
s > 0 ∧ s < bpw , 0 : ... : 0 : d [s − 1...0]

Encoding:

0 1 0 0 0 02r

19 Instruction Details 225

ZEXTI Zero extend immediate

Zero extends an n-bit field stored in a register. The first operand of this instruction is both
a source and destination operand. The second operand contains the bit position. All bits
at a position higher or equal are cleared.

The instruction has two operands:

op1 s Operand register, one of r0...r11
op2 bitp A bit position; one of bpw , 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32

Mnemonic and operands:

ZEXTI s, bitp

Operation:

s ←
{

bitp ≤ 0 ∨ bitp ≥ bpw , s
bitp > 0 ∧ bitp < bpw , 0 : ... : 0 : s[bitp − 1...0]

Encoding:

0 1 0 0 0 1rus

226 The XMOS XS1 Architecture

19.2 Instruction Format Specification

This chapter presents the instruction-formats. For each instruction format there is a
name, a short description of its purpose, then a graphical representation of the encoding,
and finally a list of instructions that use this instruction encoding.

The graphical representation comprises two or four bytes, presented as one or two
groups of 16 bits. For each of them, bits are numbered from 15 down to 0. If a bit
value depends on the opcode, then this is marked with a “×” symbol. If a bit value
depends on an operand this is marked with a “·”, and the particular encoding for that
operand is shown underneath. Otherwise, the bit will have a value of 0 or 1, in order to
differentiate between formats.

All “long” formats comprise either a prefix instruction to specify an extra 10 bits of im-
mediate operand and a prefixable instruction, or they comprise two instruction words
allowing instructions with up to six operands to be represented.

19 Instruction Details 227

Three register 3r

Instructions with three operand registers; the last two operands are always source reg-
isters, the first operand is always a destination register

The syntax for this instruction is:

MNEMONIC op1, op2, op3

Instructions in this format are encoded in one word:

×××××

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9 + op2[3...2]× 3 + op3[3..2]

Opcode

This format is used by the following instructions:

ADD LDW SHR
AND LSS SUB
EQ LSU TSETR
LD16S OR
LD8U SHL

228 The XMOS XS1 Architecture

Three register long l3r

Instructions with three operand registers; the last two operands are always source operands,
the first operand usually refers to the destination register (with the exception of store in-
struction)

The syntax for this instruction is:

MNEMONIC op1, op2, op3

Instructions in this format are encoded in two words:

××××× 1 1 1 1 1 1 0 ××××
Opcode

Opcode

1 1 1 1 1

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9 + op2[3...2]× 3 + op3[3..2]

This format is used by the following instructions:

ASHR LDA16F REMU
CRC LDAWB ST16
DIVS LDAWF ST8
DIVU MUL STW
LDA16B REMS XOR

19 Instruction Details 229

Two register with immediate 2rus

Instructions with three operands. The last operand is a small unsigned constant (0..11),
the second operand is a source register, the first operand is either a destination register,
or a second source register in the case of memory-store operations.

The syntax for this instruction is:

MNEMONIC op1, op2, op3

Instructions in this format are encoded in one word:

×××××

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9 + op2[3...2]× 3 + op3[3..2]

Opcode

This format is used by the following instructions:

ADDI SHLI SUBI
EQI SHRI
LDWI STWI

230 The XMOS XS1 Architecture

Two register with immediate long l2rus

Instructions with three operands. The last operand is a small unsigned constant (0..11),
the second operand is a source register, the first operand is either a destination register,
or a second source register in the case of some resource operations.

The syntax for this instruction is:

MNEMONIC op1, op2, op3

Instructions in this format are encoded in two words:

××××× 1 1 1 1 1 1 0 ××××
Opcode

Opcode

1 1 1 1 1

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9 + op2[3...2]× 3 + op3[3..2]

This format is used by the following instructions:

ASHRI LDAWBI OUTPW
INPW LDAWFI

19 Instruction Details 231

Register with 6-bit immediate ru6

Instructions with two operands where the first operand is a register and the second
operand is a 6-bit integer constant. This format used, amongst others, for load and
store operations relative to the stack pointer and data pointer.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in one word:

××××××

op2[5...0]

op1[3...0]

Opcode

Opcode

This format is used by the following instructions:

BRBF LDAWSP SETCI
BRBT LDC STWDP
BRFF LDWCP STWSP
BRFT LDWDP
LDAWDP LDWSP

232 The XMOS XS1 Architecture

Register with 16-bit immediate lru6

Instructions with two operands where the first operand is a register and the second
operand is a 16-bit integer constant. This instruction is a prefixed version of ru6. This
format is used, amongst others, for load and store operations relative to the stack pointer
and data pointer.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in two words:

××××××

op2[5...0]

op1[3...0]

Opcode

Opcode

1 1 1 1 0 0

op2[15...6]

This format is used by the following instructions:

BRBF LDAWSP SETCI
BRBT LDC STWDP
BRFF LDWCP STWSP
BRFT LDWDP
LDAWDP LDWSP

19 Instruction Details 233

6-bit immediate u6

Instructions with a single operand encoding a 6-bit integer.

The syntax for this instruction is:

MNEMONIC op1

Instructions in this format are encoded in one word:

××××××××××

op1[5...0]

Opcode

Opcode

Opcode

This format is used by the following instructions:

BLAT EXTDP KRESTSP
BRBU EXTSP LDAWCP
BRFU GETSR RETSP
CLRSR KCALLI SETSR
ENTSP KENTSP

234 The XMOS XS1 Architecture

16-bit immediate lu6

Instructions with a single operand encoding a 16-bit integer. This instruction is a prefixed
version of u6.

The syntax for this instruction is:

MNEMONIC op1

Instructions in this format are encoded in two words:

××××××××××

op1[5...0]

Opcode

Opcode

Opcode

1 1 1 1 0 0

op1[15...6]

This format is used by the following instructions:

BLAT EXTDP KRESTSP
BRBU EXTSP LDAWCP
BRFU GETSR RETSP
CLRSR KCALLI SETSR
ENTSP KENTSP

19 Instruction Details 235

10-bit immediate u10

Instructions with a single operand encoding a 10-bit integer.

The syntax for this instruction is:

MNEMONIC op1

Instructions in this format are encoded in one word:

××××××

op1[9...0]

Opcode

Opcode

This format is used by the following instructions:

BLACP BLRF LDAPF
BLRB LDAPB LDWCPL

236 The XMOS XS1 Architecture

20-bit immediate lu10

Instructions with a single operand encoding a 20-bit integer. This instruction is a prefixed
version of u10.

The syntax for this instruction is:

MNEMONIC op1

Instructions in this format are encoded in two words:

××××××

op1[9...0]

Opcode

Opcode

1 1 1 1 0 0

op1[19...10]

This format is used by the following instructions:

BLACP BLRF LDAPF
BLRB LDAPB LDWCPL

19 Instruction Details 237

Two register 2r

Instructions with two operand registers; the last operand is always a source register, the
first operand maybe a destination register.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in one word:

××××× ×

op2[1...0]

op1[1...0]

Opcode

(op1[3...2]× 3 + op2[3...2] + 27)[5]

(op1[3...2]× 3 + op2[3...2] + 27)[4...0]

Opcode

This format is used by the following instructions:

ANDNOT INSHR TESTWCT
CHKCT INT TINITCP
EEF MKMSK TINITDP
EET NEG TINITPC
ENDIN NOT TINITSP
GETST OUTCT TSETMR
GETTS PEEK ZEXT
IN SEXT
INCT TESTCT

238 The XMOS XS1 Architecture

Two register reversed r2r

Instructions with two operand registers used for resources; the first operand is always a
source register containing the resource to operate on, the last operand maybe a desti-
nation register.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in one word:

××××× ×

op1[1...0]

op2[1...0]

Opcode

(op2[3...2]× 3 + op1[3...2] + 27)[5]

(op2[3...2]× 3 + op1[3...2] + 27)[4...0]

Opcode

This format is used by the following instructions:

OUT OUTT SETPSC
OUTSHR SETD SETPT

19 Instruction Details 239

Two register long l2r

Instructions with two operand registers; the last operand is always a source register, the
first operand maybe a destination register.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in two words:

××××× 1 1 1 1 1 1 0 ××××
Opcode

Opcode

1 1 1 1 1 ×

op2[1...0]

op1[1...0]

Opcode

(op1[3...2]× 3 + op2[3...2] + 27)[5]

(op1[3...2]× 3 + op2[3...2] + 27)[4...0]

This format is used by the following instructions:

BITREV GETD SETC
BYTEREV GETN TESTLCL
CLZ GETPS TINITLR

240 The XMOS XS1 Architecture

Two register reversed long lr2r

Instructions with two operand registers; the first operand is always a source register
containing a resource identifier, the last operand maybe a destination register.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in two words:

××××× 1 1 1 1 1 1 0 ××××
Opcode

Opcode

1 1 1 1 1 ×

op1[1...0]

op2[1...0]

Opcode

(op2[3...2]× 3 + op1[3...2] + 27)[5]

(op2[3...2]× 3 + op1[3...2] + 27)[4...0]

This format is used by the following instructions:

SETCLK SETPS SETTW
SETN SETRDY

19 Instruction Details 241

Register with immediate rus

Instructions with two operands. The last operand is a small constant (0..11). The first
operand is a register that may be used as source and or destination.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in one word:

××××× ×

op2[1...0]

op1[1...0]

Opcode

(op1[3...2]× 3 + op2[3...2] + 27)[5]

(op1[3...2]× 3 + op2[3...2] + 27)[4...0]

Opcode

This format is used by the following instructions:

CHKCTI MKMSKI SEXTI
GETR OUTCTI ZEXTI

242 The XMOS XS1 Architecture

Register 1r

Instructions with one operand register.

The syntax for this instruction is:

MNEMONIC op1

Instructions in this format are encoded in one word:

××××× 1 1 1 1 1 1 ×

op1[3...0]

Opcode

Opcode

This format is used by the following instructions:

BAU EEU SETSP
BLA FREER SETV
BRU KCALL SYNCR
CLRPT MJOIN TSTART
DGETREG MSYNC WAITEF
ECALLF SETCP WAITET
ECALLT SETDP
EDU SETEV

19 Instruction Details 243

No operands 0r

These instructions operate on implicit operands.

The syntax for this instruction is:

MNEMONIC

Instructions in this format are encoded in one word:

××××× 1 1 1 1 1 1 ×××××
Opcode

Opcode

Opcode

This format is used by the following instructions:

CLRE GETID SETKEP
DCALL GETKEP SSYNC
DENTSP GETKSP STET
DRESTSP KRET STSED
DRET LDET STSPC
FREET LDSED STSSR
GETED LDSPC WAITEU
GETET LDSSR

244 The XMOS XS1 Architecture

Four register long l4r

Operations on four registers - the last two operands are source registers, the first two
may be used as source and or destination registers.

The syntax for this instruction is:

MNEMONIC op1, op4, op2, op3

Instructions in this format are encoded in two words:

××××× 1 1 1 1 1 1 ×

op4[3...0]

Opcode

Opcode

1 1 1 1 1

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9 + op2[3...2]× 3 + op3[3..2]

This format is used by the following instructions:

CRC8 MACCS MACCU

19 Instruction Details 245

Five register long l5r

Operations on five registers - the last three operands are source registers, the first two
may be used as source and or destination registers.

The syntax for this instruction is:

MNEMONIC op1, op4, op2, op3, op5

Instructions in this format are encoded in two words:

××××× ×

op5[1...0]

op4[1...0]

Opcode

(op4[3...2]× 3 + op5[3...2] + 27)[5]

(op4[3...2]× 3 + op5[3...2] + 27)[4...0]

Opcode

1 1 1 1 1

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9 + op2[3...2]× 3 + op3[3..2]

This format is used by the following instructions:

LADD LDIVU LSUB

246 The XMOS XS1 Architecture

Six register long l6r

Operations on six registers - the last four operands are source registers, the first two
may be used as source and or destination registers.

The syntax for this instruction is:

MNEMONIC op1, op4, op2, op3, op5, op6

Instructions in this format are encoded in two words:

×××××

op6[1...0]

op5[1...0]

op4[1...0]

op4[3...2]× 9 + op5[3...2]× 3 + op6[3..2]

Opcode

1 1 1 1 1

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9 + op2[3...2]× 3 + op3[3..2]

This format is used by the following instructions:

LMUL

19 Instruction Details 247

19.3 Exceptions

Exceptions change the normal flow of control on an XS1; they may be caused by inter-
rupts, errors arising during instruction execution and by system calls. On an exception,
the processor will save the pc and sr in spc and ssr , disable events and interrupts, and
start executing an exception handler. The program counter that is saved normally points
to the instruction that raised the exception. Two registers are also set. The exception-
data (ed) and exception-type (et) will be set to reflect the cause of the exception. The
exception handler can choose how to deal with the exception.

The different types of exception are listed in this section, together with their representa-
tion, their meaning, and the instructions that may cause them.

248 The XMOS XS1 Architecture

ET LINK ERROR 1

A reserved hardware control token was output to a channel end. Alternatively, a channel
end was used to transmit data without its destination being set first.

When ET LINK ERROR is raised:

• et will be set to 1.

• ed will be set to the resource ID of the channel end which generated the exception.

This exception may be raised by the following instructions:

OUT OUTCT OUTT

19 Instruction Details 249

ET ILLEGAL PC 2

The program counter points to a position that could not be accessed, for example, be-
yond the end of memory, or a non 16-bit aligned memory location.

This exception is raised on dispatch of the instruction corresponding to the illegal pro-
gram counter. The program counter that is saved in spc is the illegal program counter;
the memory address of the instruction that caused the program counter to become il-
legal is not known. Note that this exception could be caused by, for example, loading
a resource with an illegal vector (SETV), but that this will not be known until an event
happens.

When ET ILLEGAL PC is raised:

• et will be set to 2.

• ed will be set to the PC which generated the exception.

This exception may be raised by the following instructions:

BAU BRBF BRU
BLA BRBT DRET
BLACP BRBU KRET
BLAT BRFF MSYNC
BLRB BRFT SETSP
BLRF BRFU TSTART

250 The XMOS XS1 Architecture

ET ILLEGAL INSTRUCTION 3

A 16-bit/32-bit word was encountered that could not be decoded. This typically indicates
that the program counter was incorrect and addresses data memory. Alternatively, a
binary is executed that was not compiled for this device.

When ET ILLEGAL INSTRUCTION is raised:

• et will be set to 3.

• ed will be set to 0.

This exception may be raised by the following instructions:

DENTSP DRESTSP
DGETREG DRET

19 Instruction Details 251

ET ILLEGAL RESOURCE 4

A resource operation was performed and failed because either the resource identifier
supplied was not a valid resource, it was not allocated, or the operation was not legal on
that resource.

When ET ILLEGAL RESOURCE is raised:

• et will be set to 4.

• ed will be set to the resource identifier passed to the instruction.

This exception may be raised by the following instructions:

CHKCT INT SETRDY
CLRPT MJOIN SETTW
EDU MSYNC SETV
EEF OUT SYNCR
EET OUTCT TESTLCL
EEU OUTPW TESTCT
ENDIN OUTSHR TESTWCT
FREER OUTT TINITCP
GETD PEEK TINITDP
GETN SETC TINITLR
GETST SETCLK TINITPC
GETTS SETD TINITSP
IN SETEV TSETMR
INCT SETN TSETR
INPW SETPSC TSTART
INSHR SETPT

252 The XMOS XS1 Architecture

ET LOAD STORE 5

A memory operation was performed that was not properly aligned. This could be a word
load or word store to an address where the least significant log2 Bpw bits were not zero,
or access to a 16-bit number using LD16S or ST16 where the least significant bit of the
address was one.

Many load and store operations multiply their operand by Bpw in order to increase the
density of the encoding; even though this part of the address is guaranteed to be aligned,
it is possible for one of sp, cp, or dp to be unaligned, causing any subsequent load or
store which uses them to fail.

When ET LOAD STORE is raised:

• et will be set to 5.

• ed will be set to the load or store address which generated the exception.

This exception may be raised by the following instructions:

BLACP LDSPC ST8
BLAT LDSSR STET
ENTSP LDW STSED
KENTSP LDWCP STSPC
KRESTSP LDWCPL STSSR
LD16S LDWDP STW
LD8U LDWSP STWDP
LDET RETSP STWSP
LDSED ST16

19 Instruction Details 253

ET ILLEGAL PS 6

Access to a non existent processor status register was requested by either GETPS or
SETPS.

When ET ILLEGAL PS is raised:

• et will be set to 6.

• ed will be set to the processor status register identifier.

This exception may be raised by the following instructions:

GETPS SETPS

254 The XMOS XS1 Architecture

ET ARITHMETIC 7

Signals an arithmetic error, for example a division by 0 or an overflow that was detected.

When ET ARITHMETIC is raised:

• et will be set to 7.

• ed will be set to 0.

This exception may be raised by the following instructions:

DIVS LDIVU REMU
DIVU REMS

19 Instruction Details 255

ET ECALL 8

An ECALL instruction was executed, and the associated condition caused an exception.
Indicates that the application program raised an exception, for example to signal array
bound errors or a failed assertion.

When ET ECALL is raised:

• et will be set to 8.

• ed will be set to 0.

This exception may be raised by the following instructions:

ECALLF ECALLT

256 The XMOS XS1 Architecture

ET RESOURCE DEP 9

Resources are owned and used by a single thread. If multiple threads attempt to access
the same resource within 4 cycles of each other, a Resource Dependency exception will
be raised.

When ET RESOURCE DEP is raised:

• et will be set to 9.

• ed will be set to the resource identifier supplied by the instruction.

This exception may be raised by the following instructions:

CHKCT INT SETRDY
CLRPT MJOIN SETTW
EDU MSYNC SETV
EEF OUT SYNCR
EET OUTCT TESTLCL
EEU OUTPW TESTCT
ENDIN OUTSHR TESTWCT
FREER OUTT TINITCP
GETD PEEK TINITDP
GETN SETC TINITLR
GETST SETCLK TINITPC
GETTS SETD TINITSP
IN SETEV TSETMR
INCT SETN TSETR
INPW SETPSC TSTART
INSHR SETPT

19 Instruction Details 257

ET KCALL 15

Indicates that the KCALL or KCALLI instruction was executed.

When ET KCALL is raised:

• et will be set to 15.

• ed will be set to the kernel call operand.

This exception may be raised by the following instructions:

KCALL

Index
Branching, Jumping and Calling

Adjust stack and save link register, 90
Branch absolute unconditional register,

53
Branch and link absolute via constant

pool, 56
Branch and link absolute via register,

55
Branch and link absolute via table, 57
Branch and link relative backwards, 58
Branch and link relative forwards, 59
Branch relative backwards false, 60
Branch relative backwards true, 61
Branch relative backwards unconditional,

62
Branch relative forward false, 63
Branch relative forward true, 64
Branch relative forward unconditional,

65
Branch relative unconditional register,

66
Extend data, 93
Extend stack, 94
Return, 169
Set constant pool, 175
Set the data pointer, 177
Set the stack pointer, 185

Communication
Get network, 103
Input a token of data, 114
Input control tokens, 111
Input data, 110
Output a control token, 161
Output a control token immediate, 162
Output a token, 165
Output data, 160
Set network, 180

Test for control token, 68, 210
Test for control token immediate, 69
Test local, 209

Concurrency and Thread Synchronisation
Free unsynchronised thread, 96
Get a synchronised thread, 108
Get the thread’s ID, 100
Initialise a thread’s CP, 212
Initialise a thread’s DP, 213
Initialise a thread’s LR, 214
Initialise a thread’s PC, 215
Initialise a thread’s SP, 216
Master synchronise, 155
Set register in thread, 218
Set the master’s register, 217
Slave synchronise, 195
Start thread, 219
Synchronise and join, 152

Data Access
16-bit store, 196
8-bit store, 197
Add to a 16-bit address, 124
Add to a word address, 131
Add to a word address immediate, 132
Load address of word in constant pool,

129
Load address of word in data pool, 130
Load address of word on stack, 133
Load backward pc-relative address, 125
Load constant, 134
Load ET from the stack, 135
Load forward pc-relative address, 126
Load SED from stack, 137
Load signed 16 bits, 121
Load SSR from stack, 139
Load the SPC from the stack, 138
Load unsigned 8 bits, 122

Index 259

Load word, 140
Load word form data pool, 144
Load word from constant pool, 142
Load word from large constant pool,

143
Load word from stack, 145
Load word immediate, 141
Make n-bit mask, 153
Make n-bit mask immediate, 154
Set constant pool, 175
Set the data pointer, 177
Set the stack pointer, 185
Sign extend an n-bit field, 189
Sign extend an n-bit field immediate,

190
Store ET on the stack, 198
Store SED on the stack, 199
Store SPC on the stack, 200
Store the SSR to the stack, 201
Store word, 202
Store word immediate, 203
Store word in data pool, 204
Store word on stack, 205
Subtract from 16-bit address, 123
Subtract from word address, 127
Subtract from word address immedi-

ate, 128
Zero extend, 224
Zero extend immediate, 225

Data Manipulation
8-step CRC, 75
And not, 50
Arithmetic shift right, 51
Arithmetic shift right immediate, 52
Bit reverse, 54
Bitwise and, 49
Bitwise exclusive or, 223
Bitwise not, 158
Bitwise or, 159
Byte reverse, 67
Count leading zeros, 73

Equal, 91
Equal immediate, 92
Integer unsigned add, 47
Integer unsigned add immediate, 48
Integer unsigned subtraction, 206
Integer unsigned subtraction immedi-

ate, 207
Less than signed, 147
Less than unsigned, 148
Long multiply, 146
Long unsigned add with carry, 120
Long unsigned divide, 136
Long unsigned subtract, 149
Make n-bit mask, 153
Make n-bit mask immediate, 154
Multiply and accumulate signed, 150
Multiply and accumulate unsigned, 151
Shift left, 191
Shift left immediate, 192
Shift right, 193
Shift right immediate, 194
Sign extend an n-bit field, 189
Sign extend an n-bit field immediate,

190
Signed division, 79
Signed remainder, 167
Two’s complement negate, 157
Unsigned divide, 80
Unsigned multiply, 156
Unsigned remainder, 168
word CRC, 74
Zero extend, 224
Zero extend immediate, 225

Debugging
Call a debug interrupt, 76
Debug read of another thread’s regis-

ter, 78
Get processor state, 104
Restore non debug stack pointer, 81
Return from debug interrupt, 82

260 The XMOS XS1 Architecture

Save and modify stack pointer for de-
bug, 77

Set processor state, 181

Event Handling
Clear all events, 70
Clear bits SR, 72
Enable events conditionally, 87
Enables events conditionally, 86
Get bits from SR, 107
If false wait for event, 220
If true wait for event, 221
Set bits in SR, 186
Unconditionally disable event, 85
Unconditionally enable event, 88
Wait for event, 222

Exceptions
ET ARITHMETIC, 254
ET ECALL, 255
ET ILLEGAL INSTRUCTION, 250
ET ILLEGAL PC, 249
ET ILLEGAL PS, 253
ET ILLEGAL RESOURCE, 251
ET KCALL, 257
ET LINK ERROR, 248
ET LOAD STORE, 252
ET RESOURCE DEP, 256

Formats
10-bit immediate, 235
16-bit immediate, 234
20-bit immediate, 236
6-bit immediate, 233
Five register long, 245
Four register long, 244
No operands, 243
Register, 242
Register with 16-bit immediate, 232
Register with 6-bit immediate, 231
Register with immediate, 241
Six register long, 246

Three register, 227
Three register long, 228
Two register, 237
Two register long, 239
Two register reversed, 238
Two register reversed long, 240
Two register with immediate, 229
Two register with immediate long, 230

Interrupts, Exceptions and Kernel Calls
Clear bits SR, 72
Get bits from SR, 107
Get ED into r11, 98
Get ET into r11, 99
Get Kernel Stack Pointer, 102
Get the Kernel Entry Point, 101
Kernel call, 115
Kernel call immediate, 116
Kernel Return, 119
Restore stack pointer from kernel stack,

118
Set bits in SR, 186
Set the kernel entry point, 179
Switch to kernel stack, 117
Throw exception if non-zero, 84
Throw exception if zero, 83

Resource Operations
Clear the port time, 71
End a current input, 89
Free a resource, 95
Get a resource, 105
Get resource data, 97
Get the time stamp, 109
Input a part word, 112
Input and shift right, 113
Input data, 110
Output a part word, 163
Output data, 160
Output data and shift, 164
Peek at port data, 166

Index 261

Set clock for a resource, 174
Set environment vector, 178
Set event data, 176
Set event vector, 188
Set ready input for a port, 184
Set resource control bits, 172
Set resource control bits immediate, 170
Set the port shift count, 182
Set the port time, 183
Set transfer width for a port, 187
Synchronise a resource, 208
Test for position of control token, 211

	Background
	Interconnect
	XMOS Link Ports
	Serial XMOS Link
	Fast XMOS Link

	Concurrent Threads
	The XCore Instruction Set
	Instruction Issue and Execution
	Scheduler Implementation

	Instruction Set Notation and Definitions
	Instruction Prefixes

	Data Access
	Expression Evaluation
	Branching, Jumping and Calling
	Resources and the Thread Scheduler
	Concurrency and Thread Synchronisation
	Communication
	Locks
	Timers and Clocks
	Ports, Input and Output
	Input and Output
	Port Configuration
	Configuring Ready and Clock Signals
	NOREADY mode
	HANDSHAKEN mode
	STROBED mode
	The Port Timer
	Conditions
	Synchronised Transfers
	Buffered Transfers
	Partial Transfers
	Changing Direction

	Events, Interrupts and Exceptions
	Initialisation and Debugging
	Specialised Instructions
	Instruction Details
	Instructions
	Instruction Format Specification
	Exceptions

