
SRAM
64KB

Security
OTP ROM

JTAG
debug
I/

O
 p

in
s

Hardware
response

ports

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xCORE logical core

xTIME: schedulers
timers, clocks

x
C

O
N

N
EC

T
ch

an
n
el

s,
 l
in

k
s

PLL

xCORE multicore microcontrollers
are unique. Like traditional MCUs
they are programmed in C/C++,
but unlike traditional products
they have multiple processor cores
and can execute several tasks
concurrently and independently.
They have incredibly flexible I/O
and a unique timing-deterministic
architecture with an intimate
connection between the cores and
the outside world. xCORE lets you
deliver complex real-time projects
using a simple design process that is
both flexible and scalable.

xCORE ARCHITECTURE

Today’s embedded applications require a
deterministic microcontroller architecture
that detects and resolves task changes as
they occur. The architecture must process
multiple concurrent tasks quickly, minimize
jitter and handle combinations of fast,
complex interfaces. It must provide
easy integration of a wide range of
components and be scalable.

Traditional real-time systems are
interrupt-driven, relying on an RTOS to
schedule tasks and handle communication.
But they face challenges such as
handling complex I/O streams within
an acceptable time window, interrupt
latency, kernel processing time, jitter and
memory contention. They are hard to
verify, and the RTOS imposes significant
processor and memory overhead.

The xCORE architecture solves these
problems by removing all of the features
of a traditional MCU that introduce
uncertainty. Instructions execute in a
single cycle; there are no interrupts; no
traditional bus structure; no pipeline;

A HARDWARE REAL-TIME OPERATING SYSTEM
and no cache. Many of the features of
an RTOS are integrated in hardware:
system events are handled using a
scheduled single-cycle context switch, so
applications do not suffer interrupt jitter.

With multiple processing cores executing
independently, tasks can be guaranteed
to complete within a strict timing window.
Tasks can share data without using
caches. Each core can run I/O, DSP
and application code, and activities in
one task do not affect other tasks. An
intimate connection between processor
resource and hardware ports passes
I/O events directly to tasks, yielding
response times up to 100x faster than
traditional microcontrollers.

Because xCORE devices are deterministic,
designers can create systems that are
predictable, with the exact combination
of peripheral interfaces they require.
xCORE delivers all the features required
by today’s embedded developers, with
performance unmatched by traditional
interrupt-driven systems.

MULTICORE MICROCONTROLLERS

• Multiple processing cores
– 	Runs multiple tasks concurrently
– Guaranteed performance

• 	RTOS features in hardware
–	� Scheduler, timers, communications

	 – Low latency

	 – Predictable repeatable behavior

• 	Immediate response time

	 – 	100x faster than other MCUs

• 	Flexible ports and peripherals

	 – 	Sophisticated port logic

	 – Supports fast complex interfaces

	 – Multiple peripherals in one chip

• 	Integrated development tools

	 – 	Programmed in C and C++

	 – 	Instrumentation/trace libraries

	 – Static timing analyzer

• 	Multicore extensions for C

	 – 	Concurrent tasks, timing,
communication, I/O,
memory management

xCORE ARCHITECTURE 	 XM-005135-PC

xCORE ARCHITECTURE

Traditional devices take a number of instruction cycles to
respond to an interrupt, during which time they store the
state associated with the running task and then load the
new state associated with the higher priority task that
needs to be started.

XMOS devices respond to events triggered by I/O pins,
timers and tasks, rather than interrupts. Since an xCORE
device can run multiple tasks in parallel there is no need
for one task to interrupt another. A task can handle an
event by running in parallel with other tasks and waiting
for the event to happen.

By default, each task in an xCORE application is placed
on a different logical core. This means the task runs
independently of the others and has incredibly quick
response time when it is waiting on events. In RTOS terms,
each task running on its own core enjoys the highest

Event

Task A

Task B
Execute Task B Task B Paused

XMOS

Traditional MCU

Execute Task B

Task A

Internal operation

Task B

Event

Interrupt

Save all registers
Fetch ISR vector

Save all registers
Fetch ISR vector

Execute Task B
Clear request

Restore registers

etc...

Interrupt

Each xCORE device has one or more tiles. Each tile has
up to eight independent 32‑bit logical cores that run in
parallel without interruption from other cores. A tile also
includes the xTIME scheduler, the xCONNECT switch, ports
and SRAM.

Active cores are guaranteed a minimum level of MIPS. Cores
that are idle are not scheduled to the processing resource.

Cores access instructions directly, unlike traditional
microcontrollers that use memory mapping. All instructions
complete in a single core cycle, or pause the core.

Cores are triggered by events that are managed by the
xTIME scheduler. Events that occur at I/O pins are fed
directly to a core by the Hardware Response ports. Events
can also be generated by timers and tasks, and serviced
by the scheduler, with guaranteed behavior.

xTIME™ SCHEDULER

Decode

Read

Execute

Write

Decode

Read

Execute

Write

Decode

Read

Execute

Write

Single core running: executes every 4 clock ticks (f/4 MHz)

Four cores running: executes every 4 clock ticks (f/4 MHz)

Eight cores running: executes every 8 clock ticks (f/8 MHz)

EVENTS AND INTERRUPTS

TASK PRIORITY

The advantages of the XMOS approach include:

•	 Response time to events is dramatically improved (in
conjunction with the multi-core xCORE architecture).

•	 Reasoning about worst-case execution time (WCET) is
easier since code cannot be interrupted during its execution.

Independent tests show that an xCORE device can respond to
single events within 10ns and handle multiple asynchronous
real-time events within a worst-case response time of 100ns;
this is 100x times faster than conventional real-time systems
and critically, scales to larger, more integrated systems.

(http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6389416)

priority scheduling by the hardware. To reduce resource
requirements, lower priority tasks can share a core via co-
operative multitasking. Co-operative multitasking is supported
directly in the multicore extensions to C that enable task
parallelization on xCORE devices.

xCORE ARCHITECTURE

The high-speed xCONNECT™ network ensures that all
tasks can communicate with each other on the same tile
or other tiles in the same device, with very low overhead.
This network can also be extended to allow multiple
xCORE devices to be connected together so that larger
multi-processor real-time systems can be created.

Each task runs in parallel across the logical cores of the
xCORE device. The compiler automatically checks the
number of cores per tile used, and allocates the required
amount of stack and data memory to each task.

Tasks communicate via transactions or software interfaces
that define the kind of transactions that can occur
between the tasks and the data that is passed with them.

Core 0

xCORE Tile xCORE Tile

Core 1

Core 2

Core 3

Core 4

Core 6

Core 5

Core 7

Memory Memory

Core 0

Core 1

Core2

Core3

Core6

Core4

Core5

Core7

xCONNECT
Switch

Link to another device

Po
rt

s

Pi
n
s

Pi
n
s

Po
rt

s

TASK COMMUNICATION

Many microcontrollers have a single large memory
system with caches, while others split the memory into
blocks for running code and storing data. These systems
require careful engineering to avoid data trashing or
contention. The xCORE memory system is integrated with
the xTIME scheduler and is fully deterministic:
•	 Each tile contains 64KB local memory, which is
shared between all cores on that tile for code and data.
•	 Each core has a slot to access the memory in a single
cycle; there is no requirement for a cache.
•	 Synchronized tasks can share data structures in local
memory, or pass data directly to other tasks.
•	 Tasks communicate explicitly with external FLASH/
SDRAM memory using I/O ports, separate to the local
tile memory; no additional memory manager is required.
•	 Tasks on different tiles communicate via inter-task
communication channels over the xCONNECT switch.
•	 Each tile also has 8KB one-time programmable
memory for secure boot code and encryption keys.

The GPIO pins of the xCORE device are managed by
port logic that can efficiently drive external pins high and
low, and sample values.

Ports are available in different widths (1/4/8/16/32bit)
depending on the device package. They are driven by
clocks or timers, and data can be buffered, serialized
and timestamped.

xCORE devices can communicate with fast, complex
interfaces that would not be possible using standard bit-
banging techniques required by other microcontrollers.
As well as running real-time parallel applications,
XMOS microcontrollers allow complex I/O protocols and
combinations of peripherals to be implemented via the
ports within a single device.

MEMORY SYSTEM

HARDWARE RESPONSE™ PORTS

PINS CORE

PORT

SERDES

FIFO
transfer
register

port counter

port
value

stamp/time

port
logic

output (drive) all blocks optional input (sample)

conditional
value

readyOut

readyIn

... ...

clock block

1-bit portdivider
100MHz
reference
clock

SPI

MAIN MEMORY

L1i CACHE

BUS

CPU COREL1d CACHE

L2 CACHE

L3 CACHE

CORE 0

CORE 0

CORE 0

CORE 0

CORE 0

CORE 0

CORE 0

CORE 0

64KB
SRAMP

O
R

T
S

XMOS

TRADITIONAL MCU

8KB
OTP

xCORE ARCHITECTURE 	 XM-005135-PC

MULTICORE EXTENSIONS TO C

SOFTWARE DEVELOPMENT ENVIRONMENT

To help programmers access the real-time hardware
features of the architecture, some easy-to-use, yet powerful,
multicore language extensions for C have been added. These
extensions form a programming language called xC which
includes features for:
•	 Task based parallelism
•	 Task communication
•	 Accurate timing and timestamping
•	 Ports and I/O
•	 Safe memory management
Software projects can mix C source files with or without the
multicore extensions enabled. The xTIMEcomposer compiler
automatically enables the extensions based on the file
extension.
To help programmers write real-time concurrent applications,
XMOS provides numerous modules and blocks of xSOFTip
code that implement common tasks and interfaces. xSOFTip
components can be quickly configured in the software
development tools and integrated into applications.

On xCORE devices, programs are composed of
multiple tasks running in parallel. The concurrent tasks
manage their own state and resources and interact by
performing transactions with each other.

The compiler maps tasks onto the logical cores of the device
(under user direction in the code). The ability of the xCORE
architecture to run code independently in parallel allows tasks to
be very responsive to events that occur in the system.

PROGRAMMING MULTICORE APPLICATIONS

button handler

led server

led_if

temp sensor

temp_sensor_if

button counter

button_counter_if

uart handler

lcd_iftemp_sensor_if

uart rx

uart_rx_if

uart tx

uart_tx_ifbutton_counter_if

i2c_master
i2c_master_if

data_ready

The hardware features are complemented by a software
development environment, which makes it easy to define
real-time tasks as a scalable parallel system. The
xTIMEcomposer tools include fully standards-compliant C
and C++ compilers plus the standard language libraries, an
IDE, simulator, symbolic debugger, runtime instrumentation
and trace libraries and a static code timing analyzer (XTA).

All of the components are aware of the real-time multicore
nature of the programs, giving a fully integrated approach.
As a result the xCORE tools are able to support parallel
code descriptions, report on memory and resource usage,
let you debug multicore programs and determine the exact
timing of your software code.

