## xTAG-PRO User Guide

#### IN THIS DOCUMENT

- ► Getting started with xTAG-PRO
- Description
- ▶ Requirements
- ▶ LEDs and push button
- xTAG-Pro adapter card
- ▶ Regulations

# 1 Getting started with xTAG-PRO

 Connect the adapter card to your xTAG-PRO using the ribbon cables, see Section §5 :

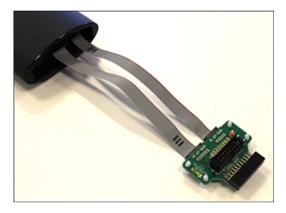



Figure 1:
20-pin and
16-pin ribbon
cables
connected to
xTAG-PRO
and adapter
card

- 2. Connect your development board to the xTAG-PRO using the xSYS connector or use another ribbon cable to connect to the analog header on the adapter card (analog cable is not supplied in the kit).
- 3. Connect the xTAG-PRO into your development system using a USB-A-to-USB-B cable, see Section §3.1.
- 4. Open your application in xTIMEcomposer Studio and run a Run Configuration (or call xrun -1 from the command line), see Section §3.2.
- 5. Check the LEDs on xTAG-PRO for the current status, see Figure 4.

Publication Date: 2014/4/23 XMOS © 2014, All Rights Reserved Document Number: XM004919A



xTAG-PRO User Guide 2/10

# 2 Description



Figure 2: xTAG-PRO

The xTAG-PRO is a high quality debug adapter for xCORE multicore microcontrollers, providing:

- ► Analog header with 4-channel analog inputs
- xSYS header for 2-channel digital inputs
- Dynamic power monitoring
- ▶ Fully compatible with xTAG-2
- Multi-state LEDs
- ▶ Push button interrupt or system reset

### 2.1 What's in the box?

- xTAG-PRO
- xTAG-PRO adapter card
- ▶ 20-pin ribbon cable
- ▶ 16-pin ribbon cable

If you want to connect a device to the analog header, you need to source a suitable cable. Details of the header are shown in Figure 9.



xTAG-PRO User Guide 3/10

# 3 Requirements

#### 3.1 Power

The xTAG-PRO requires a 5V power supply from the development system; you need a USB-A-to-USB-B cable to connect the device to your development system.

### 3.2 Development tools

xTAG-PRO requires xTIMEcomposer version 13.0.2 or later (Community or Enterprise Edition). The tools include a graphical development environment based on the industry standard Eclipse IDE, providing a choice between GUI-based tools and command-line tools. For information on using the tools see the xTIMEcomposer User Guide<sup>1</sup>

Linux users may need to update their permissions - further information is available on the XCore Community site<sup>2</sup>

To use the xSCOPE to instrument and monitor your applications, you need to use the scope library. Documentation and examples of how to use xSCOPE are available in the xTIMEcomposer User Guide.

#### 3.3 Firmware

The latest firmware for the xTAG-PRO can be downloaded from the XMOS website.

<sup>2</sup>http://www.xcore.com/questions/1973/how-enable-usb-drivers-linux-development-tools



http://www.xmos.com/published/tools-user-guide

xTAG-PRO User Guide 4/10

# 4 LEDs and push button

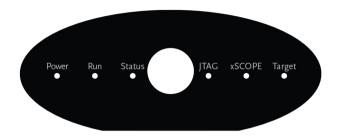



Figure 3: xTAG-PRO LEDs

The LEDs indicate the status of the device as shown in Figure 4:

| LED                                 | Status | Description                                                                                                   |  |
|-------------------------------------|--------|---------------------------------------------------------------------------------------------------------------|--|
| Power                               | Green  | The xTAG is powered on                                                                                        |  |
| Run                                 | Green  | Target is running                                                                                             |  |
|                                     | Red    | Target is in debug mode and stopped                                                                           |  |
| Status                              | Green  | Target stop reason is expected e.g. breakpoint, print message                                                 |  |
|                                     | Red    | Target stop reason is unexpected e.g. exception                                                               |  |
| JTAG                                | Green  | There is JTAG activity with the target happening                                                              |  |
|                                     | Off    | No JTAG                                                                                                       |  |
| xSCOPE Green Flashing xSCOPE is ena |        | xSCOPE is enabled                                                                                             |  |
|                                     | Off    | No xSCOPE                                                                                                     |  |
| •                                   |        | Target device is detected after a Run Configuration or Debug Configuration is used (xrun or xgdb command)     |  |
|                                     | Red    | Target device is not detected after a Run Configuration or Debug Configuration is used (xrun or xgdb command) |  |

Figure 4: LED status

The push button on the xTAG-PRO can be used to interrupt or reset the device as shown in Figure 5:

Figure 5: Push-button status

| Status           | Description                                                           |
|------------------|-----------------------------------------------------------------------|
| xTAG running     | Interrupts the device and drops back to the debugger in xTIMEcomposer |
| xTAG not running | Resets the device                                                     |



xTAG-PRO User Guide 5/10

# 5 xTAG-Pro adapter card

The xTAG-PRO adapter card provides an xSYS header (J4) and an analog header (J3) for connection to target devices. The adapter is connected to the xTAG-PRO by a 20-pin ribbon cable (xSYS xTP20 - J5) and a 16-pin ribbon cable (xSYS xTP16 - J2).

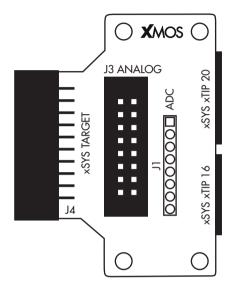



Figure 6: xTAG-PRO adapter card

The features you want to use dictate which ribbon cables you require:

|                           | 20-pin cable | 16-pin cable |
|---------------------------|--------------|--------------|
| xSYS connector            | Required     |              |
| xSYS connector + 5V power | Required     | Required     |
| Analog connector          | Required     | Required     |

The signals for the xSYS xTP ribbon connectors are shown below:

| Signal  | Position | Position | Signal |
|---------|----------|----------|--------|
| XL_DN1  | 0        | 1        | GND    |
| XL_DN0  | 2        | 3        | GND    |
| XL_UP_0 | 4        | 5        | GND    |
| XL_UP_1 | 6        | 7        | GND    |
| DBG     | 8        | 9        | SRST_N |
| MSEL    | 10       | 11       | GND    |
| TDO     | 12       | 13       | GND    |
| TCK     | 14       | 15       | GND    |
| TMS     | 16       | 17       | GND    |
| TDI     | 18       | 19       | GND    |

Figure 7: xSYS xTIP20 20-pin 0.05" header (J5)

| Signal    | Position | Position | Signal    |
|-----------|----------|----------|-----------|
| DIG_IN1   | 0        | 1        | GND       |
| DIG_IN0   | 2        | 3        | GND       |
| UART_DN   | 4        | 5        | 5V        |
| UART_UP   | 6        | 7        | GND       |
| ADC_IN3   | 8        | 9        | ADC_IN2   |
| GND       | 10       | 11       | ADC_IN1_N |
| ADC_IN1_P | 12       | 13       | GND       |
| ADC_IN0_P | 14       | 15       | ADC_IN0_N |

Figure 8: xSYS xTIP16 16-pin 0.05" header (J2)

# 5.1 Analog header (J3)

The analog connector includes 4 ADC input signals including 2 shunt signals (ADC\_IN0\_P/N and ADC\_IN1\_P/N) with 100:1 gain for power monitoring, and 2 low voltage I/O signals for digital input.

| Test Point | Signal    | Position | Position | Signal |
|------------|-----------|----------|----------|--------|
|            | ADC_IN0_P | 0        | 1        | GND    |
|            | ADC_IN0_N | 2        | 3        | GND    |
|            | ADC_IN1_P | 4        | 5        | GND    |
|            | ADC_IN1_N | 6        | 7        | GND    |
|            | ADC_IN2   | 8        | 9        | GND    |
|            | ADC_IN3   | 10       | 11       | GND    |
| TP1        | DIG_IN0   | 12       | 13       | GND    |
| TP2        | DIG_IN1   | 14       | 15       | GND    |

Figure 9: Analog IDC header (J3)

The signals are also available through the 0.5" IDC header J1.

| Signal    | Position |
|-----------|----------|
| GND       | 0        |
| ADC_IN0_P | 1        |
| ADC_IN0_N | 2        |
| ADC_IN1_P | 3        |
| ADC_IN1_N | 4        |
| ADC_IN2   | 5        |
| ADC_IN3   | 6        |
| GND       | 7        |

Figure 10: ADC header (J1)

## 5.2 xSYS header (J4)

The xSYS header can be used to connect to any XMOS development kit. The connector includes a 2-wire xCONNECT Link used by xSCOPE, UART and JTAG. The header includes a 5V signal which requires both the 20-pin and 16-pin cables to be connected for use.

| Signal  | Position | Position | Signal |
|---------|----------|----------|--------|
| 5V      | 0        | 1        | NC     |
| MSEL    | 2        | 3        | GND    |
| TDI     | 4        | 5        | XL_UP1 |
| TMS     | 6        | 7        | GND    |
| TCK     | 8        | 9        | XL_UP0 |
| DBG     | 10       | 11       | GND    |
| TDO     | 12       | 13       | XL_DN0 |
| SRST_N  | 14       | 15       | GND    |
| UART_DN | 16       | 17       | XL_DN1 |
| UART_UP | 18       | 19       | GND    |

Figure 11: xSYS female header (J4) xTAG-PRO User Guide 9/10

## 5.3 Adapter card schematic

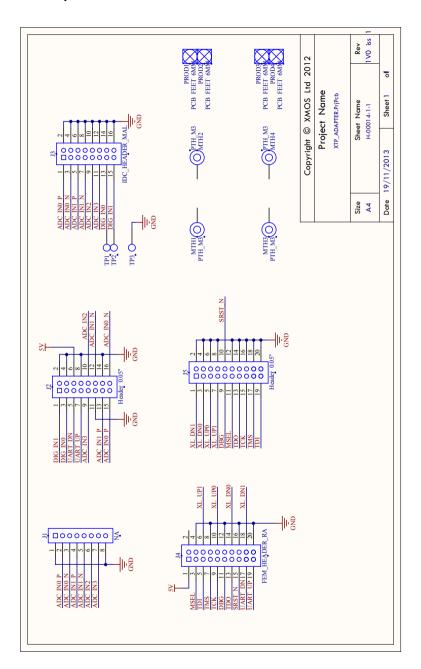



Figure 12: xTAG-PRO adapter card schematic

xTAG-PRO User Guide 10/10

# 6 Regulations

The xTAG-PRO is subject to the European Union WEEE directive and should not be disposed of in household waste. Alternative requirements may apply outside of the EU.





Copyright © 2014, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the "Information") and is providing it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims.