
xTIMEcomposer Studio Tutorial

IN THIS DOCUMENT

· Introduction

· The xSOFTip Explorer Perspective

· Your first application

· Creating a project from the xSOFTip

· Using xSOFTip in the Edit perspective

· Test your project in the simulator

· The xTIMEcomposer Waveform Viewer

· Next steps

1 Introduction

Welcome to xTIMEcomposer. This tutorial provides an introduction to xTIMEcom-
poser Studio and xSOFTip Explorer. It shows you how to:

· Create an application using xSOFTip Explorer

· Create a project from xSOFTip using xTIMEcomposer

· Edit a xSOFTip component in xTIMEcomposer

· Test your program in the XMOS simulator

We recommend that you follow the tutorial step-by-step. If you need to down-
load the source code for the examples discussed it is available from xmos.com
xTIMEcomposer Tutorial Code Examples1.

2 The xSOFTip Explorer Perspective

xSOFTip components use xCORE resources to provide interfacing, DSP, protocols
and control functions, allowing you to concentrate on building your application.

1. Select Window > Open Perspective > XMOS xSOFTip Explorer to open the
xSOFTip Explorer perspective.

The xSOFTip Explorer Perspective allows you to browse the XMOS xSOFTip com-
ponents and select them for use in your system. It provides resource information
so you know which XMOS multicore microcontroller is most suitable for your
application.

The xSOFTip Explorer Perspective has four windows:

1http://www.xmos.com/published/xtimecomposer-studio-tutorial-code?version=latest

Publication Date: 2013/5/29 REV B

XMOS © 2013, All Rights Reserved

http://www.xmos.com/published/xtimecomposer-studio-tutorial-code?version=latest


xTIMEcomposer Studio Tutorial 2/11

· xSOFTip Browser – shows the xSOFTip components you can chose for your
project

· My System Configuration: the xSOFTip components you have selected

· System Information: the resources used by the xSOFTip components you have
selected, and the XMOS multicore microcontrollers which suit your application

· Developer Column: online documentation about the xSOFTip, tools and xCORE
multicore microcontrollers

NOTE: Additional documentation will be loaded in other tabs in the Developer
Column. Tabs are located at the bottom of the Developer Column. You will
need to switch between the xTutorial tab and the Main tab to see the xSOFTip
documentation.

2.1 xSOFTip Component Scope

Each xSOFTip component is categorized with a Scope, which shows the status of
the xSOFTip component:

· General Use: The xSOFTip consists of a complete release from XMOS.

Complete resource information is available.

NOTE: All attempts have been made to ensure the correct functionality of this
block, but the final quality of any product using this block is the responsibility
of the user.

· Early Development: The xSOFTip is suitable for use in development of products
and is fully functional. However, the maturity of the software is such that extra
care must be taken in verifying a product using this software block. Resource
information is available.

· Experimental: The xSOFTip is at an experimental/prototype stage. Code exists
but is not feature complete. Resource information may be available.

· Roadmap: The xSOFTip is on the XMOS development roadmap. Estimated
resource information exists for this xSOFTip, but no code is available.

· Open Source Community: The xSOFTip has been developed by the Open Source
community. Resource information may not be available.

3 Your first application

The xSOFTip Browser displays all available xSOFTip components including hardware
interfaces, control functions and DSP processing. This section shows how to use
xSOFTip to implement a precise PWM driver that uses the real-time capabilities of
xCORE.

3.1 Add the PWM to your application

You can add xSOFTip components directly to your application using the xSOFTip
Explorer perspective.

REV B



xTIMEcomposer Studio Tutorial 3/11

1. Click on the Tutorial Example LED PWM Driver xSOFTip component in the
sliceKIT/demos category.

The Developer Column shows information on the component including a de-
scription of what it does, its features and which xKIT Development Kits are
suitable for use with this xSOFTip.

2. Drag the Tutorial Example LED PWM Driver xSOFTip into the My System
Configuration window.

All peripherals in XMOS are implemented using software, giving you complete
freedom to customize the interface to meet your exact requirements.

xSOFTip is all delivered as C code, so you easily change it to meet your exact
requirements. You can also take existing C functions and run them on an
xCORE. For interfacing to I/O pins and for communicating between logical cores,
XMOS has added a handful of operations to C, called ‘XC’.

3. The My System Information window is updated to show the resources used by
your system configuration.

Resources include:

· Logical Cores: 32bit microcontroller cores. XMOS multicore microcontrollers
include 4, 6, 8, 10, 12, 16 and 32 core devices.

· Ports: I/O pins of XMOS multicore microcontrollers are connected to ports,
which allow your software to send and receive data to the pins with extremely
low latency. Ports are available in different widths: a 1-bit port is connected
to 1 I/O pins, a 4-bit port is connected to 4 I/O pins.

· Clock Blocks: Clock blocks are used to precisely control timing of I/O pins.
· Chanends: Channel Ends are part of the xConnect system, allowing the

logical cores to send messages to each other through low latency xConnect
channels.

REV B



xTIMEcomposer Studio Tutorial 4/11

· Timers: Timers are used by the software to control the time at which things
happen. They run at 100MHz, giving 10ns precision.

A list of Possible Devices is displayed at the bottom of the My System Information
window. This shows the xCORE multicore microcontrollers that most are suitable
for this application.

4 Creating a project from the xSOFTip

When you create a project from the xSOFTip Explorer perspective in xTIMEcomposer
Studio, an example instantiation of your selected xSOFTip is added to a new project.

A main() function is created, to which you can then easily add your application
code.

4.1 Create a project

1. Click the Generate Project button at the top of the My System Configuration
window.

2. Enter a name for your project in the Generate Project window, for example
PWM.

3. Select sliceKIT Core Board (L16) from the Target Hardware list for your project.

4. Select tile[1] for the PWM xSOFTip in the Specify the tile mappings . . . control.

5. Click Next.

6. Select XS1_PORT_4A as the port you want to use to drive the LEDs.

The GPIO Slice Card has 4 LEDs connected to XS1_PORT_4A.

REV B



xTIMEcomposer Studio Tutorial 5/11

7. Click Finish.

xTIMEcomposer Studio generates a project with your selected xSOFTip.

5 Using xSOFTip in the Edit perspective

xTIMEcomposer Studio changes to the Edit perspective when it creates a project
ready for you to edit the code. You can switch between perspectives at any time
using the Window > Open Perspective menu.

This section shows you how to edit the xSOFTip project to create a simple applica-
tion that varies the PWM duty cycle.

5.1 Editing the xSOFTip code

1. Open the PWM project in the Project Explorer and double-click on main.xc to
open it in the Editing window.

The main() function created by xTIMEcomposer is displayed.

The par statement is used to instantiate a Core. Each function or statement in
a par statement is run on a different core. In this example, two cores will be
specified, one core to run the pwm_controller() task and another to run the
xSOFTip PWM driver.

main() has already instantiated your PWM xSOFTip, so it will run on one logical
core on Tile 1. Now add our own function to run on another core also on Tile 1.

2. Add the code below into the par statement to instantiate a pwm_contoller logical
core.

on tile [1]: {
pwm_controller(c_pwm_duty);

}

The on tile[1] statement is used to specify which tile the processing cores are
on. Each tile in an xCORE multicore microcontroller has eight logical cores. In
this example you will use cores on tile 1.

3. Create a new pwm_controller task above main() in main.xc, that will run on
your core using the following code:

REV B



xTIMEcomposer Studio Tutorial 6/11

void pwm_controller(chanend c_pwm)
{
}

The task needs a chanend (channel end) so that it can communicate with the
PWM Driver. Channel ends are part of the xConnect communication system,
allowing the logical cores in a multicore microcontroller to communicate with
each other with low latency.

xTIMEcomposer has already created a channel for you: chan c_pwm_duty. Each
channel has two chanends, allowing two logical cores to communicate with
each other. The PWM Driver has already been given c_pwm_duty as one of its
arguments (look in pwm_tutorial_example.xc to see the function definition).

From the PWM xSOFTip documentation:

The PWM component uses 1 Core , with
a channel interface to the rest of
the application.
The client application sends two
values over the channel to configure
the PWM driver:
1. The PWM period length
2. The PWN duty cycle length
All times are measured with the 100MHz
reference clock. For example , a value
of 100 is 100 x 10ns = 1us.

In this case we want to configure the PWM with a low time of 5us and high time
of 5us. Therefore you need to send it a value of 1000 for the period length and
500 for the duty cycle length.

Data is sent over the channel c_pwm using the the <: XC operator.

4. Add the following code to your pwm_controller task:

// send the PWM period length
c_pwm <: 1000;

// send the PWM duty cycle length
c_pwm <: 500;

The application is now complete and ready to be compiled.

5.2 Building your project

1. Select PWM in the Project Explorer.

2. Click Project > Build Project

The Console shows the results of the compilation, together with any error
messages. Your Console should show that the build completed correctly.

3. Check the bin folder in the Project Explorer.

REV B



xTIMEcomposer Studio Tutorial 7/11

You now have a binary (PWM.xe) that you can execute.

6 Test your project in the simulator

xTIMEcomposer Studio includes a simulator which allows you to simulate your
application without hardware. The simulator includes a waveform analyzer, that
you can use to view the I/O pin driven by your PWM xSOFTip.

6.1 Run your application in the Simulator

1. Select Run > Run Configurations.

2. Double-click on the xCORE Application. This creates a new Run Configuration,
automatically filling in the required options.

3. Select Run on: Simulator

4. Click the Simulator tab.

You need to enable tracing of the ports so that you can see the I/O pin behavior.

5. Select Enable Signal Tracing.

6. Click Add under Tile Trace Options.

7. Select tile[1] and tick the Ports option.

REV B



xTIMEcomposer Studio Tutorial 8/11

8. Click Run.

The application runs on the Simulator. A red Stop button appears in the Console
toolbar.

9. Let the program run for about 10 seconds, then click the red Stop button.

A PWM.vcd file is added to the Project Explorer.

The next section shows how to look at the waveform of your PWM driver.

REV B



xTIMEcomposer Studio Tutorial 9/11

7 The xTIMEcomposer Waveform Viewer

xTIMEcomposer Studio contains a waveform viewer that you can use to look at the
waveform of the PWM signal.

7.1 Using the waveform viewer

1. Double-click on PWM.vcd in the Project Explorer.

The Waves window appears in place of the Console.

The Signals window appears next to the Project Explorer. You can use this to
select which ports to show in the Waves window.

2. Browse to the XS1_PORT_4A port (the port you selected for our PWM port), open
the folder and double-click on tile[1]_XS1_PORT_4A.

3. The Waves window shows the value of the pins for our PWM signal. You may
need to zoom out to view the PWM transitions.

The PWM driver uses the deterministic, real-time capabilities of xCORE to
generate a precise PWM signal. The waveform viewer shows a timeline so you
can measure the PWM output.

4. Verify the timing of your PWM interface by measuring the period length and
duty cycle length of your PWM signal.

You can zoom in and out to see the signals with an appropriate timescale. Click
on a signal to place a Marker, then move the cursor to view the time difference
between the Marker position and the cursor position.

5. Double-click on a transition in the Waves window when the cursor changes to a
pointing finger.

REV B



xTIMEcomposer Studio Tutorial 10/11

The output statement that caused the transition is highlighted in the Editor
window, allowing you to link the transition to the source code.

Thanks to its timing deterministic architecture, xCORE multicore microcontrollers
provide guaranteed response times up to 100x faster than conventional microcon-
trollers. xTIMEcomposer Studio includes the XMOS Timing Analyser (XTA), a tool
for analyzing your application and telling you precisely how long your code will
take to execute.

8 Next steps

Congratulations you have now completed this simple xTIMEcomposer tutorial
and are ready to run it on an xCORE multicore microcontroller. We aim to make
evaluating and development with our xCORE multicore microcontrollers as easy as
possible by offering a range of development kits to meet your specific needs.

8.1 Buy a development board

Take a look at our xKITS at http://www.xmos.com/discover/products/xkits2.

If you’re not sure which to choose, we recommend our sliceKIT Starter Kit3.

8.2 Try the sliceKIT Development Board tutorial

If you have a sliceKIT starter Kit we recommend that you follow the sliceKIT
Development Board Tutorial, which shows you how to run the project you created
in this tutorial on a hardware board. It also shows you how to use the real-time
features of xCORE multicore microcontrollers to extend the PWM application to
create a temperature controlled LED dimmer.

See Help > Tutorials > sliceKIT Development Board Tutorial.

8.3 Browse xSOFTip

Take a look at the other xSOFTip components. You can read through the documen-
tation in Developer Column, and use them in your project.

XMOS and our partners are working on new xSOFTip components all the time. Some
components you’ll see are Roadmap components which are in our development
plan. If there is a component you require for your system that is not available,
please let us know – we’d love to hear from you.

8.4 Try some other tutorials

We provide a range of tutorials covering the xTIMEcomposer tools, xSOFTip and
xKIT development boards. See Help > Tutorials for more information.

2http://www.xmos.com/products/xkits
3http://www.xmos.com/products/xkits/slicekit#slicekit-starter-kit

REV B

http://www.xmos.com/products/xkits
http://www.xmos.com/products/xkits/slicekit#slicekit-starter-kit


xTIMEcomposer Studio Tutorial 11/11

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV B


	Introduction
	The xSOFTip Explorer Perspective
	Your first application
	Creating a project from the xSOFTip
	Using xSOFTip in the Edit perspective
	Test your project in the simulator
	The xTIMEcomposer Waveform Viewer
	Next steps

