
sliceKIT Development Board Tutorial

IN THIS DOCUMENT

· Introduction

· Set up the sliceKIT hardware

· Run the PWM application on your sliceKIT board

· Dim the LEDs up and down

· Add printing

· Add an I2C interface to read the temperature

· Next Steps

1 Introduction

This tutorial provides an introduction to XMOS sliceKIT development boards.

NOTE: Before starting it you should complete the xTIMEcomposer Studio - Simulator
Tutorial1, which shows you how to create a PWM project that is used as the starting
point of this tutorial.

The tutorial shows you how to:

· Set up the sliceKIT hardware

· Run the PWM application on your sliceKIT board

· Dim the LEDs up and down

· Add printing

· Add an I2C interface to read the temperature

· Next steps

We recommend that you follow the tutorial step-by-step. If you need to download
the source code for the examples discussed it is available from xmos.com sliceKIT
Development Board Tutorial Code Examples2.

2 Set up the sliceKIT hardware

To follow this tutorial you need the following sliceKIT board and cards

· XP-SKC-L2 sliceKIT Core Board

1http://www.xmos.com/published/xtimecomposer-studio-tutorial?version=latest
2http://www.xmos.com/published/xtimecomposer-studio-tutorial-code?version=latest

Publication Date: 2013/5/29 REV B

XMOS © 2013, All Rights Reserved

http://www.xmos.com/published/xtimecomposer-studio-tutorial?version=latest
http://www.xmos.com/published/xtimecomposer-studio-tutorial-code?version=latest

sliceKIT Development Board Tutorial 2/11

· XA-SK-GPIO GPIO sliceCARD

· xTAG-2 Debug Adapter

All these boards are available in the sliceKIT Starter Kit -
see www.xmos.com/slicekit3.

Details on mapping between pins on the Core Board and ports is available in the
sliceKIT Core board4 documentation.

2.1 Connect up the boards

1. Connect the xTAG Adapter to the XSYS connector on the sliceKIT Core board.

2. Connect the xTAG-2 to the xTAG adapter.

3. Connect the GPIO sliceCARD to the sliceKIT Core board using the connector
marked with the SQUARE.

Figure 1:

sliceKIT core
board with
xTAG and

GPIO
sliceCARD

3 Run the PWM application on your sliceKIT board

In the xTIMEcomposer Studio - Simulator Tutorial5, the PWM application is run
on the xCORE simulator on your PC or Mac. You can quickly change the Run
Configuration to execute the application on your sliceKIT development board.

3http://www.xmos.com/slicekit
4http://www.xmos.com/node/16091?version=latest
5http://www.xmos.com/published/xtimecomposer-studio-tutorial?version=latest

REV B

http://www.xmos.com/slicekit
http://www.xmos.com/node/16091?version=latest
http://www.xmos.com/published/xtimecomposer-studio-tutorial?version=latest

sliceKIT Development Board Tutorial 3/11

3.1 Run your application

1. Open the workspace you used for the xTimeComposer Studio Tutorial – Simula-
tor.

2. Select Run > Run Configurations.

3. Change the Device Options from simulator to hardware.

The Target should be shown as XMOS XTAG-2 connected to L1[0..1].

Figure 2:

Run Configu-
ration

xTIMEcomposer uses JTAG to load the application directly into the internal SRAM
in the xCORE multicore microcontroller. The SRAM is a fast, single cycle memory
and does not include caches, which makes all memory accesses deterministic.

Loading directly into SRAM is used during development, as it provides the fastest
mechanism for loading code into the device. In production, xCORE devices
usually boot from SPI flash. xTIMEcomposer includes a flash programming
utility that can be used by creating a Flash Configuration in the same way as a
Run Configuration - see Run > Flash.

4. Click Run.

REV B

sliceKIT Development Board Tutorial 4/11

After a short delay during which the sliceKIT Core Board is booted over High Speed
USB and JTAG, all four LEDs on the GPIO sliceCARD light up at 50% brightness (50%
duty cycle).

4 Dim the LEDs up and down

In the xTIMEcomposer Studio - Simulator Tutorial6, you created a
basic pwm_controller task to initialize the period and duty cycle of the
pwm_tutorial_example task via a channel.

The pwm_tutorial_example task also accepts updates to the duty cycle value at any
time. You can therefore enhance the pwm_controller task to control the duty cycle
of the PWM over time, thereby varying the brightness of the LEDs.

This section shows you how to:

· Start with LEDs off and increase the brightness gradually to 100%.

· Once 100% brightness is reached, decrease brightness gradually to 0%.

· Put this function into a loop so that the LEDs continuously increase and decrease
in brightness.

NOTE: The LEDs on the GPIO sliceCARD are active-low, which means a duty cycle
of 100% corresponds to LEDs off. Duty cycle of 0 corresponds to LEDs at 100%
brightness.

4.1 Write a new PWM controller

Before you write any code, check the LED related information in the GPIO sliceCARD
Hardware Guide7.

1. Add the following code to main.xc, which implements a wait function that will
be used to delay successive updates of the PWM duty cycle:

void wait(unsigned wait_cycles) {
timer tmr;
unsigned t;

// read the current time
tmr :> t;
// event will occur wait_cycles * 10ns in the future
tmr when timerafter (t+wait_cycles) :> void;

}

The function uses a timer to emit an event at some time in the future. Timers use
the 100MHz reference clock to provide programmable delays to the software.
The 100MHz clock gives 10ns resolution to these delays, allowing the software
to precisely control the time at which actions occur. The logical core remains
idle until that event happens, thereby saving power.

6http://www.xmos.com/published/xtimecomposer-studio-tutorial?version=latest
7http://www.xmos.com/node/16079?version=latest

REV B

http://www.xmos.com/published/xtimecomposer-studio-tutorial?version=latest
http://www.xmos.com/node/16079?version=latest

sliceKIT Development Board Tutorial 5/11

2. Update the current pwm_controller function with the following code:

void pwm_controller(chanend c_pwm)
{

// PWM period is 10us. 1000 cycles at 10ns (100 MHz ref clock)
int period = 1000;
// duty_cycle starts at 100% which switches all LEDs off
// (LEDs active low on GPIO sliceCARD)
int duty_cycle = 1000;
// duty cycle step (up or down)
unsigned step = period / 100;
// duty_cycle delta.
int delta = -step; // start with increasing brightness

// output the PWM period length to a channel
c_pwm <: period;
// output the PWM duty cycle length to a channel
c_pwm <: duty_cycle;

while (1) {
// update the duty cycle length
c_pwm <: duty_cycle;

wait(XS1_TIMER_HZ /100); // 0.01 s
duty_cycle += delta;
if(duty_cycle > period) {

delta = -step; // increase brightness
duty_cycle = period;

}
else if(duty_cycle < 0) {

delta = step; // decrease brightness
duty_cycle = 0;

}
}

}

The new pwm_controller updates the PWM logical core, by periodically sending
new PWM settings to it over the channel. There is a delay of 10ms between each
update to the PWM core. The step between every successive duty cycle is 1/100
of a PWM period which means the time to go from 0 to 100% duty (LED fully on
to LED fully off) is 100 * 10ms = 1 second.

3. Click PWM in the Project Explorer and select Project > Build Project.

4. Click Run.

The four LEDs are dimmed up and down every 2 seconds.

You can extend this simple example to any real-time task. Using the precise
100MHz timer, together with the deterministic execution of xCORE multicore
microcontrollers makes it easy to accurately control your real-time tasks.

REV B

sliceKIT Development Board Tutorial 6/11

5 Add printing

The XTAG2 USB-JTAG converter and xTIMEcomposer provide a complete suite of
development and debug tools including:

· debugger including breakpoints, watchpoints and single stepping.

· XScope real-time, in-circuit instrumentation that lets you view what’s going on
in your code at run-time.

· JTAG I/O, allowing you to print from your application and view the output within
xTIMEcomposer.

5.1 Using print statements over JTAG

1. Add the following code at the top of main.xc to include the print library:

#include "print.h"

2. Add a welcome message above the first channel communication in the
pwm_controller() function using the printstr statement:

int delta = -step; // start with increasing brightness

printstr("Welcome to the XMOS PWM tutorial");

// output the PWM period length to a channel
c_pwm <: period;

The print library includes functions for printing various different formats, in-
cluding strings and integers.

3. Build and run the application.

Your welcome message is printed to the xTIMEcomposer Console.

Figure 3:

xTIMEcomposer
Console

REV B

sliceKIT Development Board Tutorial 7/11

6 Add an I2C interface to read the temperature

The GPIO sliceCARD features an ADC that has a linearized thermistor connected
for measuring temperature. The ADC is accessed via an I2C interface.

You can add an I2C Master interface using the xSOFTip I2C component to read the
temperature, and use an interpolation function to convert the ADC value into a
temperature, in the range -10 to 60 degrees C.

This section shows you how to:

· Read the ADC value periodically using the I2C master interface.

· Convert the ADC value into a temperature value.

· Print the temperature value.

6.1 Integrate the I2C interface

1. Find the I2C Master (Single Bit Ports) xSOFTip in the xSOFTip Browser by
typing I2C in the Search field. This I2C Master uses 1-bit ports for SCL and SDA.

2. Find the Makefile inside your project in the Project Explorer.

As you are adding a module to an existing project, you need to add the module
to the Makefile.

3. Right-click on the Makefile and select Open With > Makefile Editor.

4. Add module_i2c_master to USED_MODULES.

Your USED_MODULES will now be:

USED_MODULES = module_i2c_master module_pwm_tutorial_example

5. Drag the I2C Master xSOFTip into the Project Explorer to add it to your project.

module_i2c_master is displayed in the project tree.

6. Include i2c.h in your main.xc application file.

#include "i2c.h"

7. Add the I2C ports to the top section of main.xc:

on tile [1] : struct r_i2c i2cOne = {
XS1_PORT_1F ,
XS1_PORT_1B ,
1000

};

This declares a structure with two 1-bit ports which are the SCL and SCK pins
for I2C. The third member of the structure is the speed of the bus. The I2C
Programming Guide gives this description of the structure:

Structure Members

port scl - Port on which clock wire is attached. Must be on bit 0

REV B

sliceKIT Development Board Tutorial 8/11

port sda - Port on which data wire is attached. Must be on bit 0

unsigned int ‘‘clockTicks‘‘ - Number of reference clocks per I2C clock, set to
1000 for 100 kHz.

The location of the I2C ports can be found in the GPIO sliceCARD documentation.

6.2 Examine the I2C Master interface

The module supports multiple I2C Masters but you only need one Master (the
xCORE) in this application.

The I2C component has a simple set of APIs to configure it, and to read and write
data via I2C. These APIs execute functions which implement the I2C interface.

You will use the function i2c_master_write_reg to configure the ADC at startup.
Using the tx8 function, it writes the Slave device ID, address and then a list of
bytes.

1. Open module_i2c_master/src/i2c-mm.xc.

2. Find the i2c_master_write_reg function.

3. Double click on the first instance of tx8 to mark it.

4. Right-click on the marked tx8 and select Open Declaration.

The Editor window jumps to the tx8 function that implements the I2C protocol
for writing a single byte.

The HighPulse() function sends each bit of the byte in a loop. The timing
of the edges of the I2C SCL (clock) and I2C SDA (data) signals are controlled
by the function waitQuarter which, like the wait function you implemented
previously, uses a timer to emit an event in the future upon which the signal
level is changed.

This is a basic example of a hardware interface implemented completely in software
running on a logical core.

6.3 Using I2C in the PWM controller

This section shows how to modify the PWM controller function so that it reads the
ADC via I2C every period of the LED cycle.

1. Declare the variables you need above your printstr statement, and use the
i2c_master_write_reg function to initialize the ADC.

// I2C write data
unsigned char wr_data [1]={0 x13};
unsigned char rd_data [2];
int adc_value;

//Write configuration information to ADC
i2c_master_write_reg (0x28 , 0x00 , wr_data , 1, i2cOne);

REV B

sliceKIT Development Board Tutorial 9/11

printstr("Welcome to the XMOS PWM tutorial\n");

2. Add the following code to use the I2C_master_rx function to read from the ADC
at the end of the PWM cycle period. It should be inserted after the duty cycle is
incremented (duty_cycle += delta;)

if (duty_cycle > period)
{

//Read ADC value using I2C read

rd_data [0]= rd_data [0]&0 x0F;
i2c_master_rx (0x28 , rd_data , 2, i2cOne);
rd_data [0]= rd_data [0]&0 x0F;
adc_value =(rd_data [0]<<6)|(rd_data [1]>>2);
printstr("Temperature is :");
printintln(linear_interpolation(adc_value));

3. Add the linear interpolation function above your pwm_controller. This function
is used to convert the ADC value to a temperature value.

int TEMPERATURE_LUT [][2]= // Temperature Look up table
{

{ -10 ,845} ,{ -5 ,808} ,{0 ,765} ,{5 ,718} ,{10 ,668} ,
{15 ,614} ,{20 ,559} ,{25 ,504} ,{30 ,450} ,{35 ,399} ,
{40 ,352} ,{45 ,308} ,{50 ,269} ,{55 ,233} ,{60 ,202}

};

int linear_interpolation(int adc_value)
{

int i=0,x1,y1 ,x2,y2,temper;
while(adc_value <TEMPERATURE_LUT[i][1])
{

i++;
}
// Calculating Linear interpolation using the formula
// y=y1+(x-x1)*(y2-y1)/(x2-x1)
x1=TEMPERATURE_LUT[i -1][1];
y1=TEMPERATURE_LUT[i -1][0];
x2=TEMPERATURE_LUT[i][1];
y2=TEMPERATURE_LUT[i][0];
temper=y1+(((adc_value -x1)*(y2 -y1))/(x2 -x1));

return temper;
}

4. Build and run your application.

Every two seconds the temperature is printed to your console. Check that the
temperature is printed to your console.

REV B

sliceKIT Development Board Tutorial 10/11

Figure 4:

Output
temperature

reading

7 Next Steps

Congratulations! You have now used both the PWM and I2C xSOFTip, and used
them to build and run a simple example. Both these interfaces are implemented in
software, so you can view the code and make any changes you may wish to make.
They rely on the deterministic, real-time capabilities of the xCORE architecture to
deliver low latency, easy to use IP functions for use in your design.

We recommend that you:

· Browse xSOFTip8 and take a look at the other xSOFTip components. You can
read through the documentation in the Developer Column, and use them in your
project. XMOS and our partners are working on new xSOFTip components all
the time. Some components you see here are Roadmap components which are
in our development plan. If there is a component you require for your system,
please let us know – we’d love to hear from you.

· Run the Example Applications for your sliceKIT Cards (look under sliceKIT in the
xSOFTip Explorer). Each sliceKIT sliceCARD has its own Quick Start Guide to
guide you through the demo application.

· Try some other tutorials: A range of tutorials are available covering the xTIME-
composer tools, xSOFTip and xKIT development boards. See Help > Tutorials.

· Take a look at www.xmos.com/slicekit9 to view other sliceCARDs for use with
your applications.

8http://www.xmos.com/products/xsoftip/
9http://www.xmos.com/slicekit

REV B

http://www.xmos.com/products/xsoftip/
http://www.xmos.com/slicekit

sliceKIT Development Board Tutorial 11/11

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV B

	Introduction
	Set up the sliceKIT hardware
	Run the PWM application on your sliceKIT board
	Dim the LEDs up and down
	Add printing
	Add an I2C interface to read the temperature
	Next Steps

