
xTIMEcomposer User Guide

REV 13.0.0

Publication Date: 2013/11/14

XMOS © 2013, All Rights Reserved.

xTIMEcomposer User Guide 2/295

Table of Contents

A Installation 3

1 System requirements for running the xTIMEcomposer 4

2 Installation Instructions 5
2.1 Install the tools . 5
2.2 Install the USB drivers . 6

B Quick Start 7

3 Get started with xTIMEcomposer 8
3.1 Start xTIMEcomposer Studio . 8

3.1.1 Register xTIMEcomposer . 8
3.2 Start the command-line tools . 9
3.3 Welcome window . 10
3.4 Developer Column . 10

4 Frequently used commands 12
4.1 XCC . 12
4.2 XRUN . 12
4.3 XGDB . 13
4.4 XSIM . 13

C Developing in the XDE 14

5 Sharing projects and code in xTIMEcomposer 15
5.1 Import an xSOFTip component . 16
5.2 Import a HowTo example . 16
5.3 Import a Community project . 16
5.4 Import an xTIMEcomposer project . 17
5.5 Export an xTIMEcomposer project . 17

6 Developing applications using xSOFTip 18
6.1 The xSOFTip Explorer Perspective . 19

6.1.1 Adding xSOFTip to your project . 20
6.2 System Information . 21

6.2.1 Identifying suitable xCORE devices . 21
6.3 Configuring xSOFTip components . 22
6.4 Generating a project from your application . 22

D Compilation 23

7 Use xTIMEcomposer Studio to build a project 24

8 XCC Pragma Directives 25

REV 13.0.0

xTIMEcomposer User Guide 3/295

9 XCC command-line options 27
9.1 Overall Options . 27
9.2 Warning Options . 30
9.3 Debugging Options . 33
9.4 Optimization Options . 34
9.5 Preprocessor Options . 35
9.6 Linker And Mapper Options . 35
9.7 Directory Options . 36
9.8 Environment Variables Affecting XCC . 37
9.9 Board Support Provided by <platform.h> . 37

10 Using XMOS Makefiles 38
10.1 Projects, Applications and Modules . 38

10.1.1 Example Structure . 40
10.2 The Application Makefile . 40
10.3 The Project Makefile . 42
10.4 The module_build_info file . 43

11 Using XMOS Makefiles to create binary libraries 44
11.1 The module_build_info file . 44
11.2 The module Makefile . 45
11.3 Using the module . 45

E Timing 46

12 Use xTIMEcomposer to time a program 47
12.1 Launch the timing analyzer . 47
12.2 Time a section of code . 48

12.2.1 Visualize a route . 49
12.2.2 The Visualizations view . 49

12.3 Specify timing requirements . 50
12.4 Add program execution information . 50

12.4.1 Refine the worst-case analysis . 51
12.5 Validate timing requirements during compilation . 51

13 Use the XTA from the command line 53
13.1 Frequently used commands . 53

13.1.1 Loading a binary . 53
13.1.2 Routes . 53
13.1.3 Endpoints . 53
13.1.4 Adding endpoints to source . 54
13.1.5 Timing between endpoints . 54
13.1.6 Timing functions . 54
13.1.7 Timing loops . 55
13.1.8 Setting timing requirements . 55

13.2 Viewing results . 55
13.2.1 Route IDs . 55
13.2.2 Node IDs . 55
13.2.3 Summary . 55
13.2.4 Structure . 56
13.2.5 Source code annotation . 56

REV 13.0.0

xTIMEcomposer User Guide 4/295

13.2.6 Instruction traces . 56
13.2.7 Fetch no-ops . 57
13.2.8 Scaling Results . 57
13.2.9 Unknowns . 57

13.3 Refining timing results . 57
13.3.1 Exclusions . 58
13.3.2 Loop Iterations . 59
13.3.3 Loop path iterations . 60
13.3.4 Loop scope . 61
13.3.5 Instruction times . 63
13.3.6 Function times . 63
13.3.7 Path times . 64
13.3.8 Active tiles . 66
13.3.9 Node frequency . 66
13.3.10Number Of logical cores . 66

13.4 Program structure . 66
13.4.1 Compiling for the XTA . 66
13.4.2 Structural nodes . 67
13.4.3 Identifying nodes: code references . 68
13.4.4 Reference Classes . 69
13.4.5 Back trails . 70
13.4.6 Scope of references . 71

13.5 Automating the process . 72
13.5.1 Writing a script . 72
13.5.2 Running a script . 72
13.5.3 Embedding commands into source . 73

13.6 Scripting XTA via the Jython interface . 73

14 XTA command-line manual 74
14.1 Commands . 74

14.1.1 add . 74
14.1.2 analyze . 75
14.1.3 config . 75
14.1.4 clear . 76
14.1.5 debug . 76
14.1.6 echo . 77
14.1.7 exit . 77
14.1.8 help . 77
14.1.9 history . 77
14.1.10load . 77
14.1.11list . 78
14.1.12print . 79
14.1.13pwd . 80
14.1.14remove . 80
14.1.15scripter . 80
14.1.16set . 81
14.1.17source . 81
14.1.18status . 81
14.1.19version . 82

14.2 Pragmas . 82
14.3 Timing Modes . 82
14.4 Loop Scopes . 83

REV 13.0.0

xTIMEcomposer User Guide 5/295

14.5 Reference Classes . 83
14.5.1 FUNCTION . 83
14.5.2 BRANCH . 83
14.5.3 INSTRUCTION . 84
14.5.4 ENDPOINT . 84
14.5.5 ANY . 84
14.5.6 FUNCTION_WITH_EVERYTHING . 85
14.5.7 BRANCH_WITH_EVERYTHING . 85
14.5.8 INSTRUCTION_WITH_EVERYTHING . 86
14.5.9 ENDPOINT_WITH_EVERYTHING . 86
14.5.10ANY_WITH_EVERYTHING . 87

14.6 XTA Jython interface . 88
14.6.1 Load methods . 88
14.6.2 Route creation/deletion methods . 88
14.6.3 Add/remove methods . 88
14.6.4 Set methods . 89
14.6.5 Get methods . 89
14.6.6 Config methods . 89

14.7 Code reference grammar . 90

F Run on Hardware 92

15 Use xTIMEcomposer to run a program 93
15.1 Create a Run Configuration . 93
15.2 Re-run a program . 94

16 XRUN Command-Line Manual 95
16.1 Overall Options . 95
16.2 Target Options . 95
16.3 Debugging Options . 96
16.4 xSCOPE Options . 96

G Application Instrumentation and Tuning 98

17 Use xTIMEcomposer and xSCOPE to trace data in real-time 99
17.1 XN File Configuration . 99
17.2 Instrument a program . 100
17.3 Configure and run a program with tracing enabled . 102
17.4 Analyze data offline . 103
17.5 Analyze data in real-time . 104

17.5.1 Capture control . 104
17.5.2 Signal Control . 105
17.5.3 Trigger Control . 106
17.5.4 Timebase Control . 106
17.5.5 Screen Control . 107

17.6 Trace using the UART interface . 107

18 xSCOPE performance figures 109
18.1 Transfer rates between the xCORE Tile and XTAG-2 109
18.2 Transfer rates between the XTAG-2 and Host PC . 109

REV 13.0.0

xTIMEcomposer User Guide 6/295

19 xSCOPE Library API 110
19.1 Functions . 110
19.2 Enumerations . 115

H Simulation 117

20 Use xTIMEcomposer to simulate a program 118
20.1 Configure the simulator . 118
20.2 Trace a signal . 119

20.2.1 Enable signal tracing . 119
20.2.2 View a trace file . 120
20.2.3 View a signal . 120

20.3 Set up a loopback . 121
20.4 Configure a simulator plugin . 122

21 xSIM command-line manual 123
21.1 Overall Options . 123
21.2 Warning Options . 123
21.3 Tracing Options . 124
21.4 Loopback Plugin Options . 126
21.5 xSCOPE Options . 127

22 XSIM Testbench and Plugin Interfaces 128
22.1 Implementing a Plugin . 129
22.2 Plugin Notifications . 130
22.3 Implementing a testbench . 131
22.4 Plugin API . 131

22.4.1 Interfacing with the Simulator . 132
22.5 Testbench API . 135

22.5.1 Interfacing with a Simulator . 136

I Debugging 139

23 Use xTIMEcomposer to debug a program 140
23.1 Launch the debugger . 141
23.2 Control program execution . 141
23.3 Examine a suspended program . 142
23.4 Set a breakpoint . 144
23.5 View disassembled code . 145

24 Debug with printf in real-time 146
24.1 Redirect stdout and stderr to the xTAG . 147
24.2 Run a program with xTAG output enabled . 148
24.3 Output using the UART interface . 148

J Flash Programming 150

25 Design and manufacture systems with flash memory 151
25.1 Boot a program from flash memory . 151

REV 13.0.0

xTIMEcomposer User Guide 7/295

25.2 Generate a flash image for manufacture . 152
25.3 Perform an in-field upgrade . 152

25.3.1 Write a program that upgrades itself . 152
25.3.2 Build and deploy the upgrader . 154

25.4 Customize the flash loader . 154
25.4.1 Build the loader . 155
25.4.2 Add additional images . 155

26 libflash API 156
26.1 General Operations . 156
26.2 Boot Partition Functions . 157
26.3 Data Partition Functions . 159

26.3.1 Page-Level Functions . 159
26.3.2 Sector-Level Functions . 160

27 List of devices natively supported by libflash 161

28 Add support for a new flash device 162
28.1 Libflash Device ID . 163
28.2 Page Size and Number of Pages . 163
28.3 Address Size . 164
28.4 Clock Rate . 164
28.5 Read Device ID . 165
28.6 Sector Erase . 166
28.7 Write Enable/Disable . 166
28.8 Memory Protection . 167
28.9 Programming Command . 168
28.10Read Data . 169
28.11Sector Information . 169
28.12Status Register Bits . 170
28.13Add Support to xTimeComposer . 171
28.14Select a Flash Device . 172

29 XFLASH Command-Line Manual 173
29.1 Overall Options . 173
29.2 Target Options . 174
29.3 Security Options . 175
29.4 Programming Options . 176

K Security and OTP Programming 177

30 Safeguard IP and device authenticity 178
30.1 The xCORE AES module . 179
30.2 Develop with the AES module enabled . 180
30.3 Production flash programming flow . 181
30.4 Production OTP programming flow . 182

31 XBURN Command-Line Manual 183
31.1 Overall Options . 183
31.2 Security Register Options . 184
31.3 Target Options . 184

REV 13.0.0

xTIMEcomposer User Guide 8/295

31.4 Programming Options . 185

L Programming in C/XC 186

32 Calling between C/C++ and XC 187
32.1 Passing arguments from XC to C/C++ . 187
32.2 Passing arguments from C/C++ to XC . 187

33 XC Implementation-Defined Behavior 188

34 C Implementation-Defined Behavior 190
34.1 Environment . 190
34.2 Identifiers . 191
34.3 Characters . 191
34.4 Floating point . 192
34.5 Hints . 192
34.6 Preprocessing directives . 192
34.7 Library functions . 192
34.8 Locale-Specific Behavior . 196

35 C and C++ Language Reference 199
35.1 Standards . 199
35.2 Books . 199
35.3 Online . 199

M Programming in Assembly 200

36 Inline Assembly 201

37 Make assembly programs compatible with the XMOS XS1 ABI 203
37.1 Symbols . 203
37.2 Alignment . 203
37.3 Sections . 204

37.3.1 Data . 204
37.3.2 Arrays . 205

37.4 Functions . 205
37.4.1 Parameters and return values . 205
37.4.2 Caller and callee save registers . 206
37.4.3 Resource usage . 206
37.4.4 Side effects . 207

37.5 Elimination blocks . 208
37.6 Typestrings . 208
37.7 Example . 209

38 Using the XTA With Assembly 211
38.1 Assembly Directives . 211
38.2 Branch Table Example . 211
38.3 Core Start/Stop Example . 212

39 Assembly Programming Manual 213

REV 13.0.0

xTIMEcomposer User Guide 9/295

39.1 Lexical Conventions . 213
39.1.1 Comments . 213
39.1.2 Symbol Names . 213
39.1.3 Directives . 213
39.1.4 Constants . 214

39.2 Sections and Relocations . 214
39.3 Symbols . 214

39.3.1 Attributes . 214
39.4 Labels . 215
39.5 Expressions . 215
39.6 Directives . 216

39.6.1 add_to_set . 216
39.6.2 max_reduce, sum_reduce . 217
39.6.3 align . 217
39.6.4 ascii, asciiz . 217
39.6.5 byte, short, int, long, word . 218
39.6.6 file . 218
39.6.7 loc . 218
39.6.8 weak . 219
39.6.9 globl, global, extern, locl, local . 219
39.6.10typestring . 220
39.6.11ident, core, corerev . 220
39.6.12section, pushsection, popsection . 220
39.6.13text . 221
39.6.14set, linkset . 221
39.6.15cc_top, cc_bottom . 222
39.6.16scheduling . 223
39.6.17syntax . 223
39.6.18assert . 223
39.6.19Overlay Directives . 223
39.6.20Language Directives . 224
39.6.21XMOS Timing Analyzer Directives . 226
39.6.22uleb128, sleb128 . 226
39.6.23space, skip . 227
39.6.24type . 227
39.6.25size . 227
39.6.26jmptable, jmptable32 . 227

39.7 Instructions . 228
39.7.1 Data Access . 229
39.7.2 Branching, Jumping and Calling . 230
39.7.3 Data Manipulation . 230
39.7.4 Concurrency and Thread Synchronization . 231
39.7.5 Communication . 232
39.7.6 Resource Operations . 232
39.7.7 Event Handling . 233
39.7.8 Interrupts, Exceptions and Kernel Calls . 233
39.7.9 Debugging . 234
39.7.10Pseudo Instructions . 234

39.8 Assembly Program . 235

REV 13.0.0

xTIMEcomposer User Guide 10/295

N Programming for XS1 Devices 236

40 XCC Target-Dependent Behavior for XS1 Devices 237
40.1 Support for Clock Blocks . 237
40.2 Support for Ports . 238

40.2.1 Serialization . 238
40.2.2 Timestamping . 238
40.2.3 Changing Direction of Buffered Ports . 239

40.3 Channel Communication . 239

41 XS1 Data Types 240

42 XS1 port-to-pin mapping 241

43 XS1 Library 243
43.1 Data types . 243
43.2 Port Configuration Functions . 243
43.3 Clock Configuration Functions . 253
43.4 Port Manipulation Functions . 256
43.5 Clock Manipulation Functions . 259
43.6 Logical Core/Tile Control Functions . 260
43.7 Channel Functions . 268
43.8 Predicate Functions . 274
43.9 XS1-S Functions . 275
43.10Miscellaneous Functions . 276

44 xCORE 32-Bit Application Binary Interface 279

O Platform Configuration 280

45 Describe a target platform 281
45.1 Supported network topologies . 281
45.2 A board with two packages . 281

46 XN Specification 286
46.1 Network Elements . 286
46.2 Declaration . 286
46.3 Package . 287
46.4 Node . 288

46.4.1 Tile . 289
46.4.2 Port . 290
46.4.3 Boot . 290
46.4.4 Source . 290
46.4.5 Bootee . 291
46.4.6 Bit . 291
46.4.7 Link . 291
46.4.8 Service . 292
46.4.9 Chanend . 292

46.5 Link . 293
46.5.1 LinkEndpoint . 293

46.6 Device . 294

REV 13.0.0

xTIMEcomposer User Guide 11/295

46.6.1 Attribute . 294
46.7 JTAGDevice . 295

REV 13.0.0

Part A

Installation

CONTENTS

· System requirements for running the xTIMEcomposer

· Installation Instructions

REV 13.0.0

1 System requirements for running the xTIMEcomposer

The xTIMEcomposer tools are officially supported on the following platforms:

Windows XP SP3

· 32-bit with 32-bit JRE

Windows 7 SP 1

· 32-bit with 32-bit JRE

· 64-bit with 32-bit JRE

Mac OS X 10.6 +

· Intel Processors

Linux CentOS 5.8

· 32-bit with 32-bit JRE

· 64-bit with 64-bit JRE

The tools also work on many other versions of Linux, including RedHat and Ubuntu.
For up-to-date information on known compatibility issues, see:

· http://www.xmos.com/tools

You must also have a Java Runtime Environment (JRE) version 1.5 or later installed,
which can be downloaded from:

· http://java.sun.com/javase/downloads

REV 13.0.0

http://www.xmos.com/tools
http://java.sun.com/javase/downloads

2 Installation Instructions

IN THIS CHAPTER

· Install the tools

· Install the USB drivers

xTIMEcomposer and related drivers are provided in a single platform-specific
downloadable file.

2.1 Install the tools

To install the tools on your PC, follow these steps:

On Windows:

1. Download the Windows installer from:

· http://www.xmos.com/tools

2. Double-click the installer to run it. Follow the on-screen prompts to install the
tools on your PC.

On Mac:

1. Download the Macintosh installer from:

· http://www.xmos.com/tools

2. Double-click the downloaded installer to open it, and then drag the xTIMEcom-
poser icon into your Applications folder.

The installer copies the files to your hard disk.

3. Unmount the installer.

On Linux:

1. Download the Linux archive from:

· http://www.xmos.com/tools

2. Uncompress the archive to an installation directory, for example by entering
the following command:

· tar -xzf archive.tgz -C /home/user

REV 13.0.0

http://www.xmos.com/tools
http://www.xmos.com/tools
http://www.xmos.com/tools

xTIMEcomposer User Guide 15/295

2.2 Install the USB drivers

xTIMEcomposer interfaces to development boards over USB. Some boards provide a
completely integrated debugger with the xCORE device, others require an external
xTAG adapter that connects to the board via an XSYS connector, and some use
integrated debug adapter on the board, as shown in Figure 1.

FTDI
Integrated

adapter

USB
connector

xCORE
device

USB
connector

xCORE
device
with

integrated
debugger

XSYS
External
adapter

xCORE
device

USB
connector

XSYS

xTAG

Figure 1:

Adapter con-
figurations
used with

xCORE
development

boards

Consult your board manual to determine which driver to use.

On Windows:

The JTAG drivers are installed by the tools installer. Plug your xCORE development
board in after an installation to load the drivers.

On Mac:

USB driver support is provided natively on OS X.

On Linux:

USB driver support is provided natively on some versions of Linux. In some cases
the driver must be enabled, see Enable USB drivers on Linux1

1http://www.xmos.com/published/enable-usb-drivers-linux

REV 13.0.0

http://www.xmos.com/published/enable-usb-drivers-linux

Part B

Quick Start

CONTENTS

· Get started with xTIMEcomposer

· Frequently used commands

REV 13.0.0

3 Get started with xTIMEcomposer

IN THIS CHAPTER

· Start xTIMEcomposer Studio

· Start the command-line tools

· Welcome window

· Developer Column

3.1 Start xTIMEcomposer Studio

To start xTIMEcomposer Studio:

In Windows:

Choose Start · Programs · XMOS · xTIMEcomposer_13 · xtimecomposer.

In OS X:

Open a new Finder window, navigate to the Applications folder, open the folder
XMOS_xTIMEcomposer_13 and double-click on the xtimecomposer.app icon.

In Linux:

Open a terminal window, change to the installation directory and enter the following
commands:

· source SetEnv

· xtimecomposer

3.1.1 Register xTIMEcomposer

The first time you start xTIMEcomposer Studio, you are required to register the
tools with your XMOS account so you must be connected to the internet.

Once you have registered xTIMEcomposer you can use the tools offline although we
recommend that you remain connected as often as possible in order to download
the latest versions of software and documentation.

Registration provides benefits such as automatic notifications of document and
software updates directly within the Studio, and the option to manage account
settings from within the tools.

REV 13.0.0

xTIMEcomposer User Guide 18/295

Figure 2:

xTIMEcomposer
Studio

registration
window

3.2 Start the command-line tools

The xTIMEcomposer command-line tools use a set of environment variables when
searching for header files, libraries and target devices (see §9.8). To add the
xTIMEcomposer tools to the path and configure the default set of environment
variables:

In Windows:

Choose Start · Programs · XMOS · xTIMEcomposer_13 · Command Prompt.

In OS X:

Open a Terminal window, change to the installation directory and enter the follow-
ing command:

· SetEnv.command

In Linux:

Open a Terminal window, change to the installation directory and enter the follow-
ing command:

· source SetEnv

You can now run any of the tools by entering its name and command-line options.
Some of the most common commands are summarized in the following section.

REV 13.0.0

xTIMEcomposer User Guide 19/295

3.3 Welcome window

The Welcome window in xTIMEcomposer Studio provides a convenient starting
point for all users, including developers who are new to XMOS and experienced
users.

Figure 3:

xTIMEcomposer
Studio

Welcome
window

Developers with an xCORE development board, can use the page to check their
board is working correctly, download firmware and find kit-specific documentation
or tutorials. Those who do not have a board you can follow a tools tutorial using the
simulator or download xTIMEcomposer related documentation and programming
guides.

In xTIMEcomposer Studio, choose Help · Welcome to view the Welcome window
at any time.

3.4 Developer Column

The xTIMEcomposer Developer Column contains a web bowser that displays all
the information developers need when writing real-time multicore applications,
including:

· a live view of the XMOS website (xmos.com), allowing users to download the
latest software and documentation from within the development tools, as well
as managing their XMOS account;

REV 13.0.0

xTIMEcomposer User Guide 20/295

· documentation and examples for xCORE resources such as xSOFTip or HowTo
examples, as you select them in the xTIMEcomposer perspectives;

· interactive tutorials that show you how to use XMOS development kits and
program real-time multicore applications are also displayed in the Developer
Column. Tutorials are loaded into the Developer Column using Help · Tutorials.

Figure 4:

xTIMEcomposer
Studio

Developer
Column

Developers navigate the content using the Developer Column toolbar, which pro-
vides the following options:

Detect connected hardware checks for any connected hardware and displays links
to the latest software and documentation related to the hardware. If no hardware
is available the latest resources for xTIMEcomposer are displayed.

Home loads the default Developer Column home page that displays content related
to the tools, development boards and silicon devices.

Local Home loads the home page for xTIMEcomposer and programming content
that has been downloaded and stored offline using the Update offline content
option.

Back and Forward navigate between the next and previous web pages in the
Developer Column.

Refresh reloads the current web page.

Update offline content downloads to your local drive the documentation for xTIME-
composer and programming C applications so they can be used in the Developer
Column when xTIMEcomposer is offline.

The Developer Column can be displayed at any time using Window · Show View
· Developer Column.

REV 13.0.0

4 Frequently used commands

IN THIS CHAPTER

· XCC

· XRUN

· XGDB

· XSIM

This document summarizes a number of frequently-used commands that can be run using the
command line.

4.1 XCC

To compile a program for your development board, enter the following commands:

1. xcc -print-targets

XCC displays a list of supported development boards.

2. xcc <file> -target=<board> -o <binary>

XCC compiles the file, generating an executable binary for your target board.

4.2 XRUN

To load a compiled program onto your development board, enter the following commands:

1. xrun -l

XRUN prints an enumerated list of all JTAG adapters connected to your PC and the devices on
each JTAG chain, in the form:

ID Name Adapter ID Devices

-- ---- ---------- -------

2. xrun --id <n> --io <binary>

XRUN loads your binary onto the hardware connected to the adapter with the specified ID.

The --io option causes XRUN to remain connected to the adapter, providing the standard
output stream from your hardware to the terminal.

REV 13.0.0

xTIMEcomposer User Guide 22/295

4.3 XGDB

To compile and debug your program, enter the following commands:

1. xcc <file> -target=<board> -o <binary> -g

XCC compiles your file with debugging information enabled.

2. xgdb bin.xe

GDB loads with a prompt.

3. list-devices

GDB prints an enumerated list of all JTAG adapters connected to your PC and the devices on
each JTAG chain, in the form:

ID Name Adapter ID Devices

-- ---- ---------- -------

4. connect --id <id>

GDB connects to your target hardware.

5. load

GDB loads your binary.

6. break main

GDB adds a breakpoint to the function main.

7. continue

GDB runs the program until it reaches main.

4.4 XSIM

To run your program on the simulator, enter the following command:

· xsim <binary>

To launch the simulator from within the debugger, at the GDB prompt enter the command:

· connect -s

You can then load your program onto the simulator in the same way as if using a development
board.

REV 13.0.0

Part C

Developing in the XDE

CONTENTS

· Sharing projects and code in xTIMEcomposer

· Developing applications using xSOFTip

REV 13.0.0

5 Sharing projects and code in xTIMEcomposer

IN THIS CHAPTER

· Import an xSOFTip component

· Import a HowTo example

· Import a Community project

· Import an xTIMEcomposer project

· Export an xTIMEcomposer project

xTIMEcomposer Studio has a set of views that you can use to import software into
your project from different sources including:

· xSOFTip: browse the complete XMOS library of xSOFTip components and func-
tional blocks, configure components and then drag them into your project.

· HowTo: browse a library of examples and code snippets that show how to do
the most common tasks in multicore applications and then drag the code into
your project.

· Community: browse projects on the GitHub open source community and drag
into xTIMEcomposer.

Figure 5:

xSOFTip View

REV 13.0.0

xTIMEcomposer User Guide 25/295

All xSOFTip components, HowTo examples and Community projects contain asso-
ciated documentation and examples of how to use the code.

You can also share xTIMEcomposer projects with other developers using the
xTIMEcomposer Import/Export functions.

5.1 Import an xSOFTip component

To import an xSOFTip component follow these steps:

1. Select the xSOFTip view in the bottom left corner of the xTIMEcomposer window
(Window · Show View · xSOFTip).

2. Double-click the component you want to import.

3. Select the version you require. The latest version is the default option.

4. Click Finish.

Documentation for the xSOFTip component is displayed in the Developer Col-
umn.

5.2 Import a HowTo example

To import a HowTo example follow these steps:

1. Select the HowTo view in the bottom left corner of the xTIMEcomposer window
(Window · Show View · HowTo).

2. Double-click the example you want to import.

3. Select the version you require. The latest version is the default option.

4. Click Finish.

Documentation for the howTo example is displayed in the Developer Column.

5.3 Import a Community project

To import a Community project follow these steps:

1. Select the Community view in the bottom left corner of the xTIMEcomposer
window (Window · Show View · Community).

2. Double-click the project you want to import.

3. Click Finish.

Documentation for the Community project is displayed in the Developer Column.

REV 13.0.0

xTIMEcomposer User Guide 26/295

5.4 Import an xTIMEcomposer project

To import a project follow these steps:

1. Choose File · Import.

2. Double-click on the General option, select Existing Projects into Workspace
and click Next.

3. In the Import dialog box, click Browse (next to the Select archive file text
box).

4. Select the archive to import and click Open.

5. Click Finish.

5.5 Export an xTIMEcomposer project

To export a project follow these steps:

1. Choose File · Export.

2. Double-click on the General option, select Archive File and click Next.

3. Select the projects you wish to export in the top-left panel. You can exclude
files by deselecting them in the top-right panel.

4. Enter a name for the archive in the To archive file text box.

5. Click Finish.

REV 13.0.0

6 Developing applications using xSOFTip

IN THIS CHAPTER

· The xSOFTip Explorer Perspective

· System Information

· Configuring xSOFTip components

· Generating a project from your application

XMOS provides a library of verified xSOFTip blocks that include interfaces such as
USB, Ethernet and serial ports, as well as DSP and protocol functions. The xSOFTip
blocks use xCORE resources to implement given function.

To make selection and deployment of xSOFTip as easy as possible, you can
use xSOFTip Explorer to browse all available blocks from our xSOFTip library,
understand the resource usage and configure the blocks to your specification.

Figure 6:

xSOFTip
Explorer

Perspective

REV 13.0.0

xTIMEcomposer User Guide 28/295

6.1 The xSOFTip Explorer Perspective

xSOFTip Explorer is available in a separate perspective in xTIMEcomposer Studio:

1. Select Window · Open Perspective · XMOS xSOFTip Explorer to open the
xSOFTip Explorer perspective, which has four windows:

· xSOFTip Browser – lists all the available components in the xSOFTip library.
As you add components to the System Configuration window, the System
Information window is updated with applicable resource information.

· System Configuration: shows the xSOFTip components in your application

· System Information: the resources used by the xSOFTip components you
have selected, and the xCORE devices that best suit your application

· Developer Column: online documentation about the xSOFTip components

Each xSOFTip component has a scope, which shows the status of the xSOFTip
component:

Figure 7:

xSOFTip
Scope

· General Use: The xSOFTip consists of a complete release from XMOS.

Complete resource information is available. All attempts have been made to
ensure the correct functionality of this block, but the final quality of any product
using this block is the responsibility of the user.

· Early Development: The xSOFTip is suitable for use in development of products
and is fully functional. However, extra care must be taken in verifying a product
using this software block. Resource information is available.

· Experimental: The xSOFTip is at an experimental/prototype stage. Code exists
but is not feature complete. Resource information may be available.

REV 13.0.0

xTIMEcomposer User Guide 29/295

· Roadmap: The xSOFTip is on the XMOS development roadmap. Estimated
resource information exists for this xSOFTip, but no code is available.

· Open Source Community: The xSOFTip has been developed by the Open Source
community. Resource information may not be available.

When you select a component in the Browser window, information about it is
displayed in the Developer Column including a description of what it does, its
features and which xKIT development kits are suitable for use with this xSOFTip.

Additional information about individual configuration options can be displayed in
the Developer Column by clicking the arrow to the left of the component after it
has been added to the System Configuration window.

6.1.1 Adding xSOFTip to your project

To add an xSOFTip component to a project follow these steps:

1. Drag the xSOFTip component into the System Configuration view (or double-click
the component in the xSOFTip Browser).

Figure 8:

xSOFTip
Explorer
System

Information
window

2. Select the version of the component you want to import - all released versions
are available. The most recent version is displayed by default.

3. Select the project you want to add the xSOFTip component to.

4. Click Finish.

REV 13.0.0

xTIMEcomposer User Guide 30/295

6.2 System Information

As you add xSOFTip components to the System Configuration view, the System
Information window shows the cumulative total of resources required by your
selection.

Figure 9:

xSOFTip
Explorer
System

Information
window

· Logical Cores: 32bit microcontroller cores. XMOS multicore microcontrollers
include 4, 6, 8, 10, 12 and 16-core devices.

· Ports: I/O pins of XMOS multicore microcontrollers are connected to ports,
which allow your software to send and receive data to the pins with extremely
low latency. Ports are available in different widths: a 1-bit port is connected to 1
I/O pin, a 4-bit port is connected to 4 I/O pins.

· Clock Blocks: Clock blocks are used to precisely control timing of I/O pins.

· Chanends: Channel Ends are part of the xCONNECT system, allowing the cores
to send messages to each other through low latency xCONNECT channels.

· Timers: Timers are used by the software to control the time at which things
happen. Timers run at 100MHz, giving 10ns precision.

6.2.1 Identifying suitable xCORE devices

A list of Possible Devices is displayed at the bottom of the System Information
window. This shows which xCORE multicore microcontrollers are suitable for the
current xSOFTip selection.

REV 13.0.0

xTIMEcomposer User Guide 31/295

6.3 Configuring xSOFTip components

Some components have configurable options that can be changed once they have
been added to the System Configuration window.

Figure 10:

xSOFTip
Explorer

Configurable
Component

As you change the configuration, the resource usage is updated in the System
Information window.

6.4 Generating a project from your application

You can automatically create a project from the components in the System Config-
uration window.

1. Click the Generate Project button at the top of the System Configuration
window.

2. Enter a name for your project in the Generate Project window.

3. Select your development board from the Target Hardware list.

4. Click Finish.

xTIMEcomposer Studio generates a project with your selected xSOFTip.

xTIMEcomposer Studio changes to the Edit perspective when it creates a project.
xSOFTip is all delivered as C code, so you easily change it to meet your exact
requirements and add your own existing C functions.

You can switch between perspectives at any time using the Window · Open
Perspective menu.

REV 13.0.0

Part D

Compilation

CONTENTS

· Use xTIMEcomposer Studio to build a project

· XCC Pragma Directives

· XCC command-line options

· Using XMOS Makefiles

· Using XMOS Makefiles to create binary libraries

REV 13.0.0

7 Use xTIMEcomposer Studio to build a project

To build your project, select your project in the Project Explorer, click the arrow
next to the Build buttonand select either Debug or Release.

xTIMEcomposer uses the Makefile in your project to determine the configuration
settings used with the compiler.

Double-click the project Makefile in the Project Explorer to open it in the Makefile
Editor, where you can set the compiler options. The XCC Command-Line Manual
(see §9) lists all supported compiler options.

Figure 11:

Makefile
Editor

If there are no errors in your program, xTIMEcomposer adds the compiled binary
file to the Binaries folder in your project.

Errors are reported in the Console. Double-click a message highlighted red to
locate it in the editor.

REV 13.0.0

8 XCC Pragma Directives

xTimeComposer supports the following pragmas.

#pragma unsafe arrays
(XC Only) This pragma disables the generation of run-time safety checks that
prevent indexing an invalid array element within the scope of the next do, while or
for statement in the current function; outside of a function the pragma applies to
the next function definition.

#pragma loop unroll (n)
(XC only) This pragma controls the number of times the next do, while or for loop
in the current function is unrolled. n specifies the number of iterations to unroll,
and unrolling is performed only at optimization level 01 and higher. Omitting
the n parameter causes the compiler to try and fully unroll the loop. Outside of
a function the pragma is ignored. The compiler produces a warning if unable to
perform the unrolling.

#pragma stackfunction n
This pragma allocates n words (ints) of stack space for the next function declaration
in the current translation unit.

#pragma stackcalls n
(XC only) This pragma allocates n words (ints) of stack space for any function
called in the next statement. If the next statement does not contain a function call
then the pragma is ignored; the next statement may appear in another function.

#pragma ordered
(XC only) This pragma controls the compilation of the next select statement. This
select statement is compiled in a way such that if multiple events are ready when
the select starts, cases earlier in the select statement are selected in preference to
ones later on.

#pragma select handler
(XC only) This pragma indicates that the next function declaration is a select
handler. A select handler can be used in a select case, as shown in the example
below.

#pragma select handler
void f(chanend c, int &token , int &data);

...
select {

case f(c, token , data):
...
break;

}
...

REV 13.0.0

xTIMEcomposer User Guide 35/295

The effect is to enable an event on the resource that is the first argument to the
function. If the event is taken, the body of the select handler is executed before
the body of the case.

The first argument of the select handler must have transmissive type and the return
type must be void.

If the resource has associated state, such as a condition, then the select will not
alter any of that state before waiting for events.

#pragma fallthrough
(XC only) This pragma indicates that the following switch case is expected to
fallthrough to the next switch case without a break or return statement. This will
suppress any warnings/errors from the compiler due to the fallthrough.

#pragma xta label "name"
This pragma provides a label that can be used to specify timing constraints.

#pragma xta endpoint "name"
(XC only) This pragma specifies an endpoint. It may appear before an input or
output statement.

#pragma xta call "name"
(XC only) This pragma defines a label for a (function) call point. Use to specify a
particular called instance of a function. For example, if a function contains a loop,
the iterations for this loop can be set to a different value depending on which call
point the function was called from.

#pragma xta command "command"
(XC only) This pragma allows XTA commands to be embedded into source code.
All commands are run every time the binary is loaded into the XTA. Commands are
executed in the order they occur in the file, but the order between commands in
different source files is not defined.

#pragma xta loop (integer)
(XC only) This pragma applies the given loop XTA iterations to the loop containing
the pragma.

REV 13.0.0

9 XCC command-line options

IN THIS CHAPTER

· Overall Options

· Warning Options

· Debugging Options

· Optimization Options

· Preprocessor Options

· Linker And Mapper Options

· Directory Options

· Environment Variables Affecting XCC

· Board Support Provided by <platform.h>

XCC is the front-end to the xCORE C, C++ and XC compilers. Typical usage results
in preprocessing, compilation, assembly, linking, and mapping code and data onto
tiles. Some options allow this process to be stopped at intermediate stages and
other options are passed to one stage of processing. Most options have negative
forms (for example, -fno-option). A space between an option and its argument is
permitted.

Build settings for an application are defined in the application Makefile. Double
click the Makefile in the Project Explorer to open it in the Makefile Editor.

9.1 Overall Options

The four possible stages of compilation are preprocessing, compilation proper,
assembly and linking/mapping. The first three stages are applied to an individual
source file, producing an object file. Linking and mapping combine the object files
and an XN file into a single executable XE file, which contains the code and data
segments for each tile.

REV 13.0.0

xTIMEcomposer User Guide 37/295

source-file The suffix of a source file determines how it is handled by default.

Extension Type of File Preprocessed by XCC

.xc XC source code Y

.c C source code Y

.cpp CPP source code (for compatability, the
extensions cc, cp, c++, C and cxx are also
recognized)

Y

.S Assembly code Y

.xta xCORE Timing Analyzer script N

.xn xCORE Network Description N

.xi XC source code N

.i C source code N

.ii C++ source code N

.s Assembly code N

other Object file .o be given to the linker N

Figure 12:

File
extensions
recognized
by XCC and

their
meaning

-xlanguage Specifies the language for the following input files. This option ap-
plies to all following input files until the next -x option. Supported
values for language are:

xc
c
c++
assembler
assembler-with-cpp
xn
xta
none (turn off language specification)

-std=standard
Specifies the language variant for the following input C or C++ file.
Supported values for standard are:

c89
ISO C89

gnu89
ISO C89 with GNU extensions

c99
ISO C99

gnu99
ISO C99 with GNU extensions (default for C programs)

c++98
ISO C++ (1998)

gnu++98
ISO C++ (1998) with GNU extensions (default for C++ pro-
grams)

REV 13.0.0

xTIMEcomposer User Guide 38/295

-fsubword-select
In XC, allows selecting on channel inputs where the size of the
desstination variable is less than 32 bits.

This is default for targets based on XS1-L devices. It is not default
for targets based on XS1-G devices. For further details, see §40.3.

-target=platform
Specifies the target platform. The platform configuration must be
specified in the file platform.xn, which is searched for in the paths
specified by the XCC_DEVICE_PATH environment variable (see §9.8).

-foverlay Enable support for memory overlays. Functions marked as overlay
roots are placed in external memory and are loaded on demand at
runtime. The option should be passed when compiling and linking.
An overlay runtime should be supplied in the application.

-foverlay=flash
Enable support for memory overlays linking in the flash overlay
runtime. Overlays are only enabled on tiles which boot from flash.

-foverlay=syscall
Enable support for memory overlays linking in the syscall overlay
runtime. Overlay are enabled on all tiles. Overlays are loaded from
a host machine using a system call.

-fxscope Enable support for xSCOPE tracing. The XN file of the target must
contain an xSCOPE link. The option should be passed when compil-
ing and linking.

-funroll-loops
Unroll loops with small iteration counts. This is enabled at -O2 and
above.

-finline-functions
Integrate simple functions into their callers. This is enabled at -O2
and above and also at -Os.

-pass-exit-codes
Returns the numerically highest error code produced by any phase
of compilation. (By default XCC returns 1 if any phase of the
compiler returns non-success, otherwise it returns 0.)

-c Compiles or assembles the source files, producing an object file
for each source file, but does not link/map. By default the object
filename is formed by replacing the source file suffix with .o (for
example, a.c produces a.o).

-S Stops after compilation proper, producing an assembly code file
for each nonassembly input file specified. By default the assembly
filename is formed by replacing the source file suffix with .s.

Input files not requiring compilation are ignored.

REV 13.0.0

xTIMEcomposer User Guide 39/295

-E Preprocesses the source files only, outputting the preprocessed
source to stdout.

Input files not requiring preprocessing are ignored.

-ofile Places output in file.

If -o is not specified, the executable file is placed in a.xe, the
object file for source.suffix in source.o, its assembly code file
in source.s, and all preprocessed C/C++/XC source on standard
output.

-v Prints (on standard error) the commands executed at each stage of
compilation. Also prints the version number of XCC, the preproces-
sor and the compiler proper.

-### The same as -v except that the commands are not executed and all
command arguments are quoted.

--help Prints a description of the supported command line options. If the
-v option is also specified, --help is also passed to the subprocesses
invoked by XCC.

--version Displays the version number and copyrights.

9.2 Warning Options

Many specific warnings can be controlled with options beginning -W. Each of the
following options has a negative form beginning -Wno- to turn off warnings.

-fsyntax-only
Checks the code for syntax errors only, then exits.

-w Turns off all warning messages.

-Wbidirectional-buffered-port
Warns about the use of buffered ports not qualified with either in
or out. This warning is enabled by default.

-Wchar-subscripts
Warns if an array subscript has type char.

-Wcomment Warns if a comment-start sequence /* appears in a /* comment, or
if a backslash-newline appears in a // comment. This is default.

-Wimplicit-int
Warns if a declaration does not specify a type. In C also warns about
function declarations with no return type.

-Wmain Warns if the type of main is not a function with external linkage re-
turning int. In XC also warns if main does not take zero arguments.

REV 13.0.0

xTIMEcomposer User Guide 40/295

In C also warns if main does not take either zero or two arguments
of appropriate type.

-Wmissing-braces
Warns if an aggregate or union initializer is not fully bracketed.

-Wparentheses
Warns if parentheses are omitted when there is an assignment in a
context where a truth value is expected or if operators are nested
whose precedence people often find confusing.

-Wreturn-type
Warns if a function is defined with a return type that defaults to int
or if a return statement returns no value in a function whose return
type is not void.

-Wswitch-default
Warns if a switch statement does not have a default case.

-Wswitch-fallthrough
(XC only) Warns if a case in a switch statement with at least one
statement can have control fall through to the following case.

-Wtiming Warns if timing constraints are not satisfied. This is default.

-Wtiming-syntax
Warns about invalid syntax in timing scripts. This is default.

-Wunused-function
Warns if a static function is declared but not defined or a non-inline
static function is unused.

-Wunused-parameter
Warns if a function parameter is unused except for its declaration.

-Wunused-variable
Warns if a local variable or non-constant static variable is unused
except for its declaration.

-Wunused Same as -Wunused-function, -Wunused-variable and
-Wno-unused-parameter.

-Wall Turns on all of the above -W options.

The following -W... options are not implied by -Wall.

-Wextra
-W Prints extra warning messages for the following:

· A function can return either with or without a value (C, C++ only).

REV 13.0.0

xTIMEcomposer User Guide 41/295

· An expression statement or left-hand side of a comma expression
contains no side effects. This warning can be suppressed by
casting the unused expression to void (C, C++ only).

· An unsigned value is compared against zero with < or <=.

· Storage-class specifiers like static are not the first things in a
declaration (C, C++ only).

· A comparison such as x<=y<=z appears (XC only).

· The return type of a function has a redundant qualifier such as
const.

· Warns about unused arguments if -Wall or -Wunused is also spec-
ified.

· A comparison between signed and unsigned values could pro-
duce an incorrect result when the signed value is converted to
unsigned. (Not warned if -Wno-sign-compare is also specified.)

· An aggregate has an initializer that does not initialize all mem-
bers.

· An initialized field without side effects is overridden when using
designated initializers (C, C++ only).

· A function parameter is declared without a type specifier in K&R-
style functions (C, C++ only).

· An empty body occurs in an if or else statement (C, C++ only).

· A pointer is compared against integer zero with <, <=, >, or >=.
(C, C++ only).

· An enumerator and a non-enumerator both appear in a condi-
tional expression. (C++ only).

· A non-static reference or non-static const enumerator and a non-
enumerator both appear in a conditional expression (C++ only).

· Ambiguous virtual bases (C++ only).

· Subscripting an array which has been declared register (C++
only).

· Taking the address of a variable which has been declared
register (C++ only).

· A base class is not initialized in a derived class’ copy constructor
(C++ only).

-Wconversion
Warns if a negative integer constant expression is implicitly con-
verted to an unsigned type.

-Wdiv-by-zero
Warns about compile-time integer division by zero. This is default.

REV 13.0.0

xTIMEcomposer User Guide 42/295

-Wfloat-equal
Warns if floating point values are used in equality comparisons.

-Wlarger-than-len
Warns if an object of larger than len bytes is defined.

-Wpadded Warns if a structure contains padding. (It may be possible to rear-
range the fields of the structure to reduce padding and thus make
the structure smaller.)

-Wreinterpret-alignment
Warns when a reinterpret cast moves to a larger alignment.

-Wshadow Warns if a local variable shadows another local variable, parameter
or global variable or if a built-in function is shadowed.

-Wsign-compare
Warns if a comparison between signed and unsigned values could
produce an incorrect result when the signed value is converted to
unsigned.

-Wsystem-headers
Prints warning messages for constructs found in system header
files. This is not default. See §9.7.

-Wundef Warns if an undefined macro is used in a #if directive.

-Werror Treat all warnings as errors.

-Werror=option
Turns a warning message into an error. The option should be one
of the warning options to the compiler that can be prefixed with -W.

By default, the flag -Werror=timing-syntax is set. Turning this
warning into an error implies that timing warnings (-Wtiming) are
also errors and vice versa.

9.3 Debugging Options

-g Produces debugging information.

-fxta-info Produces timing information for use with XTA. This is default.

-fresource-checks
Produces code in the executable that traps if a resource allocation
fails. This causes resource errors to be detected as early as possible.

-save-temps Saves the intermediate files. These files are placed in the current
directory and named based on the source file.

REV 13.0.0

xTIMEcomposer User Guide 43/295

-fverbose-asm
Produces extra compilation information as comments in intermedi-
ate assembly files.

-dumpmachine
Prints the target machine and exit.

-dumpversion
Prints the compiler version and exit.

-print-multi-lib
Prints the mapping from multilib directory names to compiler
switches that enable them. The directory name is seperated from
the switches by ‘;’, and each switch starts with a ‘@’ instead of the
‘-’, without spaces between multiple switches.

-print-targets
Prints the target platforms supported by the compiler. The target
names correspond to strings accepted by the -target option.

9.4 Optimization Options

Turning on optimization makes the compiler attempt to improve performance
and/or code size at the expense of compilation time and the ability to debug the
program.

-O0 Do not optimize. This is the default.

-O
-O1 Optimize. Attempts to reduce execution time and code size without

performing any optimizations that take a large amount of compila-
tion time.

-O2 Optimize more. None of these optimizations involve a space-speed
tradeoff.

-O3 Optimize even more. These optimizations may involve a space-
speed tradeoff; high performance is preferred to small code size.

-Os Optimize for the smallest code size possible.

-fschedule Attempt to reorder instructions to increase performance. This is
not default at any optimization level.

REV 13.0.0

xTIMEcomposer User Guide 44/295

9.5 Preprocessor Options

The following options control the preprocessor.

-E Preprocesses only, then exit.

-Dname Predefines name as a macro with definition 1.

-Dname=definition
Tokenizes and preprocesses the contents of definition as if it ap-
peared in a #define directive.

-Uname Removes any previous definition of name.

-D and -U options are processed in the order given on the command
line.

-MD Outputs to a file a rule suitable for make describing the dependencies
of the source file. The default name of the dependency file is
determined based on whether the -o option is specified. If -o is
specified, the filename is the basename of the argument to -o with
the suffix .d. If -o is not specified, the filename is the basename
of the input file with the suffix .d. The name of the file may be
overriden with -MF.

-MMD The same as -MD expect that dependencies on system headers are
ignored.

-MF file Specifies the file to write dependency information to.

-MP Emits phony targets for each dependency of the source file. Each
phony target depends on nothing. These dummy rules work around
errors make gives if header files are removed without updating the
Makefile to match.

-MT file Specifies the target of the rule emitted by dependency generation.

9.6 Linker And Mapper Options

The following options control the linker/mapper.

-llibrary Searches the library library when linking. The linker searches and
processes libraries and object files in the order specified. The actual
library name searched for is liblibrary.a.

The directories searched include any specified with -L.

Libraries are archive files whose members are object files. The
linker scans the archive for its members which define symbols that
have so far been referenced but not defined.

REV 13.0.0

xTIMEcomposer User Guide 45/295

-nostartfiles
Do not link with the system startup files.

-nodefaultlibs
Do not link with the system libraries.

-nostdlib Do not link with the system startup files or system libraries.

-s Removes all symbol table and relocation information from the exe-
cutable.

-default-clkblk clk
Use clk as the default clock block. The clock block may be specified
by its name in <xs1.h> or by its resource number.

The startup code turns on the default clock block, configures it to
be clocked off the reference clock with no divide and puts it into
a running state. Ports declared in XC are initially attached to the
default clock block. If this option is unspecified, the default clock
block is set to XS1_CLKBLK_REF.

-Wm,option Passes option as an option to the linker/mapper. If option contains
commas, it is split into multiple options at the commas.

To view the full set of advanced mapper options, type xmap --help.

-Xmapper option
Passes option as an option to the linker/mapper. To pass an option
that takes an argument use -Xmapper twice.

-report Prints a summary of resource usage.

9.7 Directory Options

The following options specify directories to search for header files and libraries.

-Idir Adds dir to the list of directories to be searched for header files.

-isystemdir Searches dir for header files after all directories specified by -I.
Marks it as a system directory.

The compiler suppresses warnings for header files in system direc-
tories.

-iquotedir Searches dir only for header files requested with #include "file"
(not with #include <file>) before all directories specified by -I
and before the system directories.

-Ldir Adds dir to the list of directories to be searched for by -l.

REV 13.0.0

xTIMEcomposer User Guide 46/295

9.8 Environment Variables Affecting XCC

The following environment variables affect the operation of XCC. Multiple paths are
separated by an OS-specific path separator (‘;’ for Windows, ‘:’ for Mac and Linux).

XCC_INCLUDE_PATH
A list of directories to be searched as if specified with -I, but after
any paths given with -I options on the command line.

XCC_XC_INCLUDE_PATH
XCC_C_INCLUDE_PATH
XCC_CPLUS_INCLUDE_PATH
XCC_ASSEMBLER_INCLUDE_PATH

Each of these environment variables applies only when preprocess-
ing files of the named language. The variables specify lists of
directories to be searched as if specified with -isystem, but after
any paths given with -isystem options on the command line.

XCC_LIBRARY_PATH
A list of directories to be searched as if specified with -L, but after
any paths given with -L on the command line.

XCC_DEVICE_PATH
A list of directories to be searched for device configuration files.

XCC_EXEC_PREFIX
If set, subprograms executed by the compiler are prefixed with the
value of this environment variable. No directory seperated is added
when the prefix is combined with the name of a subprogram. The
prefix is not applied when executing the assembler or the mapper.

XCC_DEFAULT_TARGET
The default target platform, to be located as if specified with
-target=. The default target platform is used if no target is specified
with -target= and no XN file is passed.

9.9 Board Support Provided by <platform.h>

During compilation of a program, the compiler generates a temporary header file
named platform.h that contains variable and macro definitions, as defined by the
target XN file, which includes:

· Declarations of variables of type tileref (see §46.2).

· Macro definitions of port names (see §46.4.2).

REV 13.0.0

10Using XMOS Makefiles

IN THIS CHAPTER

· Projects, Applications and Modules

· The Application Makefile

· The Project Makefile

· The module_build_info file

Projects created by xTIMEcomposer Studio have their build controlled by Makefiles.
These Makefiles execute the build using the program xmake which is a port of Gnu
Make2. The build is executable either from within xTIMEcomposer or from the
command line by calling xmake directly.

You do not need to understand the Gnu Makefile language to develop applications
using xTIMEcomposer. The common XMOS Makefile provides support for projects,
applications and modules. You need only specify the required properties of the
build in Project Makefiles and Application Makefiles.

10.1 Projects, Applications and Modules

An application is made up of source code unique to the application and, optionally,
source code from modules of common code or binary libraries. When developing
an application, the working area is described in terms of workspaces, projects,
applications and modules.

Workspace
A workspace is a container for several projects.

Projects
A project is a directory possibly containing several applications and modules
plus other files relating to a particular project. A project may contain the
code for a particular board or reference design or be a software component
containing modules for other projects to use.

Applications
An application is a directory containing source files and a Makefile that builds
into a single executable (.xe) file. By convention application directories start
with the prefix app_. These applications appear at the top level in the Project
Explorer in xTIMEcomposer.

Modules
A module is a directory containing source files and/or binary libraries. The
source does not build to anything by itself but can be used by applications. By

2http://www.gnu.org/software/make/

REV 13.0.0

http://www.gnu.org/software/make/

xTIMEcomposer User Guide 48/295

convention module directories start with the prefix module_. These modules
appear at the top level in the Project Explorer in xTIMEcomposer.

REV 13.0.0

xTIMEcomposer User Guide 49/295

10.1.1 Example Structure

An example workspace structure is shown below.

sw_avb/
app_avb_demo1/
app_avb_demo2/
module_avb1/
module_avb2/
doc/

sc_xtcp/
module_xtcp/
module_zeroconf/

sc_ethernet/
module_ethernet/

There are three projects within this workspace: sw_avb, sc_xtcp and sc_ethernet.
The sw_avb project contains two applications, each of which builds to a separate
binary. These applications can use source from the modules within the projects
and can use modules from their own project (module_avb1 and module_avb2) and
from other projects (module_xtcp, module_zeroconf and module_ethernet).

Alternatively, a workspace may be structured in the following way:

app_avb_demo1/
app_avb_demo2/
module_avb1/
module_avb2/
doc/
module_xtcp/
module_zeroconf/
module_ethernet/

In this case, all applications and modules are at the top level of the workspace.

10.2 The Application Makefile

Every application directory should contain a file named Makefile that includes
the common XMOS Makefile. The common Makefile controls the build, by default
including all source files within the application directory and its sub-directories.
The application Makefile supports the following variable assignments.

XCC_FLAGS[_config]
Specifies the flags passed to xcc during the build. This option sets
the flags for the particular build configuration config. If no suffix is
given, it sets the flags for the default build configuration.

XCC_C_FLAGS[_config]
If set, these flags are passed to xcc instead of XCC_FLAGS for all .c
files. This option sets the flags for the particular build configuration

REV 13.0.0

xTIMEcomposer User Guide 50/295

config. If no suffix is given, it sets the flags for the default build
configuration.

XCC_ASM_FLAGS[_config]
If set, these flags are passed to xcc instead of XCC_FLAGS for all
.s or .S files. This option sets the flags for the particular build
configuration config. If no suffix is given, it sets the flags for the
default build configuration.

XCC_MAP_FLAGS[_config]
If set, these flags are passed to xcc for the final link stage instead
of XCC_FLAGS. This option sets the flags for the particular build
configuration config. If no suffix is given, it sets the flags for the
default build configuration.

XCC_FLAGS_filename
Overrides the flags passed to xcc for the filename specified. This
option overrides the flags for all build configurations.

VERBOSE If set to 1, enables verbose output from the make system.

SOURCE_DIRS Specifies the list of directories, relative to the application directory,
that have their contents compiled. By default all directories are
included.

INCLUDE_DIRS
Specifies the directories to look for include files during the build.
By default all directories are included.

LIB_DIRS Specifies the directories to look for libraries to link into the ap-
plication during the build. By default all directories are included.

EXCLUDE_FILES
Specifies a space-separated list of source file names (not including
their path) that are not compiled into the application.

USED_MODULES
Specifies a space-separated list of module directories that are com-
piled into the application. The module directories should always be
given without their full path irrespective of which project they come
from, for example:

USED_MODULES = module_xtcp
↩ module_ethernet

MODULE_LIBRARIES
This option specifies a list of preferred libraries to use from modules
that specify more than one. See §11 for details.

REV 13.0.0

xTIMEcomposer User Guide 51/295

10.3 The Project Makefile

As well as each application having its own Makefile, the project should have a
Makefile at the top-level. This Makefile controls building the applications within
the project. It has one variable assignment within it to do this:

BUILD_SUBDIRS
Specifies a space-separated list of application directories to build.

REV 13.0.0

xTIMEcomposer User Guide 52/295

10.4 The module_build_info file

Each module directory should contain a file named module_build_info. This file
informs an application how to build the files within the module if the application
includes the module in its build. It can optionally contain several of the following
variable assignments.

DEPENDENT_MODULES
Specifies the dependencies of the module. When an application
includes a module it will also include all its dependencies.

MODULE_XCC_FLAGS
Specifies the options to pass to xcc when compiling source files
from within the current module. The definition can reference the
XCC_FLAGS variable from the application Makefile, for example:

MODULE_XCC_FLAGS = $(XCC_FLAGS) -O3

MODULE_XCC_XC_FLAGS
If set, these flags are passed to xcc instead of MODULE_XCC_FLAGS
for all .xc files within the module.

MODULE_XCC_C_FLAGS
If set, these flags are passed to xcc instead of MODULE_XCC_FLAGS
for all .c files within the module.

MODULE_XCC_ASM_FLAGS
If set, these flags are passed to xcc instead of MODULE_XCC_FLAGS
for all .s or .S files within the module.

OPTIONAL_HEADERS
Specifies a particular header file to be an optional configuration
header. This header file does not exist in the module but is provided
by the application using the module. The build system will pass the
a special macro __filename_h_exists__ to xcc if the application
has provided this file. This allows the module to provide default
configuration values if the file is not provided.

REV 13.0.0

11Using XMOS Makefiles to create binary libraries

IN THIS CHAPTER

· The module_build_info file

· The module Makefile

· Using the module

The default module system used by XMOS application makefiles includes common
modules at the source code level. However, it is possible to build a module into a
binary library for distribution without the source.

A module that is to be built into a library needs to be split into source that is used
to build the library and source/includes that are to be distributed with the library.
For example, you could specify the following structure.

module_my_library/
Makefile
module_build_info
libsrc/

my_library.xc
src/

support_fns.xc
include/

my_library.h

The intention with this structure is that the source file my_library.xc is compiled
into a library and that library will be distributed along with the src and include
directories (but not the libsrc directory).

11.1 The module_build_info file

To build a binary library some extra variables need to be set in the
module_build_info file. One of the LIBRARY or LIBRARIES variables must be set.

LIBRARY This variable specifies the name of the library to be created, for
example:

LIBRARY = my_library

LIBRARIES This variable can be set instead of the LIBRARY variable to specify
that several libraries should be built (with different build flags), for
example:

REV 13.0.0

xTIMEcomposer User Guide 54/295

LIBRARY = my_library my_library_debug

The first library in this list is the default library that will be linked
in when an application includes this module. The application
can specify one of the other libraries by adding its name to its
MODULE_LIBRARIES list.

LIB_XCC_FLAGS_libname
This variable can be set to the flags passed to xcc when compiling
the library libname. This option can be used to pass different
compilation flags to different variants of the library.

EXPORT_SOURCE_DIRS
This variable should contain a space separated list of directories
that are not to be compiled into the library and distributed as source
instead, for example:

EXPORT_SOURCE_DIRS = src include

11.2 The module Makefile

Modules that build to a library can have a Makefile (unlike normal, source-only
modules). The contents of this Makefile just needs to be:

XMOS_MAKE_PATH ?= ../..
include $(XMOS_MAKE_PATH)/xcommon/module_xcommon/build/Makefile.library

This Makefile has two targets. Running make all will build the libraries. Calling the
target make export will create a copy of the module in a directory called export
which does not contain the library source. For the above example, the exported
module would look like the following.

export/
module_my_library/

module_build_info
lib/

xs1b/
libmy_library.a

src/
support_fns.xc

include/
my_library.h

11.3 Using the module

An application can use a library module in the same way as a source module
(including the module name in the USED_MODULES list). Either the module with the
library source or the exported module can be used with the same end result.

REV 13.0.0

Part E

Timing

CONTENTS

· Use xTIMEcomposer to time a program

· Use the XTA from the command line

· XTA command-line manual

REV 13.0.0

12Use xTIMEcomposer to time a program

IN THIS CHAPTER

· Launch the timing analyzer

· Time a section of code

· Specify timing requirements

· Add program execution information

· Validate timing requirements during compilation

The xCORE Timing Analyzer lets you determine the time taken to execute code on
your target platform. Due to the deterministic nature of the xCORE architecture, the
tools can measure the shortest and longest time required to execute a section of
code. When combined with user-specified requirements, the tools can determine at
compile-time whether all timing-critical sections of code are guaranteed to execute
within their deadlines.

12.1 Launch the timing analyzer

To load a program under control of the timing analyzer, follow these steps:

1. Select a project in the Project Explorer.

2. Choose Run · Time Configurations.

3. In the left panel, double-click XCore Application. xTIMEcomposer creates a
new configuration and displays the default settings in the right panel.

4. xTIMEcomposer tries to identify the target project and executable for you. To
select one yourself, click Browse to the right of the Project text box and select
your project in the Project Selection dialog box. Then click Search Project and
select the executable file in the Program Selection dialog box.

You must have previously compiled your program without any errors for the
executable to be available for selection.

5. In the Name text box, enter a name for the configuration.

6. To save the configuration and launch the timing analyzer, click Time.

xTIMEcomposer loads your program in the timing analyzer and opens it in the
Timing perspective. In this perspective the editor is read-only, to ensure the
relationship between the binary and source code remains consistent.

REV 13.0.0

xTIMEcomposer User Guide 57/295

Figure 13:

Timing
perspective

xTIMEcomposer remembers the configuration last used to load your program. To
load XTA the program later using the same settings, just click the XTA button. To
use a different configuration, click the arrow to the right of the XTA button and
select a configuration from the drop-down list.

12.2 Time a section of code

A route consists of the set of all paths through which control can flow between
two points (or endpoints) in a program. Each route has a best-case time, in which
branches always follow the path that takes the shortest time to execute, and a
corresponding worst-case time.

To specify a route and analyze it, follow these steps:

1. Right-click on an endpoint marker in the editor margin and choose Set from
endpoint. xTIMEcomposer displays a green dot in the top-right quarter of the
marker.

2. Right-click on an endpoint marker and choose Set to endpoint. xTIMEcomposer
displays a red dot in the bottom-right quarter of the marker.

You can specify a start point above an end point. You can also specify a start
point at or below an end point, defining a route whose paths flow out and then
back into the function. This is typical of functions called multiple times or from
within a loop.

3. Click the Analyze Endpoints button in the main toolbar. xTIMEcomposerE analyzes all the paths in the specified route, displaying a tree-like representation
in the lower panel of the Routes view and a graph-like representation in the
Structure tab of the Visualizations view.

Alternatively, to analyze the time taken to execute a function, just click theF Analyze Function button in the main toolbar and select a function from the
drop-down list.

REV 13.0.0

xTIMEcomposer User Guide 58/295

xTIMEcomposer provides endpoint markers for all statements whose order is
guaranteed to be preserved during compilation. These statements include I/O
operations and function calls.

12.2.1 Visualize a route

The Routes view displays a structural representation of the route. Each time you
analyze a route, an entry is added to the top panel. Click on a route to view it in
the bottom panel. It is represented using the following nodes:

A source-level function.

A list of nodes that are executed in sequence.

A set of nodes that are executed conditionally.?

A loop consisting of a sequence of nodes in which the last node can branch back
to the first node.

A block containing a straight-line sequence of instructions.

A single machine instruction.

12.2.2 The Visualizations view

The Visualizations view provides graphical representations of the route. The
Structure tab represents the route as a line that flows from left to right, as shown
in the example below. The route forks into multiple paths whenever the code
branches, and all paths join at its end. The best-case timing path is highlighted in
green, the worst-case path in red, and all other paths are colored gray.

Function name

Best path

Worst path

End

Start

Instruction block

Loop

Unknown

Path
Figure 14:

Visualizations
view

In both the Route view and Structure view, you can hover over a node to display a
summary of its timing properties. Click on a node to highlight its source code in

REV 13.0.0

xTIMEcomposer User Guide 59/295

the editor, or double-click to go to the line at the start of the node. In the Structure
view, double-click on a function name to expand or collapse it.

12.3 Specify timing requirements

A timing requirement specifies how long the paths in a route may take to execute
for the program to behave correctly. In the top panel of the Routes view, the status
of each route is indicated by an icon to the left of its name:

No timing requirement is specified.

A timing requirement is specified and met.

A timing requirement is specified and met, subject to all I/O instructions being
ready to execute.

A timing requirement is specified and not met.

To specify a timing requirement, right-click on a route and choose Set timing
requirements. A dialog box opens. Enter the maximum time in which the paths
must execute in either ns, cycles or MHz and click OK. xTIMEcomposer updates
the status of the route.

12.4 Add program execution information

Under some conditions the timing analyzer is unable to prove timing without
additional information. Examples of common conditions include:

· The route contains an I/O instruction that can pause for an unknown length of
time.

· The route contains a loop with a data-dependent exit condition.

· A path fails to meet timing, but the path is only executed as a result of an error
condition and is not therefore timing critical.

In these cases you can provide the timing analyzer additional information about the
execution of your program. Armed with this additional information, the analyzer
may then be able to prove that a route’s timing requirement is met. Information
you can provide includes:

· The number of loop iterations: Right-click on a loop node and choose Set loop
iterations to display a dialog box. Enter a maximum loop count and click OK.

· The maximum pause time for an I/O instruction: Right-click on an instruction
node and choose Set instruction time to display a dialog box. Enter a value,
select a unit of time/rate (such as nanoseconds or MHz) and click OK.

· Exclude a path from the route: Right-click on a node and choose Exclude.

REV 13.0.0

xTIMEcomposer User Guide 60/295

12.4.1 Refine the worst-case analysis

By default, the timing analyzer assumes that a route always follows branches that
take the longest time to execute. If you know that this is not the case, for example
through inspection during simulation or a formal analysis of your program, you can
refine the parameters used by the analyzer. Refinements you can make include:

· Specifying an absolute execution time for a function call: Right-click on a
function node and choose Set function time to open a dialog box. Enter a time
and click OK.

· Specifying an absolute time for a path: Select a path by holding down Ctrl
(Windows, Linux) or (Mac) and clicking on two instruction nodes, then right-
click and choose Set path time to open a dialog box. Enter a time and click
OK.

· Specifying the number of times a node is executed: By default, the analyzer
assumes that the number of times a node is executed is the multiplication of
each loop count in its scope. To change the iteration count to be an absolute
value, right-click on a node and choose Set loop scope to open a dialog box.
Select Make scope absolute and click OK.

· Specifying the number of times a conditional is executed in a loop: By de-
fault, the analyzer assumes that a conditional node always follows the path that
takes the longest time to execute. To specify the number of times a conditional
target is executed, right-click on the target node and choose Set loop path
iterations to open a dialog box. Enter the number of iterations and click OK.

12.5 Validate timing requirements during compilation

Once you’ve specified the timing requirements for your program, including any
refinements about its execution, you can generate a script that checks these
requirements at compile-time.

To create a script that checks all timing requirements specified in the Routes view,
follow these steps:

1. Click the Generate Script button.

2. In the Script location text box, enter a filename for the script. The filename
must have a .xta extension.

3. To change the names of the pragmas added to the source file, modify their
values in the Pragma name fields.

4. Click OK to save the script and update your source code. xTIMEcomposer adds
the script to your project and opens it in the editor. It also updates your source
files with any pragmas required by the script.

The next time you compile your program, the timing requirements are checked
and any failures are reported as compilation errors. Double-click on a timing error
to view the failing requirement in the script.

REV 13.0.0

xTIMEcomposer User Guide 61/295

Figure 15:

Script
Options

dialog box

REV 13.0.0

13Use the XTA from the command line

IN THIS CHAPTER

· Frequently used commands

· Viewing results

· Refining timing results

· Program structure

· Automating the process

· Scripting XTA via the Jython interface

The XTA tool can be used interactively on the command-line or the console in
xTIMEcomposer Studio.

13.1 Frequently used commands

This section summarizes a number of frequently used commands that can be run
from the command line.

13.1.1 Loading a binary

To load a binary type:

load <FILE NAME >

13.1.2 Routes

A route is a timing-critical section of code. It consists of the set of all paths through
which control can flow between two points in a program (endpoints). A route can
be created by timing a function, timing a loop or by timing between endpoints.

13.1.3 Endpoints

An endpoint is any source line that, during the compilation process, must be
preserved, and its order with respect to other endpoints must be maintained.

To show a list of all endpoints type:

list allendpoints

If specifying a route with respect to assembly code then any valid label/program
counter (PC) can be used as an endpoint. However, program counters are classed

REV 13.0.0

xTIMEcomposer User Guide 63/295

as non-portable endpoints as they are likely to change between compilations and
their use in scripts is therefore discouraged.

13.1.4 Adding endpoints to source

Source lines can be labeled with endpoint pragmas to ensure that the endpoints
are portable. For example, Figure 16 shows a function that has been annotated
with endpoint pragmas called start and stop.

int g(in port p) {
int x, y;

pragma xta endpoint " start "
p :> x;

pragma xta endpoint " stop "
p :> y;

return (y - x);
}

Figure 16:

Putting an
endpoint

pragma into
the souce

To show a list of endpoints type:

list endpoints

13.1.5 Timing between endpoints

To time between endpoints type:

analyze endpoints <from ENDPOINT > <to ENDPOINT >

The XTA does not time code across multiple xCORE tiles so both endpoints must
be on the same tile.

One analysis can result in multiple routes being generated.

13.1.6 Timing functions

Type the function name on the console:

analyze function <FUNCTION >

This will create a route which describes the set of all possible paths from the
function entry point to all the function return points.

REV 13.0.0

xTIMEcomposer User Guide 64/295

13.1.7 Timing loops

To time a loop type:

analyze loop <ANY >

This creates a route that describes all possible paths through the loop. It it
effectively a shortcut for timing between endpoints where the start and stop
endpoint is the same, the point is within a loop and an exclusion has been placed
such that everything outside the loop is excluded.

One analysis can result in multiple routes being generated.

13.1.8 Setting timing requirements

To define the timing requirements for a route type:

set required <route id> <value > <MODE >

The supported timing modes are defined in §14.3.

The route IDs can be found by typing:

print summary

Alternatively, the - character can be used on the command-line or in a script to
refer to the last route analyzed.

13.2 Viewing results

13.2.1 Route IDs

All analyzed routes are given a unique route ID. However, when referring to routes
in a script, using the route ID may not always result in portable or robust scripts.
In many cases, the only route that needs to be referenced is the one that was last
analyzed. This can be achieved by using the ‘-’ character as the route ID. If the last
command created multiple routes then the ‘-’ character refers to all of the routes
created.

13.2.2 Node IDs

Within a single route, all nodes are assigned a unique ID number. This is required
as input for some of the console commands. The ‘-’ character can be used in this
context to refer to the top level node of the route.

13.2.3 Summary

To show a list of all routes type:

REV 13.0.0

xTIMEcomposer User Guide 65/295

print summary

Details for a specific route are shown using the command:

print routeinfo <route id>

13.2.3.1 Violation

When a timing requirement has been set for a route and the route takes more
time to execute than required, the time difference is called a violation. This value
specifies how much faster the route needs to be executed in order to meet the
timing requirement.

13.2.3.2 Slack

When a timing requirement has been set for a route and the route takes less time to
execute than required, the time difference is called slack. This value specifies how
much slower the route could be executed and still meet the timing requirement.

13.2.4 Structure

To display the the structure of a route in xTIMEcomposer Studio type:

print structure <route id>

The structure used by the XTA is described in §13.4.2.

13.2.5 Source code annotation

To display the source code which is executed by a route type:

print src <route id >

If only a part of a route should be used then the node ID can be specified:

print src <route id > <node id>

13.2.6 Instruction traces

To help developers understand the execution flow of a route, the XTA can create
representative instruction traces. Type:

print trace <route id>

REV 13.0.0

xTIMEcomposer User Guide 66/295

As a result of loops being unrolled when tracing, it is possible for the traces to get
very large. The trace operation can be cancelled at any time by pressing CTRL+C in
the command-line tool.

A trace can be redirected to a file by typing:

print trace <route id> > <file >

By default, the trace for worst-case path is printed. This can be changed to print
the best-case path instead by typing:

config case best

13.2.7 Fetch no-ops

The xCORE device may need to pause at certain times while more instructions are
fetched from memory. This results in the issue of fetch no-op instructions. These
are shown in the traces as FNOP at the points they will happen on the hardware.

In xTIMEcomposer Studio they are inserted into the disassembly at the points they
occur.

13.2.8 Scaling Results

By default, the XTA scales all timing results. This means that the appropriate unit
(ms, us, ns) will be used to print time values. This can be changed so that all times
are printed in ns by typing:

config scale false

13.2.9 Unknowns

The XTA may not always be able to determine the exact timing of a section of
code if it is unable to determine loop iteration counts or the execution time of
instructions. These unknown conditions can be displayed on the console by typing:

list unknowns <route id>

§13.3 describes how to address these warnings.

13.3 Refining timing results

There are cases where the XTA is unable to fully determine the timing of a section
of code, due to, for example, not being able to determine a loop count. This can
be addressed by adding defines. Defines can be added in two ways, to a global list,
or to a route-specific list. Those added to the global list get applied to every route
when upon creation.

REV 13.0.0

xTIMEcomposer User Guide 67/295

The use of the global list can result in more concise scripts. However, It is important
to be careful with defines added to the global list since they are ignored if they fail
to get applied to a route. This allows a full set of defines to be created before any
routes, but does mean that errors in these defines might be missed. Route specific
defines (added post route creation) will always flag an error if there is one.

13.3.1 Exclusions

Not all paths of execution in a route may be timing-critical. The route may contain
cases to handle errors where the timing of the code is not important. These paths
can be ignored in the timing script by adding exclusions. Exclusions tell the XTA to
ignore all paths which pass through that code point. Exclusions can be added to
the global list or applied to a specific route.

To set an exclusion on an existing route type:

set exclusion <route id> <ANY >

To add an exclusion to the list of exclusions to be taken into account during route
creation type:

add exclusion <ANY >

To list the global list of exclusions type:

list exclusions

To remove an exclusion from the global list type:

remove exclusion <ANY|*>

For example, consider the code in Figure 17.

int calculate (int a, int b) {
if (willOverflow (a, b) {

pragma xta label " overflow "
return processOverflow ();

}
return a + b;

}

Figure 17:

Excluding an
invalid path

To time the calculate function ignoring the error case:

· Using route-specific defines:

· analyze function calculate

· set exclusion - overflow

REV 13.0.0

xTIMEcomposer User Guide 68/295

· Using global defines:

· add exclusion overflow

· analyze function calculate

Although functionally equivalent, exclusion via the global defines mechanism can
result in faster, and more memory efficient, route creation. This is because the
global exclusions can be taken into account during route creation, so the search
space can be reduced. For post route creation exclusions, the complete route is
created before any pruning occurs.

13.3.2 Loop Iterations

Loop iteration counts can be unknown. Whenever possible, the compiler tells
the XTA about loop iteration counts. However, some loop counts are not known
statically. In these cases developers must specify worst-case values.

The compiler does not emit any loop iteration counts unless optimizations have
been enabled (-O1 or greater).

Some loops are self loops (loops whose body is the same as the header) and
therefore have a minimum iteration count of 1.

To set loop iterations on an existing route type:

set loop <route id> <ANY > <iterations >

To add an iteration count to the list of iteration counts to be used during route
creation type:

add loop <ANY > <iterations >

To list the current global loop iteration counts type:

list loops

To remove a loop iteration count from the global list type:

remove loop <ANY|*>

For example, consider the code in Figure 18.

To time the test function:

· Using route-specific defines:

· analyze function test

· set loop - delay_loop 10

· Using global defines:

REV 13.0.0

xTIMEcomposer User Guide 69/295

void delay (int j) {
for (unsigned int i = 0; i < j; ++i) {

pragma xta label " delay_loop "
delay_us (1);

}
}

int test () {
delay (10);

}

Figure 18:

Setting loop
iterations.

· add loop delay_loop 10

· analyze function test

13.3.3 Loop path iterations

A loop may contain multiple paths through it. When a loop iteration count has been
set the tools assumes that all iterations will take the worst-case path of execution
through the loop. This is not always the case, and a more realistic worst-case can
be established by specifying the number of iterations on individual paths through
the loop.

To set loop path iterations on an existing route type:

set looppath <route id> <ANY > <iterations >

To add a loop path count to the list of loop path counts to be used during route
creation type:

add looppath <ANY > <iterations >

To display the current list of global loop path counts type:

list looppaths

To remove a loop path count from the global list type:

remove looppath <ANY|*>

There are some rules that need to be followed when setting loop path iterations:

· In a nested loop, the outer loop iterations need to be set first.

· The loop path iterations set must be less than or equal to the loop iterations set
on the enclosing loop.

REV 13.0.0

xTIMEcomposer User Guide 70/295

· If the loop path iterations set are less than that of the enclosing loop, then there
must exist another path within the loop without its iterations set to which the
remaining iterations can be allocated.

For example, consider the code in Figure 19:

void f(int j) {
for (unsigned int i = 0; i < j; ++i) {

pragma xta label " f_loop "
if ((i & 1) == 0) {

pragma xta label " f_if "
g ();

}
}

}

int test () {
f (10);

}

Figure 19:

Setting loop
path

iterations.

To time the test function:

· Using route-specific defines:

· analyze function test

· set loop - f_loop 10

· set looppath - f_if 5

· Using global defines:

· add loop f_loop 10

· add looppath f_if 5

· analyze function test

13.3.4 Loop scope

By default, the XTA assumes that the iterations for loops are relative—the iterations
for an inner loop will be multiplied by the iterations of enclosing loops. However
this is not sufficient to describe all loop structures. If this assumption is not correct
a loop count can be set to absolute. The iteration count set on an absolute loop is
not multiplied up by the iterations set on enclosing loops.

To set loop scope on an existing route type:

set loopscope <route id> <ANY > <absolute|relative >

To add a loop scope to the list of loop scopes to be used during route creation
type:

REV 13.0.0

xTIMEcomposer User Guide 71/295

add loopscope <ANY > <absolute|relative >

To display the current list of global loop scopes, type:

list loopscopes

To remove a loop scope from the global list, type:

remove loopscope <ANY|*>

For example, consider the code in Figure 20

void f(int l) {
for (unsigned int i = 0; i < l; ++i) {

pragma xta label " outer_loop "
for (unsigned int j = 0; j < i; ++j) {

pragma xta label " inner_loop "
g ();

}
}

}

void test () {
f (10);

}

Figure 20:

Setting loop
scope.

To time the test function:

· Using route-specific defines:

· analyze function test

· set loop - outer_loop 10

· set loop - inner_loop 45

· set loopscope - inner_loop absolute

· Using global defines:

· add loop outer_loop 10

· add loop inner_loop 45

· add loopscope inner_loop absolute

· analyze function test

REV 13.0.0

xTIMEcomposer User Guide 72/295

13.3.5 Instruction times

Some instructions can pause the processor. By default, the XTA reports timing
assuming that no instructions pause, but flags them as warnings. Developers must
specify what the worst-case execution time of instructions are.

To set an instruction time in an existing route, type:

set instructiontime <route id> <ENDPOINT > <value > <MODE >

To add an instruction time to the list of instruction times to be used during route
creation, type:

add instructiontime <ENDPOINT > <value > <MODE >

To display the current list of global instruction times, type:

list instructiontimes

To remove an instruction time from the global list, type:

remove instructiontime <ANY|*>

For example, consider the code in Figure 21.

void f(port p) {
pragma endpoint " instr "
p :> value ;

}

Figure 21:

Setting an
instruction

time.

To time the f function:

· Using route-specific defines:

· analyze function f

· set instructiontime - instr 100.0 ns

· Using global defines:

· add instructiontime instr 100.0 ns

· analyze function f

13.3.6 Function times

In some cases it is necessary to define the time it takes to execute an entire
function. The XTA supports defining a function time. Once a function time is

REV 13.0.0

xTIMEcomposer User Guide 73/295

defined, all the unknowns within it are ignored and any routes which span this
function will use the defined time instead of calculating it.

To set a function time on an existing route, type:

set functiontime <route id> <FUNCTION > <value > <MODE >

To add a function time to the list of function times to be used during route creation,
type:

add functiontime <FUNCTION > <value > <MODE >

To display the current list of global function times, type:

list functiontimes

To remove an function time from the global list, type:

remove functiontime <FUNCTION|*>

For example, consider the code in Figure 22.

void delayOneSecond () {
g ();
}

void test () {
delayOneSecond ();

}

Figure 22:

Setting a
function time.

To time the test function:

· Using route-specific defines:

· analyze function test

· set functiontime - delayOneSecond 1000.0 ms

· Using global defines:

· add functiontime delayOneSecond 1000.0 ms

· analyze function test

13.3.7 Path times

In some cases it is necessary to define the time it takes to execute a particular
section of code. The XTA supports defining a path time for this case. Once a path

REV 13.0.0

xTIMEcomposer User Guide 74/295

time is defined all the unknowns within it are ignored, and any routes which span
this section of code will use the defined time instead of calculating it.

To set a path time on an existing route, type:

set pathtime <route id> <from ENDPOINT > <to ENDPOINT > <value > <MODE >

To add a path time to the list of path times to be used during route creation, type:

add pathtime <from ENDPOINT > <to ENDPOINT > <value > <MODE >

To display the current list of global path times, type:

list pathtimes

To remove an path time from the global list, type:

remove pathtime <from ENDPOINT|*> <to ENDPOINT|*>

For example, consider the code in Figure 23.

int f() {
int time ;
timer t;
pragma xta endpoint " start "
t :> time ;
pragma xta endpoint " stop "
t when timerafter (time + 100) :> time ;

}

void test () {
f ();

}

Figure 23:

Setting a path
time.

To time the test function:

· Using route-specific defines:

· analyze function test

· set pathtime - start stop 1000.0 ns

· Using global defines:

· add pathtime start stop 1000.0 ns

· analyze function test

REV 13.0.0

xTIMEcomposer User Guide 75/295

13.3.8 Active tiles

By default the XTA finds routes on all tiles within a program. However, it is possible
to restrict the XTA to work only on a subset of the tiles in the program. The set of
tiles all commands apply to is called the active tiles.

To select which tiles are active, type:

· add tile <tile id>

· remove tile <tile id|*>

· list tiles

13.3.9 Node frequency

An xCORE device consists of a number of nodes, each one composed of a number
of xCORE tiles. The frequency at which a node runs is defined in the binary and
the XTA reads this and configures the node frequencies when it loads the binary. It
is possible to experiment to determine what will happen at different frequencies if
desired.

To change the frequency for the node, type:

config freq <node id> <tile frequency >

13.3.10 Number Of logical cores

The maximum number of logical cores run on a tile is known at compile time and
the XTA extracts this information from the binary for each tile. It is possible to
experiment to determine what will happen if running with a different number of
cores if desired.

To change the number of cores for the node/tile, type:

config cores <tile id > <num cores >

13.4 Program structure

Programs are written in multiple source files, each containing functions. Each
function will contain sequences of statements, loops (e.g. for / while / do),
conditionals (e.g. if / switch) and function calls.

13.4.1 Compiling for the XTA

The compiler outputs information which allows the XTA to make associations
between source and instructions. This information is on by default but can be
disabled by adding the following flag to the compiler options:

REV 13.0.0

xTIMEcomposer User Guide 76/295

-fno -xta -info

The compiler also supports adding debug information without affecting optimiza-
tions. Debug information is not required for the XTA to analyze code, but the
mapping between instructions and source code is not available without the debug
information. In order to add debug information compile with:

-g

13.4.2 Structural nodes

The compiler tools create a binary file with one program per xCORE tile. The XTA
uses the binary file to produce accurate timing results.

When a route is created, the XTA analyzes the binary to create a structure which
closely represents the high-level program structure. It decomposes the program
into structural nodes which can be displayed as a tree.

The worst and best case time is then calculated for each of the structural nodes.
The way this is calculated depends on the type of structural node. The worst and
best case times for the overall route is built up from the worst and best case times
of the sub nodes.

The structural nodes can be of the following types:

· Instruction: the most basic building block of the program is the instruction.

· Block: a list of instruction nodes with no conditional branching which is therefore
executed in sequence. The worst/best case time for a block is the sum of its
component instructions.

· Sequence: a list of structural nodes which are executed in order. The worst/best
case time for a sequence is the sum of the worst/best case times of its sub
nodes.

· Conditional: a set of structural nodes out of which at most one node is executed.
If this is within a loop then on each iteration a different node might be chosen.
In some cases the entire conditional is optional. In those cases the best case
time is for none of the options to be taken. The worst/best case time for a
conditional is determined by the worst/best case time of each of its sub nodes.

· Loop: consists of a header and a body (both of which are structural nodes).
The header corresponds to the conditional test part of the loop, and the body
corresponds to the code that is executed if the loop is taken. This roughly
corresponds to high level code structures such as while or for loops.

The body is executed once per iteration. The header always executes once
more than the number of iterations. The worst/best case times for a loop is the
worst/best case time of its header multiplied by (number of iterations + 1) plus
the worst/best case time of the body multiplied by the number of iterations.

REV 13.0.0

xTIMEcomposer User Guide 77/295

· Self-loop: a loop where the header and body are the same. It is therefore
considered to have a minimum loop count of 1. This roughly corresponds to
high level code structures such as do loops. The worst/best case time for a
self-loop is determined by the worst/best case time of its body multiplied up
buy the number of iterations.

· Function: is the high-level construct of the function and consists of a list of other
structural nodes. The worst/best case time for a function is calculated in the
same way as that of a sequence.

13.4.3 Identifying nodes: code references

A code reference is the way to specify a particular location in an application. A
code reference is made up of a base and an optional backtrail. The base consists
of a reference type and the backtrail consists of a comma separated list of
reference types.

There are a number of different reference types, all of which map to one or more
instruction program counters (PCs). This will usually be one PC, but can be more
than one due to compiler optimizations or because the user has explicitly named
multiple instructions with the same reference. Compiler optimizations such as
inlining or unrolling will result in the same reference mapping to multiple PCs.

The different reference types are detailed below. The commands to list the in-
stances of them for the currently loaded executable in the console are detailed
with each type.

· Source file-line references are valid for source lines which the compiler has
defined as belonging to a source-level basic block. The valid lines can be listed
in the console using:

list allsrclabels

· Source labels are added to source code using the #pragma xta label. To list
the source labels in the console, type:

list srclabels

· Call file-line references are valid for source lines which map to function calls.
To list the valid source lines in the console, type:

list allcalls

· Call labels are added to source code using the #pragma xta call. To list the
source labels in the console, type:

list calls

· Endpoint file-line references are available for source lines which map to a valid
endpoint. To list the endpoints in the console type:

list allendpoints

REV 13.0.0

xTIMEcomposer User Guide 78/295

· Endpoint labels are added to the source using #pragma xta endpoint. They
must be on the line before an input/output operation. To list the labeled
endpoints in the console, type:

list endpoints

· Labels are arbitrary text strings referring to any source or assembly label. To
list the labels in the console, type:

list labels

Labels in assembly must be within an executable section.

· Functions are the functions contained within the binary. To list the labels in the
console, type:

list functions

Functions in assembler must be labeled as functions with the .type directive to
be correctly detected by the XTA (see xTIMEcomposer Studio User Guide). They
must also be within an executable section.

· Program counters (PC) are the lowest-level reference, giving a hexadecimal pro-
gram counter value starting with 0x. They must map to the PC of an instruction
within the executable section of the program.

13.4.4 Reference Classes

Particular console commands only work on particular types of references. The sets
of reference types that are defined for a particular command are know as reference
classes.

· ENDPOINT: A reference that can be used for timing. This means any reference
in assembler (PC/label) and only source references which map to lines which
can be reliably used for timing. Compiler optimizations cannot remove them
or re-order them with respect to each other. In XC code these correspond to
source lines with I/O operations. The following console command lists the types
available in the class:

help ENDPOINT

· CALL: References that map to function calls. These are used in back trails to
identify unique instances of a code reference. The following console command
lists the types available in the class:

help CALL

· FUNCTION: References that map to functions. The following console command
lists the types available in the class:

help FUNCTION

· LABEL: The following console command lists the types available in the class:

help LABEL

· PC: The following console command lists the types available in the class:

REV 13.0.0

xTIMEcomposer User Guide 79/295

help PC

It is possible to have a code reference which could map to multiple types. For
example there could be an endpoint which has been given the same name as a
function in the program. The way a reference in a backtrail is matched can depend
upon the type of the reference. To resolve this potential ambiguity, it is possible
to force the code reference to a certain type by prefixing with its type.

13.4.5 Back trails

A code reference’s base may occur multiple times within a program. For example,
a function can be called from multiple places. The back trail for a reference is
a way of restricting a reference to specific instances. Consider the example file
shown in Figure 24.

1 void delay_n_seconds (int j) {
2 for (unsigned int i = 0; i < j; ++i) {
3 # pragma xta label " delay_loop "
4 delay_1_second ();
5 }
6 }
7
8 int test () {
9 # pragma xta call " delay_1 "
10 delay_n_seconds (10);
11 # pragma xta call " delay_2 "
12 delay_n_seconds (20);
13 return 0;
14 }

Figure 24:

Using
backtrails.

The following commands could be used to time the test function:

· analyze function test

· set loop - delay_loop 10

That would have the effect of setting the number of loop iterations for the loop in
both instances of the delay_n_seconds to 10. However, as the number of iterations
are passed as a parameter to delay_n_seconds, the value is different for each call.

To time test correctly the loop iterations for each instance needs to be specified
differently. This can be achieved by the use of the call references and backtrails.
For example:

· analyze function test

· set loop - delay_1,delay_loop 10

· set loop - delay_2,delay_loop 20

REV 13.0.0

xTIMEcomposer User Guide 80/295

This tells the tool to set delay_loop to 10 iterations when called from delay_1, and
to 20 iterations when called from delay_2. The references used in the above case
are composed of a base reference of type source label, and a backtrial or size one,
of type call label. The above can also be achieved using the file-line equivalents.
For example:

· analyze function test

· set loop - source.xc:10,source.xc:3 10

· set loop - source.xc:12,source.xc:3 20

However, this would not result in a portable and robust script implementation, so
using file-line references in this way from a script is not encouraged.

When the compiler inlines some code (for example the delay_n_seconds function
above) then some references will no longer be valid. In this case the following
reference would not exist because the call no longer exists:

source.xc:10, source.xc:3

However, if the call has been labeled with a call label, the compiler ensures that
the reference is still valid even if the code is inlined. So, in the above case, the
following reference will still be valid;

delay_1 ,delay_loop

13.4.6 Scope of references

References can have either global or local scope. Globally scoped references are
those which apply to (or get resolved on) the global tree. The global tree is the
notional structural representation of the whole program, prior to any route analysis
taking place. Locally scoped references are those which apply to (or get resolved
on) a user created route tree. Whether a particular reference is globally of locally
scoped depends on the command being executed. The following commands used
globally scoped references:

· analyze path

· analyze function

· analyze loop

· add exclusion

· add branch

The following commands used locally scoped references:

· set/add loop

· set/add looppath

REV 13.0.0

xTIMEcomposer User Guide 81/295

· set/add loopscope

· set/add instructiontime

· set/add pathtime

· set/add functiontime

In general, globally scoped references can lead to multiple route creation.

13.5 Automating the process

The XTA can be automated to ensure that new versions of an application meet
timing requirements using a script.

13.5.1 Writing a script

The script file is a sequence of XTA console commands. Each one on a separate
line. Any line starting with the # symbol is considered a comment.

Developers must insert pragmas into the source code where required to make the
script portable. If the script creation process modifies the source (e.g. by inserting
pragmas) the relevant binary must be rebuilt before the script can be successfully
executed.

It is recommended not to put a load or exit command in the script. These
commands should be done at the time of calling the script.

XTA scripts must use the .xta extension in order to be used by the compiler and
understood correctly by xTIMEcomposer Studio.

13.5.2 Running a script

Scripts can be run in different ways, either in xTIMEcomposer Studio or on the
command-line.

· During compilation: On the command line the .xta scripts must be passed to
the compiler manually. By default, timing failures are treated as warnings and
syntax errors in the script as errors.

To treat timing failures as errors, add the following to the compiler arguments:

-Werror=timing

To treat script syntax errors as warnings, add the following to the compiler
arguments:

-Wno-error=timing-syntax

· Batch mode: In batch mode the XTA takes command-line arguments and inter-
prets them as XTA commands. For example, to run an XTA script (script.xta)
on a binary (test.xe) use:

xta -load test.xe -source script.xta -exit

REV 13.0.0

xTIMEcomposer User Guide 82/295

Note: the ‘-’ character is used as a separator between commands.

13.5.3 Embedding commands into source

The XTA can embed commands into source code using a command pragma. For
example,

#pragma xta command "print summary"

All commands embedded into the source are run every time the binary is loaded
into the XTA. Commands are executed in the order they occur in the file, but the
order between commands in different source files is not defined.

Pragmas are only supported in XC code.

13.6 Scripting XTA via the Jython interface

The XTA supports scripts written using the Jython language (an implementation
of Python running on the Java virtual machine). XTA Jython scripts must have the
extension .py. They can be executed in the same way as command based XTA
scripts. From within Jython, XTA features are made available though the globally
accessible xta object. See Figure 25 for an example script. This scripts loads the
binary test.xe into the XTA and analyzes the function functionName. It then sets
a loop count on each of the resulting routes and finally, prints the best and worst
case times for each.

import sys
import java

try :
xta . load (" test .xe");

except java . lang . Exception , e:
print e. getMessage ()

try :
ids = xta . analyzeFunction (" functionName ");

for id in ids :
xta . setLoop (id , " loopReference ", 10)

for id in ids :
print xta . getRouteDescription (id),
print xta . getWorstCase (id , "ns"),
print xta . getBestCase (id , "ns")

except java . lang . Exception , e:
print e. getMessage ()

Figure 25:

Example of
an XTA

Jython script.

REV 13.0.0

14XTA command-line manual

IN THIS CHAPTER

· Commands

· Pragmas

· Timing Modes

· Loop Scopes

· Reference Classes

· XTA Jython interface

· Code reference grammar

This chapter lists all the commands and options supported by the XTA, reference classes, and a
reference to the grammar.

14.1 Commands

14.1.1 add

add branch <from BRANCH> [<to INSTRUCTION>]+
Adds the given from/to references to the branches list

add tile <tile id|*>
Add xCORE tile to active set

add exclusion <ANY>
Adds the given reference to the list of exclusions

add functiontime <FUNCTION> <value> <MODE>
Adds the given function time to the list of defines

add instructiontime <ENDPOINT> <value> <MODE>
Adds the given instruction time to the list of defines

add loop <ANY> <iterations>
Adds the given loop count define to the list of defines

add looppath <ANY> <iterations>
Adds the given loop path count define to the list of defines

add loopscope <ANY> <SCOPE>
Adds the given loop scope define to the list of defines

REV 13.0.0

xTIMEcomposer User Guide 84/295

add pathtime <from ENDPOINT> <to ENDPOINT> <value> <MODE>
Adds the given path time to the list of defines

14.1.2 analyze

analyze endpoints <from ENDPOINT> <to ENDPOINT>
Analyzes between the specified endpoints

analyze function <FUNCTION>
Analyzes the given function

analyze loop <ANY>
Analyzes the given loop

14.1.3 config

config case <best/worst>
Sets the case (currently: worst)

config Ewarning <on/off>
Treats errors as warnings or not (currently: off)

config freq <node id> <tile frequency>
Sets the operating frequency in MHz for the given node

config from <ENDPOINT>
Sets the from endpoint

config looppoint <ANY>
Sets the loop point

config scale <true/false>
Configures whether results are scales (currently: true)

config srcpaths <paths>
Sets the (semicolon separated) source search path

config cores <tile id> <num cores>
Sets number of cores currently executing for the given tile

config timeout <seconds>
Sets the tools timeout on load

config Terror <on/off>
Treat timing failures as errors or not (currently: on)

config to <ENDPOINT>
Sets the to endpoint

REV 13.0.0

xTIMEcomposer User Guide 85/295

config verbosity <level>
Sets the tool verbosity level (range: -10 -> +10, default: 0)

config Werror <on/off>
Treats warnings as errors or not (currently: off)

14.1.4 clear

clear()
Clears the screen (GUI mode only)

14.1.5 debug

debug dumpactiveexclusions()
Dumps a list of PCs that the exclusions have resolved to

debug dumpcachedfunction <FUNCTION>
Dumps the cached function structure

debug dumpcallgraph()
Dumps the call graph for all tiles in dot (graphviz) format

debug dumpcontrolflow <FUNCTION>
Dumps the control flow graph for the given function in dot (graphviz) format

debug dumpmanual()
Dumps the console reference chapter of the manual in tex format

debug dumpstacknodes <REFERENCE>
Dumps the stack nodes for the given reference

debug dumpunresolvedinstructions()
Dumps a list of instructions that are unresolved

debug verifyreference <ANY>
Verifies the existance of the given reference

debug frompoints()
Displays the from endpoints currently configured

debug topoints()
Displays the to endpoints currently configured

debug instructiontime <route id> <node id>
Displays the instruction time set for the given node in the given route

debug loop <route id> <node id>
Displays the loop iterations set for the given node in the given route

REV 13.0.0

xTIMEcomposer User Guide 86/295

debug looppath <route id> <node id>
Displays the loop path iterations set for the given node in the given route

debug loopscope <route id> <node id>
Displays the loop scope set for the given node in the given route

debug listglobalreferences <ANY>
Lists all the matching references for the given reference on the global tree

debug listroutereferences <route id> <ANY>
Lists all the matching references for the given reference on the given route

debug memusage()
Displays the current memory usage for the JVM

debug getmemthreshold()
Displays the current memory usage threshold

debug setmemthreshold <threshold>
Sets the memory threshold to the given value (0.0 - 1.0)

14.1.6 echo

echo "text"
Prints the text to the console

14.1.7 exit

exit()
Quits the application

14.1.8 help

help [command|command subcommand|option]
Displays help message for the given arguments

14.1.9 history

history()
Displays the command history

14.1.10 load

load <xe file>
Loads the given XMOS executable file

REV 13.0.0

xTIMEcomposer User Guide 87/295

14.1.11 list

list allcalls()
Lists all the possible locations for calls

list allendpoints()
Lists all the possible locations for endpoints

list branches [route id]
Lists the branches - optionally for the specified route

list calls()
Lists the calls

list tiles()
Lists the active xCORE tiles

list endpoints()
Lists the endpoints

list exclusions [route id]
Displays the exclusions - optionally for the specified route

list functions()
Lists the functions in the loaded application

list functiontimes()
Displays the function time defines

list instructiontimes()
Displays the instruction time defines

list knowns <route id>
Displays the list of knowns set for the given route

list labels()
Lists the labels

list loops()
Displays the loop defines

list looppaths()
Displays the loop path defines

list loopscopes()
Displays the loop scope defines

list pathtimes()
Displays the path time defines

REV 13.0.0

xTIMEcomposer User Guide 88/295

list sources()
Lists the source files

list srccommands()
Displays the command list embedded in the loaded executable

list srcloops()
Displays the loop counts embedded in the loaded executable

list srclabels()
Lists the source labels

list allsrclabels()
Lists all the possible locations for source labels

list corestartpoints()
Lists the logical core start points

list corestoppoints()
Lists the logical core stop points

list unknowns <route id>
Displays the list of unknowns for the given route

14.1.12 print

print summary()
Shows routes summary (verbosity -2|-1|0)

print structure <route id> [node id]
Displays the structure for given route/node (verbosity 0|1)

print asm <route id> [node id]
Displays annotated assembly for the given route/node

print src <route id> [node id]
Displays annotated source file(s) for given route/node

print trace <route id> [node id]
Displays instruction trace for the worst case path of the given route/node

print routeinfo <route id>
Shows detailed information for the given route

print nodeinfo <route id> <node id>
Shows detailed information for the given node in the given route

print warnings()
Prints all timing warnings

REV 13.0.0

xTIMEcomposer User Guide 89/295

print distribution <route id> [node id]
Displays time distribution for the given route/node

14.1.13 pwd

pwd()
Displays the current working directory

14.1.14 remove

remove branch <from BRANCH|*> [<to INSTRUCTION|*>]+
Removes the given from/to references from the branches list

remove tile <tile id|*>
Removes xCORE tile from active set

remove exclusion <ANY|*>
Removes the given reference (or all if ‘*’) from the list of exclusions

remove functiontime <FUNCTION|*>
Removes the given functon time from the list of defines

remove instructiontime <ENDPOINT|*>
Removes the given instruction time from the list of defines

remove loop <ANY|*>
Removes the given loop count define to the list of defines

remove looppath <ANY|*>
Removes the given loop path count define to the list of defines

remove loopscope <ANY|*>
Removes the given loop scope define to the list of defines

remove pathtime <from ENDPOINT|*> <to ENDPOINT|*>
Removes the given path time from the list of defines

remove route <route id>
Removes the route with the given id from the current analysis

14.1.15 scripter

scripter disable <ANY>
Disables a mapping

scripter dump()
Dumps script which represents the current state - also embeds active pragmas into
source

REV 13.0.0

xTIMEcomposer User Guide 90/295

scripter embed <filename>
Embeds the script into the designated file - also embed active pragmas into source

scripter enable <ANY>
Enables a mapping

scripter listrefs()
Lists all references which will be used in the script

scripter rename <ANY> <TO_NAME>
Renames a mapping

14.1.16 set

set exclusion <route id> <ANY>
Sets an exclusion on the given reference

set functiontime <route id> <FUNCTION> <value> <MODE>
Sets timing requirement for the given function on the given route

set instructiontime <route id> <ENDPOINT> <value> <MODE>
Sets the time taken for the instruction at the given pc

set loop <route id> <ANY> <iterations>
Sets the number of iterations for the loop identified

set looppath <route id> <ANY> <iterations>
Sets the number of iterations for the path identified

set loopscope <route id> <ANY> <SCOPE>
Sets the scope of the referenced loop

set pathtime <route id> <from ENDPOINT> <to ENDPOINT> <value> <MODE>
Sets timing requirement for the given path on the given route

set required <route id> <value> <MODE>
Sets the maximum allowed time taken for the given route

14.1.17 source

source <file name> [args]
Sources the given script file

14.1.18 status

status()
Displays current status

REV 13.0.0

xTIMEcomposer User Guide 91/295

14.1.19 version

version()
Displays the version information

14.2 Pragmas

#pragma xta label "name"
Provides a label that can be used to specify timing constraints.

#pragma xta endpoint "name"
Specifies an endpoint. It may appear before an input or output statement.

#pragma xta call "name"
Defines a label for a (function) call point. Use to specify a particular called instance
of a function. For example, if a function contains a loop, the iterations for this
loop can be set to a different value depending on which call point the function was
called from.

#pragma xta command "command"
Allows XTA commands to be embedded into source code. All commands are run
every time the binary is loaded into the XTA. Commands are executed in the order
they occur in the file, but the order between commands in different source files is
not defined.

#pragma xta loop "integer"
Applies the given loop XTA iterations to the loop containing the pragma.

14.3 Timing Modes

The available timing modes are:

ns()
nanoseconds

us()
microseconds

ms()
milliseconds

MHz()
megahertz

KHz()
kilohertz

Hz()

REV 13.0.0

xTIMEcomposer User Guide 92/295

hertz

cycles()
The core cycle count is the number of scheduled slots that the logical core required
to perform the sequence. The relationship between core cycles and time is a
function of the number of cores currently running and the xCORE tile frequency.

14.4 Loop Scopes

Supported values for scope are:

relative/r()
Iteration number propagates to the enclosing path (Default)

absolute/a()
Absolute number of iterations

14.5 Reference Classes

14.5.1 FUNCTION

FunctionPc()
Raw program counter specified in the format: 0x*

Function()
Any function

14.5.2 BRANCH

EndpointPC()
Raw program counter specified in the format: 0x*

CallPc()
Call specified in the format: 0x*

CallFileLine()
Call specified in the format: ‘file name:line number’

Call()
Call specified using the source level pragma mechanism

Label()
Any source or assembly level symbol defined with respect to an executable section

CallLabel()
Any source or assembly level symbol defined with respect to an executable section

REV 13.0.0

xTIMEcomposer User Guide 93/295

14.5.3 INSTRUCTION

EndpointPC()
Raw program counter specified in the format: 0x*

FunctionPc()
Raw program counter specified in the format: 0x*

Function()
Any function

Label()
Any source or assembly level symbol defined with respect to an executable section

14.5.4 ENDPOINT

EndpointPC()
Raw program counter specified in the format: 0x*

EndpointFileLine()
Endpoint specified in the format: ‘file name:line number’

Endpoint()
Endpoint specified using the source level pragma mechanism

CallPc()
Call specified in the format: 0x*

CallFileLine()
Call specified in the format: ‘file name:line number’

Call()
Call specified using the source level pragma mechanism

Label()
Any source or assembly level symbol defined with respect to an executable section

CallLabel()
Any source or assembly level symbol defined with respect to an executable section

14.5.5 ANY

SrcLabelPc()
Raw program counter specified in the format: 0x*

EndpointPC()
Raw program counter specified in the format: 0x*

REV 13.0.0

xTIMEcomposer User Guide 94/295

EndpointFileLine()
Endpoint specified in the format: ‘file name:line number’

Endpoint()
Endpoint specified using the source level pragma mechanism

CallPc()
Call specified in the format: 0x*

CallFileLine()
Call specified in the format: ‘file name:line number’

Call()
Call specified using the source level pragma mechanism

SrcLabelFileLine()
Source label specified in the format: ‘file name:line number’

SrcLabel()
Source label specified using the source level pragma mechanism

Label()
Any source or assembly level symbol defined with respect to an executable section

CallLabel()
Any source or assembly level symbol defined with respect to an executable section

14.5.6 FUNCTION_WITH_EVERYTHING

EverythingReference()
Matches everything: ‘*’

FunctionPc()
Raw program counter specified in the format: 0x*

Function()
Any function

14.5.7 BRANCH_WITH_EVERYTHING

EverythingReference()
Matches everything: ‘*’

EndpointPC()
Raw program counter specified in the format: 0x*

CallPc()
Call specified in the format: 0x*

REV 13.0.0

xTIMEcomposer User Guide 95/295

CallFileLine()
Call specified in the format: ‘file name:line number’

Call()
Call specified using the source level pragma mechanism

Label()
Any source or assembly level symbol defined with respect to an executable section

CallLabel()
Any source or assembly level symbol defined with respect to an executable section

14.5.8 INSTRUCTION_WITH_EVERYTHING

EverythingReference()
Matches everything: ‘*’

EndpointPC()
Raw program counter specified in the format: 0x*

FunctionPc()
Raw program counter specified in the format: 0x*

Function()
Any function

Label()
Any source or assembly level symbol defined with respect to an executable section

14.5.9 ENDPOINT_WITH_EVERYTHING

EverythingReference()
Matches everything: ‘*’

EndpointPC()
Raw program counter specified in the format: 0x*

EndpointFileLine()
Endpoint specified in the format: ‘file name:line number’

Endpoint()
Endpoint specified using the source level pragma mechanism

CallPc()
Call specified in the format: 0x*

CallFileLine()
Call specified in the format: ‘file name:line number’

REV 13.0.0

xTIMEcomposer User Guide 96/295

Call()
Call specified using the source level pragma mechanism

Label()
Any source or assembly level symbol defined with respect to an executable section

CallLabel()
Any source or assembly level symbol defined with respect to an executable section

14.5.10 ANY_WITH_EVERYTHING

EverythingReference()
Matches everything: ‘*’

SrcLabelPc()
Raw program counter specified in the format: 0x*

EndpointPC()
Raw program counter specified in the format: 0x*

EndpointFileLine()
Endpoint specified in the format: ‘file name:line number’

Endpoint()
Endpoint specified using the source level pragma mechanism

CallPc()
Call specified in the format: 0x*

CallFileLine()
Call specified in the format: ‘file name:line number’

Call()
Call specified using the source level pragma mechanism

SrcLabelFileLine()
Source label specified in the format: ‘file name:line number’

SrcLabel()
Source label specified using the source level pragma mechanism

Label()
Any source or assembly level symbol defined with respect to an executable section

CallLabel()
Any source or assembly level symbol defined with respect to an executable section

REV 13.0.0

xTIMEcomposer User Guide 97/295

14.6 XTA Jython interface

The Jython interface to the global xta object is as follows:

14.6.1 Load methods

void load(String fileName) throws Exception

14.6.2 Route creation/deletion methods

List<Integer> analyzeFunction(String functionName) throws Exception
List<Integer> analyzeEndpoints(String fromRef, String toRef) throws Exception
List<Integer> analyzeLoop(String loopRef) throws Exception
void removeRoute(int routeId) throws Exception

14.6.3 Add/remove methods

void addTile(String tileReference) throws Exception
void removeTile(String tileReference) throws Exception
Collection<String> getTiles() throws Exception

void addExclusion(String ref) throws Exception
void removeExclusion(String ref) throws Exception
Collection<String> getExclusions() throws Exception

void addBranch(String fromRefString, Collection<String> toRefStrings)
throws Exception
void removeBranch(String fromRefString, Collection<String> toRefStrings)
throws Exception
Collection<String> getBranches() throws Exception
Collection<String> getBranchTargets(String branch) throws Exception

void addLoop(String ref, long iterations) throws Exception
void removeLoop(String ref) throws Exception
Collection<String> getLoops() throws Exception

void addLoopPath(String ref, long iterations) throws Exception
void removeLoopPath(String ref) throws Exception
Collection<String> getLoopPaths() throws Exception

void addLoopScope(String ref, boolean absolute) throws Exception
void removeLoopScope(String ref) throws Exception
Collection<String> getLoopScopes() throws Exception

void addInstructionTime(String ref, double value, String units)
throws Exception
void removeInstructionTime(String ref) throws Exception
Collection<String> getInstructionTimes() throws Exception

REV 13.0.0

xTIMEcomposer User Guide 98/295

void addFunctionTime(String ref, double value, String units)
throws Exception
void removeFunctionTime(String ref) throws Exception
Collection<String> getFunctionTimes() throws Exception

void addPathTime(String fromRef, String toRef, double value, String units)
throws Exception
void removePathTime(String fromRef, String toRef) throws Exception
Collection<String> getPathTimes() throws Exception

14.6.4 Set methods

void setRequired(int routeId, double value, String units) throws Exception
void setFunctionTime(int routeId, String refString, double value,
String units) throws Exception
void setPathTime(int routeId, String fromRef, String toRef, double value,
String units) throws Exception
void setInstructionTime(int routeId, String refString, double value,
String units) throws Exception
void setLoop(int routeId, String refString, long iterations)
throws Exception
void setLoopPath(int routeId, String refString, long iterations)
throws Exception
void setLoopScope(int routeId, String refString, boolean absolute)
throws Exception
void setExclusion(int routeId, String refString) throws Exception

14.6.5 Get methods

double getRequired(int routeId, String units) throws Exception
double getWorstCase(int routeId, String units) throws Exception
double getBestCase(int routeId, String units) throws Exception
List<String> getWarnings(int routeId) throws Exception
List<String> getErrors(int routeId) throws Exception
List<Integer> getRouteIds() String getRouteDescription(int routeId)
throws Exception

14.6.6 Config methods

void configCores(String tileReference, int numCores) throws Exception
void configFreq(String nodeId, double tileFrequency) throws Exception

REV 13.0.0

xTIMEcomposer User Guide 99/295

14.7 Code reference grammar

A code reference constructed of a back trail and a base reference of the form:

code-ref ::= back-trail base-ref

back-trail ::= base-ref

| base-ref , back-trail

base-ref ::= pc-ref

| label-ref

| function-ref

| endpoint-ref

| srclabel-ref

| call-ref

pc-ref ::= pc-class hex-constant

label-ref ::= label-class label-string

function-ref ::= function-class function-name

| function-class hex-constant

endpoint-ref ::= endpoint-class file-line

| endpoint-class endpoint-label

| endpoint-class hex-constant

srclabel-ref ::= srclabel-class label-string

call-ref ::= call-class label-string

| call-class hex-constant

pc-class ::=
| PC:

label-class ::=
| LABEL:

functionclass ::=
| FUNCTION:

endpointclass ::=
| ENDPOINT:

srclabelclass ::=
| SRCLABEL:

REV 13.0.0

xTIMEcomposer User Guide 100/295

call-class ::=
| CALL:

file-line ::= file-name : integer-constant

REV 13.0.0

Part F

Run on Hardware

CONTENTS

· Use xTIMEcomposer to run a program

· XRUN Command-Line Manual

REV 13.0.0

15Use xTIMEcomposer to run a program

IN THIS CHAPTER

· Create a Run Configuration

· Re-run a program

xTIMEcomposer uses Run Configurations to determine the settings used to run a
program. Run Configurations are specific to the project and target platform.

15.1 Create a Run Configuration

To create a Run Configuration, follow these steps:

1. Select a project in the Project Explorer.

2. Choose Run · Run Configurations.

3. In the left panel, double-click XCore Application.

xTIMEcomposer creates a new configuration and displays the default settings in
the right panel, as shown in Figure 26.

4. In Name, enter a name for the configuration.

5. xTIMEcomposer tries to identify the target project and executable for you. To
select one yourself, click Browse to the right of the Project text box and select
your project in the Project Selection dialog box. Then click Search Project and
select the executable file in the Program Selection dialog box.

You must have previously compiled your program without any errors for the
executable to be available for selection.

6. If you have a development board connected to your system, check the hardware
option and select your debug adapter from the Target list. Alternatively, check
the simulator option to run your program on the XMOS simulator.

7. Click Run.

xTIMEcomposer loads your executable, displaying any output generated by your
program in the Console.

REV 13.0.0

xTIMEcomposer User Guide 103/295

Figure 26:

Run Configu-
ration

window

15.2 Re-run a program

xTIMEcomposer remembers the configuration last used to run your program. To
run it again using the same configuration, just click the Run button. To use a
different configuration, click the arrow to the right of the Run button and select a
configuration from the drop-down list.

REV 13.0.0

16XRUN Command-Line Manual

IN THIS CHAPTER

· Overall Options

· Target Options

· Debugging Options

· xSCOPE Options

XRUN loads and runs XMOS Executable (XE) files on target hardware. It requires either the XMOS or
FTDI USB-to-JTAG drivers to be installed, depending on the adapter used with the target hardware
(see §2).

16.1 Overall Options

The following options are used to specify an executable to run and, optionally, an xCORE tile on
which to run the program.

xe-file Specifies an XE file to load and run.

--verbose Prints information about the program loaded onto the target devices.

--help Prints a description of the supported command line options.

--version Displays the version number and copyrights.

16.2 Target Options

The following options are used to specify a target hardware platform.

--list-devices
-l Prints an enumerated list of all JTAG adapters connected to the host and the devices

on each JTAG chain, in the form:

ID Name Adapter ID Devices

-- ---- ---------- -------

The adapters are ordered by their serial numbers.

--list-board-info
-lb Displays information about the connected target board.

--id ID Specifies the adapter connected to the target hardware.

REV 13.0.0

xTIMEcomposer User Guide 105/295

--adapter-id ADAPTER-SERIAL-NUMBER
Specifies the serial number of the adapter connected to the target hardware.

--jtag-speed n
Sets the divider for the JTAG clock to n. If unspecified, the default value is 0. The
maximum value is 70.

For FTDI-based debug adapters, the JTAG clock speed is set to 6/(n+1)MHz.

For XMOS-based debug adapters, the JTAG clock speed is set to 25/(n+1)MHz.

--noreset Does not reset the XMOS devices on the JTAG scan chain before loading the
program. This is not default.

16.3 Debugging Options

The following options are used to enable debugging capabilities.

--io Causes XRUN to remain attached to the JTAG adapter after loading the program,
enabling system calls with the host. XRUN terminates when the program calls exit.

By default, XRUN disconnects from the JTAG adapter once the program is loaded.

--uart Enables a UART server that interfaces with the UART-to-USB converter on the XMOS
USB-to-JTAG adapters. The converter operates at a rate of 115200 bits/sec.

The USB-to-UART converter on XMOS adapter interfaces with two pins on the XSYS
connector that, on XMOS development boards, are connected to ports on an XMOS
device. The ports are named in the XN files as PORT_UART_TX and PORT_UART_RX.

This option is not supported for adapters based on FTDI chips.

--attach Attaches to a JTAG adapter (of a running program), enabling system calls with the
host. XRUN terminates when the program performs a call to exit.

An XE file must be specified with this option.

--dump-state
Prints the core, register and stack contents of all xCORE Tiles in JTAG scan chain.

16.4 xSCOPE Options

The following options are used to enable xSCOPE capabilities.

--xscope Enables an xSCOPE server with the target.

--xscope-realtime
Enables an xSCOPE server with the target using a socket connection.

--xscope-file filename
Specifies the filename for xSCOPE data collection.

REV 13.0.0

xTIMEcomposer User Guide 106/295

--xscope-port ip:port
Specifies the IP address and port for realtime data capture.

--xscope-limit limit
Specifies the record limit for xSCOPE data collection.

REV 13.0.0

Part G

Application Instrumentation and Tuning

CONTENTS

· Use xTIMEcomposer and xSCOPE to trace data in real-time

· xSCOPE performance figures

· xSCOPE Library API

REV 13.0.0

17Use xTIMEcomposer and xSCOPE to trace data in real-time

IN THIS CHAPTER

· XN File Configuration

· Instrument a program

· Configure and run a program with tracing enabled

· Analyze data offline

· Analyze data in real-time

· Trace using the UART interface

xTIMEcomposer and the xSCOPE library let you instrument your program with
probes that collect application data in real-time. This data can be sent over an
XTAG-2 debug adapter to xTIMEcomposer for real-time display or written to a file
for offline analysis.

XSYS

xConnect Links

Target Hardware Platform

Instrumented
Software

USB

xTIMEcomposer
SOFTWARE SCOPE

Transfer
Buffer

XTAG2

Figure 27:

xSCOPE
connectivity

If you are using a legacy FTDI or XTAG-1 debug adapter, or if the XSYS connector
on your target hardware does not provide an xCONNECT Link, you can configure
the probes to output trace data over your adapter’s UART interface instead (see XM-
000957-PC). Note that the UART interface is supported on a single tile only and
offers significantly reduced performance.

17.1 XN File Configuration

To allow the tools to configure the xCONNECT link required for high speed data
collection using xscope, the XN file for a board must be modified to expose the
connection to the XTAG-2 device. The following information must be added to the
links section of an XN file for a board to set up the link used by the target device
to communicate with the XTAG-2 and the xscope channel.

REV 13.0.0

http://www.xmos.com/doc/XM-000957-PC/latest#trace-data-with-xscope-configure-uart-trace-interface
http://www.xmos.com/doc/XM-000957-PC/latest#trace-data-with-xscope-configure-uart-trace-interface

xTIMEcomposer User Guide 109/295

<Link Encoding="2wire" Delays="4,4" Flags="XSCOPE">
<LinkEndpoint NodeId="0" Link="X0LD"/>
<LinkEndpoint RoutingId="0x8000" Chanend="1"/>

</Link >

Note that when the link is set to 2 wire, the minimum delay is set to 4 and the flags
specify that this link is to be used for streaming debug. Setting the delay higher
results in the output of packets used by xscope being less frequent. The RoutingId
is also important as the value 0x8000 specifies to the tools that this is a special
link used for xscope.

When used in a multi-tile system the NodeId of the package which is connected to
the XSYS connector must be specified. The tools set up the links with the other tiles
but they need to know which specific device has the external link to be connected
to the XTAG-2.

17.2 Instrument a program

The example program in Figure 28 uses the xSCOPE instrumentation functions to
trace the input levels to a microphone.

#include <xscope.h>

port micL;
port micR;

void xscope_user_init(void) {
xscope_register (2,

XSCOPE_CONTINUOUS , "Microphone Left", XSCOPE_UINT , "mV",
XSCOPE_CONTINUOUS , "Microphone Right", XSCOPE_UINT , "mV"

);
}

int main() {
while (1) {

int sample;
micL :> sample;
xscope_uint (0, sample);
micR :> sample;
xscope_uint (1, sample);

}
}

Figure 28:

Program that
traces input

levels to a
microphone

The constructor xscope_user_init registers two probes for tracing the left and
right inputs to a microphone. The probes are defined as continuous, which means
xTIMEcomposer can interpolate values between two subsequent measurements.
The probes are defined to take values of type unsigned int.

REV 13.0.0

xTIMEcomposer User Guide 110/295

In main, the program calls the probe function xscope_uint each time it samples
data from the microphone. This function creates a trace record and sends it to the
PC.

REV 13.0.0

xTIMEcomposer User Guide 111/295

Figure 29 summarizes the different types of probes that can be configured. Only
continous probes can be displayed real-time.

Probe Type Data Type Scope View Example

XSCOPE_CONTINUOUS XSCOPE_UINT Line graph. May Voltage levels of a motor

XSCOPE_INT be interpolated controller

XSCOPE_FLOAT

XSCOPE_DISCRETE XSCOPE_INT Horizontal lines Buffer levels of audio
CODEC

XSCOPE_STATEMACHINE XSCOPE_UINT State machine Progression of protocol

XSCOPE_STARTSTOP XSCOPE_NONE Start/stop bars Recorded function entry

XSCOPE_UINT and exit, with

XSCOPE_INT optional label value

XSCOPE_FLOAT

Figure 29:

Supported
probe types

17.3 Configure and run a program with tracing enabled

Once you have instrumented your program, you must compile and link it with the
xSCOPE library, and run it in either offline or real-time mode.

To link with the xSCOPE library and run xSCOPE, follow these steps:

1. Open the Makefile for your project.

2. Locate the XCC_FLAGS_config variable for your build configuration, for example
XCC_FLAGS_Release.

3. Add the option -fxscope.

4. Create a Run Configuration for your target device (see §15.1).

5. Click the ** xSCOPE** tab and select Offline Mode to save data to a file for
offline analysis, or Real-Time Mode to output the data to the real-time viewer.

· In offline mode, xTIMEcomposer logs trace data until program termination
and saves the traced data to the file xscope.xmt. To change, enter a filename
in the Output file text box. To limit the size of the trace file, enter a number
in the Limit records to text box.

· In real-time mode, xTIMEcomposer opens the Scope view and displays an
animated view of the traced data as the program executes.

6. Click Run to save and run the configuration.

REV 13.0.0

xTIMEcomposer User Guide 112/295

17.4 Analyze data offline

Double-click a trace file in Project Explorer to open it in the Scope view, as shown
in Figure 30.

Figure 30:

Offline Scope
view

The top panel of the Scope view displays a graph of the data values for each
selected probe: the x-axis represents time (as per the timeline in the bottom panel)
and the y-axis represents the traced data values. The probes are grouped by their
assigned units, and multiple probes with the same unit can be overlaid onto a
single graph.

Moving the cursor over the scope data displays the current data (y-value) and
time (x-value) in the first two of the four numeric boxes at the top of the window.
Left-click on the view to display a marker as a red line - the associated time is
displayed in the third numeric box. The fourth numeric box displays the difference
between the marker time and the current cursor position.

If the cursor changes to a pointing finger, double-click to locate the statement in
the source code responsible for generating the trace point.

The bottom panel of this view displays a timeline for each probe: vertical lines on
a probe’s timeline indicate times at which the probe created a record.

Drag the Buffer Position slider left or right to move through the timeline. To show
more information in the window, increase the value in the Buffer Size field.

Use the Scope view toolbar at the top of the window to perform additional tasks:

To show data points for interpolated continuous signals, click the Continuous

REV 13.0.0

xTIMEcomposer User Guide 113/295

points button.

To view all data points, click the Zoom Fit button.

Load a trace file that is not part of your project, click the Open button and browse
to the file.

17.5 Analyze data in real-time

The Scope view can display trace data streamed from hardware in real-time. The
left panel displays the signal information and controls and the right panel displays
the screen view for the signals.

Figure 31:

Real-Time
Scope view

The left panel displays a list of the continous probes registered by the application
(see §17.2). Each named probe is assigned a color that is used to draw events on
the display, and which is used to identify the probe in the screen panel.

The Scope view is based around a traditional oscilloscope, and data is captured
around a trigger, and then displayed. The capture mode, display mode, trigger
and timebase are all controlled in the left panel. The right panel has 10 horizontal
and vertical divisions, and the scales are all shown as units per division.

Numeric controls can all be modified by using the mouse: click the left button
to increase the value or the right button to decrease the value. The scroll wheel
can be used if your platform supports it (Mac OS/X, Linux, and some but not all
versions of Windows).

17.5.1 Capture control

There are three capture-modes: continous, single capture or stopped. The default
mode on start-up is for the system to capture and display continuously. The label
associated with the capture controls shows the current state of the xSCOPE system.

Figure 32:

Capture
controls

REV 13.0.0

xTIMEcomposer User Guide 114/295

Stop Display

Stops the screen panel from triggering and capturing, no more updates will be
applied to the screen whilst this mode is set. The mode can be used to inspect the
captured data. The mouse can be used to change signal and time base scales and
offsets as described below to inspect the signals in detail. When stopped, you can
zoom in on the time base and view the signal in more detail: the displayed signals
are subsampled when the timebase is large, and zooming in on the timebase will
reveal all data.

Single Capture

Selest single shot mode to capture one screen of data and return to the stopped
state. If a trigger is enabled (see Figure 34) the system will wait for this trigger
condition to be met before updating the screen and returning to the stopped state.

Continuous Capture

Select free running mode to update the screen as frequently as possible. If triggers
are enabled, the screen will update only when the trigger is met.

17.5.2 Signal Control

The signal controls are available for each registered probe on the coloured label
displayed in the left panel (see Figure 33)

Figure 33:

Signal
Controls

Enable / Disable Signal

Toggle the visibility of the signal by double clicking on the name.

Signal Samples/Div

Change the Samples per Division of this probe with the mouse buttons; this affects
the vertical scale of the signal.

Signal Screen Offset

Change the vertical Offset of this probe with the mouse buttons; this affects the
vertical position of the signal.

Signal Trigger

The signal can be used as a trigger (see Figure 34) by clicking in trigger box to the
left of the probe label. Only one signal can be used for triggering.

REV 13.0.0

xTIMEcomposer User Guide 115/295

17.5.3 Trigger Control

A trigger can be used to restrict the system so that data is only captured when a
condition is met. By default all triggers are disabled, causing data to be captured
unconditionally. To enable triggering, a trigger must be selected by clicking on the
box to the left of the probe label.

When triggering is enabled, a cross appears on the screen showing the trigger
level (relative to the signal on which the trigger is selected) and the trigger offset
on the timebase. The center of the cross is the time and value where the trigger
happens/happened; to the left of this are the signals that lead up to the trigger; to
the right are the signals after the trigger.

The trigger level and offset can be set directly by clicking in the right-hand pane.
Changes only take effect if the scope is not stopped, and either running continu-
ously, or set for a single trigger.

Figure 34:

Trigger
Controls

Always

Disables the trigger and captures data unconditionally.

Rising

Trigger on a rising edge of the signal. This is the default mode when selecting a
signal to be used for triggering.

Falling

Trigger on a falling edge of the signal.

The value label associated with the enabled trigger shows the current trigger value
set for the signal. This can be changed by using the mouse buttons.

17.5.4 Timebase Control

The timebase controls are used to set the time range for the signal capture window,
allowing you to scale and shift the horizontal axis.

Figure 35:

Timebase
Controls

REV 13.0.0

xTIMEcomposer User Guide 116/295

Time Window

The current size to the time window. Scales all signals in time and affects the time
per division.

Time per Division

The time units per division. Scales all signals in time and affects the time window.

Time Window Offset

The position of the trigger in the time window. Shifts all signals left and right.
Note that the trigger may not be visible, and could be to the left or right of the
time window. The signals can be shifted right only a limited value.

17.5.5 Screen Control

Several commands are available that operate on all signals.

Figure 36:

Screen
Controls

Auto Range Signals

Automatically arranges all current signals to fit on the screen. The signals are
measured for a short while, and each signal scaled and offset to fit the screen. All
signals are displayed across each other.

Separate Signals

Similar to Auto Range, but all signals are scaled to fit in a small part of the screen.
All signals are offset so that they are visible separately.

Persistant Display

Disabled.

Save Data

Saves the current scope view to a PNG file in a user-defined location.

17.6 Trace using the UART interface

If you are using a legacy FTDI or XTAG-1 debug adapter, or if the XSYS connector
on your target hardware does not provide an xCONNECT Link, you can output data
over the UART interface provided by your adapter.

REV 13.0.0

xTIMEcomposer User Guide 117/295

To use the UART interface, you must provide the xSCOPE library with a 1-bit UART
TX port that has been initialized with the pin connected to the UART-TX pin on
your debug adapter. An example initialization is shown below.

#include <platform.h>
#include <xscope.h>

port uart_tx = PORT_UART_TX;

void xscope_user_init(void) {
xscope_register (2,

XSCOPE_CONTINUOUS , "Microphone Left", XSCOPE_UINT , "mV",
XSCOPE_CONTINUOUS , "Microphone Right", XSCOPE_UINT , "mV"

);
xscope_config_uart(uart_tx);

}

Because the UART interface uses a port instead of an xCONNECT Link, the probe
functions can be called on a single tile only.

REV 13.0.0

18xSCOPE performance figures

IN THIS CHAPTER

· Transfer rates between the xCORE Tile and XTAG-2

· Transfer rates between the XTAG-2 and Host PC

Data transferred from the xCORE device to the debug adapter is lossless, but data
transferred from the debug adapter to your host PC may be lossy, depending on
the speed of your PC.

18.1 Transfer rates between the xCORE Tile and XTAG-2

The recommended xCONNECT Link speed for most target hardware is 10ns between
transitions (10MByte/sec). This can be achieved by setting the link interbit gap to
5 cycles (see §46.5). The latencies and maximum call rates for the probe functions
using an xCONNECT Link at this speed are given in Figure 37.

Probe function Latency (core cycles) Max calls/sec

xscope_probe_data_pred 15 (always) 666,000

xscope_probe 20 (with no contention) 999,000

xscope_probe_cpu 27 (with no contention) 666,000

xscope_probe_data 22 (with no contention) 666,000

xscope_probe_cpu_data 28 (with no contention) 555,000

Figure 37:

xSCOPE
performance

figures for
xCONNECT

Link with
5-cycle

interbit gap

If two subsequent calls are made, the second call may be delayed in line with the
maximum frequency. For example, if xscope_probe_data_pred is called twice, the
second call is delayed by approximately 1.5µs.

The maximum call rates can be increased by speeding up the link and reducing
the interbit gap (see §46.5). A small interbit gap requires careful layout of the link,
since it increases link frequency.

The UART interface executes at a rate of 2MB/s.

18.2 Transfer rates between the XTAG-2 and Host PC

Many PCs are limited to inputting trace data from the XTAG-2 at a rate of 500,000
trace records/sec or less. If your PC is unable to keep up it will drop records,
reducing the granularity of the trace data. The XDE Scope view marks the loss of
data on the timeline.

REV 13.0.0

19xSCOPE Library API

IN THIS CHAPTER

· Functions

· Enumerations

19.1 Functions

void xscope_bytes(unsigned char id,
unsigned int size,
const unsigned char data[])

Send a trace event for the specified XSCOPE probe with a byte array.

This function has the following parameters:

id XSCOPE probe id.

size User data size.

data User data bytes (char[]).

void xscope_char(unsigned char id, unsigned char data)
Send a trace event for the specified XSCOPE probe of type char.

This function has the following parameters:

id XSCOPE probe id.

data User data value (char).

void xscope_config_io(unsigned int mode)
Configures XScope I/O redirection.

This function has the following parameters:

mode I/O redirection mode.

void xscope_core_bytes(unsigned char id,
unsigned int size,
const unsigned char data[])

REV 13.0.0

xTIMEcomposer User Guide 120/295

Send a trace event for the specified XSCOPE probe with a byte array with logical
core info.

This function has the following parameters:

id XSCOPE probe id.

size User data size.

data User data bytes (char[]).

void xscope_core_char(unsigned char id, unsigned char data)
Send a trace event for the specified XSCOPE probe of type char with logical core
info.

This function has the following parameters:

id XSCOPE probe id.

data User data value (char).

void xscope_core_double(unsigned char id, double data)
Send a trace event for the specified XSCOPE probe of type double with logical core
info.

This function has the following parameters:

id XSCOPE probe id.

data User data value (double).

void xscope_core_float(unsigned char id, float data)
Send a trace event for the specified XSCOPE probe of type float with logical core
info.

This function has the following parameters:

id XSCOPE probe id.

data User data value (float).

void xscope_core_int(unsigned char id, unsigned int data)
Send a trace event for the specified XSCOPE probe of type int with logical core info.

This function has the following parameters:

id XSCOPE probe id.

data User data value (int).

void xscope_core_longlong(unsigned char id, unsigned long long data)

REV 13.0.0

xTIMEcomposer User Guide 121/295

Send a trace event for the specified XSCOPE probe of type long long with logical
core info.

This function has the following parameters:

id XSCOPE probe id.

data User data value (long long).

void xscope_core_short(unsigned char id, unsigned short data)
Send a trace event for the specified XSCOPE probe of type short with logical core
info.

This function has the following parameters:

id XSCOPE probe id.

data User data value (short).

void xscope_core_start(unsigned char id)
Start a trace block for the specified XSCOPE probe with logical core info.

This function has the following parameters:

id XSCOPE probe id.

void xscope_core_start_int(unsigned char id, unsigned int data)
Start a trace block for the specified XSCOPE probe with logical core info and capture
a value of type int.

This function has the following parameters:

id XSCOPE probe id.

data User data value (int).

void xscope_core_stop(unsigned char id)
Stop a trace block for the specified XSCOPE probe with logical core info.

This function has the following parameters:

id XSCOPE probe id.

void xscope_core_stop_int(unsigned char id, unsigned int data)
Stop a trace block for the specified XSCOPE probe with logical core info and capture
a value of type int.

This function has the following parameters:

id XSCOPE probe id.

data User data value (int).

REV 13.0.0

xTIMEcomposer User Guide 122/295

void xscope_disable()
Disable the XSCOPE event capture on the local xCORE tile.

void xscope_double(unsigned char id, double data)
Send a trace event for the specified XSCOPE probe of type double.

This function has the following parameters:

id XSCOPE probe id.

data User data value (double).

void xscope_enable()
Enable the XSCOPE event capture on the local xCORE tile.

void xscope_float(unsigned char id, float data)
Send a trace event for the specified XSCOPE probe of type float.

This function has the following parameters:

id XSCOPE probe id.

data User data value (float).

void xscope_int(unsigned char id, unsigned int data)
Send a trace event for the specified XSCOPE probe of type int.

This function has the following parameters:

id XSCOPE probe id.

data User data value (int).

void xscope_longlong(unsigned char id, unsigned long long data)
Send a trace event for the specified XSCOPE probe of type long long.

This function has the following parameters:

id XSCOPE probe id.

data User data value (long long).

void xscope_ping()
Generate an XSCOPE ping system timestamp event.

void xscope_register(int num_probes, ...)
Registers the trace probes with the host system.

First parameter is the number of probes that will be registered. Further parameters
are in groups of four.

REV 13.0.0

xTIMEcomposer User Guide 123/295

Examples:

xscope_register (1, XSCOPE_DISCRETE , "A probe", XSCOPE_UINT , "value");
↩ ``

xscope_register (2, XSCOPE_CONTINUOUS , "Probe", XSCOPE_FLOAT , "Level",
XSCOPE_STATEMACHINE , "State machine", XSCOPE_NONE , "
↩ no name");

This function has the following parameters:

num_probes Number of probes that will be specified.

void xscope_short(unsigned char id, unsigned short data)
Send a trace event for the specified XSCOPE probe of type short.

This function has the following parameters:

id XSCOPE probe id.

data User data value (short).

void xscope_start(unsigned char id)
Start a trace block for the specified XSCOPE probe.

This function has the following parameters:

id XSCOPE probe id.

void xscope_start_int(unsigned char id, unsigned int data)
Start a trace block for the specified XSCOPE probe and capture a value of type int.

This function has the following parameters:

id XSCOPE probe id.

data User data value (int).

void xscope_stop(unsigned char id)
Stop a trace block for the specified XSCOPE probe.

This function has the following parameters:

id XSCOPE probe id.

void xscope_stop_int(unsigned char id, unsigned int data)
Stop a trace block for the specified XSCOPE probe and capture a value of type int.

This function has the following parameters:

id XSCOPE probe id.

data User data value (int).

REV 13.0.0

xTIMEcomposer User Guide 124/295

19.2 Enumerations

xscope_IORedirectionMode

Enum of all I/O redirection modes.

This type has the following values:

XSCOPE_IO_NONE
I/O is not redirected.

XSCOPE_IO_BASIC
Basic I/O redirection.

XSCOPE_IO_TIMED
Timed I/O redirection.

XSCOPE_IO_NONE
I/O is not redirected.

XSCOPE_IO_BASIC
Basic I/O redirection.

XSCOPE_IO_TIMED
Timed I/O redirection.

xscope_UserDataType

Enum for all user data types.

This type has the following values:

XSCOPE_NONE No user data.

XSCOPE_UINT Unsigned int user data.

XSCOPE_INT Signed int user data.

XSCOPE_FLOAT
Floating point user data.

XSCOPE_NONE No user data.

XSCOPE_UINT Unsigned int user data.

XSCOPE_INT Signed int user data.

XSCOPE_FLOAT
Floating point user data.

REV 13.0.0

xTIMEcomposer User Guide 125/295

xscope_EventType

Enum for all types of xscope events.

This type has the following values:

XSCOPE_STARTSTOP
Start/Stop - Event gets a start and stop value representing a
block of execution.

XSCOPE_CONTINUOUS
Continuous - Only gets an event start, single timestamped
“ping”.

XSCOPE_DISCRETE
Discrete - Event generates a discrete block following on from
the previous event.

XSCOPE_STATEMACHINE
State Machine - Create a new event state for every new data
value.

XSCOPE_HISTOGRAM

XSCOPE_STARTSTOP
Start/Stop - Event gets a start and stop value representing a
block of execution.

XSCOPE_CONTINUOUS
Continuous - Only gets an event start, single timestamped
“ping”.

XSCOPE_DISCRETE
Discrete - Event generates a discrete block following on from
the previous event.

XSCOPE_STATEMACHINE
State Machine - Create a new event state for every new data
value.

XSCOPE_HISTOGRAM

REV 13.0.0

Part H

Simulation

CONTENTS

· Use xTIMEcomposer to simulate a program

· xSIM command-line manual

· XSIM Testbench and Plugin Interfaces

REV 13.0.0

20Use xTIMEcomposer to simulate a program

IN THIS CHAPTER

· Configure the simulator

· Trace a signal

· Set up a loopback

· Configure a simulator plugin

The xCORE simulator provides a near cycle-accurate model of systems built from
one or more xCORE devices. Using the simulator, you can view a processor’s
instruction trace, visualize machine state and configure loopbacks to model the
behavior of components connected to XMOS ports and links.

20.1 Configure the simulator

To configure the simulator, follow these steps:

1. Select a project in the Project Explorer.

2. Choose Run · Run Configurations.

3. In the left panel, double-click XCore Application. xTIMEcomposer creates a
new configuration and displays the default settings in the right panel.

4. In the right panel, in Name, enter a name for the configuration.

5. xTIMEcomposer tries to identify the target project and executable for you. To
select one yourself, click Browse to the right of the Project text box and select
your project in the Project Selection dialog box. Then click Search Project and
select the executable file in the Program Selection dialog box.

You must have previously compiled your program without any errors for the
executable to be available for selection.

6. Select the simulator option and click the Simulator tab to configure additional
options, as shown in Figure 38.

Figure 38:

Simulator
configuration

options

REV 13.0.0

xTIMEcomposer User Guide 128/295

· To output the processor instruction trace during simulation, select Dump
simulator trace.
By default, the instruction trace is displayed in the Console. To write the
trace to a file instead, select Trace to file and enter a filename. The filename
must be different from all other files in your project.
The format of the instruction trace is described Figure 42.

· To view a summary of the program’s execution once the program terminates,
select Display statistics. The summary includes the instruction count for
each logical core, and the number of data and control tokens sent through
the switches.

· To limit the number of cycles executed by the simulator, enter a value in the
Limit cycles to text box. Leave blank if you want the program to run from
start to finish. This is useful for simulating programs with infinite loops.

7. To save and run the configuration, click Run.

xTIMEcomposer loads your executable, displaying any output generated by your
program in the Console.

xTIMEcomposer remembers the configuration last used to run your program. To
run it again using the same configuration, just click the Run button button. To use
a different configuration, click the arrow to the right of the Run button and select
a configuration from the drop-down list.

20.2 Trace a signal

The simulator can output signal tracing data to a VCD file which you can visualize
with the xTIMEcomposer waveform viewer.

20.2.1 Enable signal tracing

To enable signal tracing during simulation, follow these steps:

1. Create a simulator Run Configuration (see §20.1).

2. In the Simulator tab, in the Signal Tracing panel, select Enable signal tracing.

· To trace all I/O pins, in the System Trace Options group, select Pins.

· To trace machine state on a specific core, in the Core Trace Options group,
click Add to display a set of configurable drop-down lists and checkboxes.
Then select the core and machine state you wish to trace. You can trace
process cycles, ports, cores, clock blocks, pads and processor instructions.

3. Click Run.

xTIMEcomposer loads your program into the simulator and, on termination, adds
the generated VCD file to your project.

REV 13.0.0

xTIMEcomposer User Guide 129/295

20.2.2 View a trace file

In the Project Explorer, double-click on a VCD file to open it in the Signals view,
as shown in Figure 39.

Figure 39:

Signals and
Waves views

In the Signals View, click the plus sign (Windows) or the disclosure triangle (Mac)
to expand a folder and display its collection of signals or subfolders. Double-click
on a signal or an entire folder to display in the Waves view.

To switch between a hierarchical and flat view of the signals, click the Display
button.

20.2.3 View a signal

In the Waves view, move the cursor over a signal to view the time since the start
of the simulation in the right numerical control at the top of the Waves view. If
the cursor changes to a pointing finger, you can double-click to locate the output
statement in the source code responsible for driving the signal. Use the Waves
view toolbar to perform the following operations:

To view the entire waveform, click the Zoom Fit button.

To move between transitions of the selected signal, click the Next and Previous
buttons. The output statement responsible for the transition is highlighted in the
editor.

To search for a specific transition, click the Search Transition button to open a
dialog box. Enter a value and click Find.

To save the configuration, click the Write Session File button and enter a filename
for the file. Your settings are saved for use whenever you load the VCD file in the
Waves view. Click the Read Session File button to load a recently saved settings
file.

REV 13.0.0

xTIMEcomposer User Guide 130/295

You can control how signals are displayed in the Waves view as follows:

· Display signal values in ASCII: Right-click on a signal in the Waves view to
bring up a contextual menu and choose Data Format · ASCII.

· Add a separator between signals: Right-click on a signal in the Waves view to
bring up a menu and choose Add Separator.

· Name a separator: Right-click on a separator to bring up a menu and choose
Name Separator. Enter a name for the separator in the Name Separator dialog
box and click OK.

· Move a separator: Click-and-drag a separator to the desired position.

20.3 Set up a loopback

You can connect any two ports or pins together in your simulation, to model
connections between the pins. To configure a loopback, follow these steps:

1. Create a simulator Run Configuration (see §20.1).

2. Click the Simulator tab to display the simulator configuration options.

3. Click the Loopback tab in the Plugins panel and select Enable pin connec-
tions.

4. In the Pin Connections panel, click Add. An empty loopback configuration is
displayed. The loopback consists of two sets of options that you can configure
for two different ports.

Figure 40:

Setting up a
loopback

connection

REV 13.0.0

xTIMEcomposer User Guide 131/295

5. In the drop-down lists for each end of the connection, select a value for Tile
and Port. If you leave the tile unspecified, the list of ports is taken from the
project’s XN file and the tile is determined automatically. If you specify tile, the
list of ports is taken from the header file <xs1.h>. To specify that only a subset
of the pins are connected to the port, change the values for Offset and Width.

6. Click Run.

20.4 Configure a simulator plugin

You can connect the simulator to any external plugin that has been compiled on
your host PC using the XMOS simulator plugin interface. To configure an external
plugin, follow these steps:

1. Create a simulator Run Configuration (see §20.1).

2. Click the Simulator tab to display the simulator configuration options.

3. In the Plugins panel, click the External tab.

4. Click Add to open the plugin configuration dialog.

Figure 41:

Setting up an
external

plugin

5. Select the plugin DLL and specify an optional command-line argument string.

6. Click Run to save your settings and run your program on the simulator with the
specified plugins.

REV 13.0.0

21xSIM command-line manual

IN THIS CHAPTER

· Overall Options

· Warning Options

· Tracing Options

· Loopback Plugin Options

· xSCOPE Options

xSIM performs a cycle-based simulation of an XMOS Executable (XE) file. The XE file contains a
description of the target hardware.

21.1 Overall Options

xe-file Specifies an XE file to simulate.

--max-cycles n
Exits when n system cycles is reached.

--plugin name args
Loads a plugin DLL. The format of args is determined by the plugin; if args contains
any spaces, it must be enclosed in quotes.

--stats On exit, prints the following:

· A breakdown of the instruction counts for each logical core.

· The number of data and control tokens sent through the switches.

--help Prints a description of the supported command line options.

--version Displays the version number and copyrights.

21.2 Warning Options

--warn-resources
Prints (on standard error) warning messages for the following:

· A timed input or output operation specifies a time in the past.

· The data in a buffered port’s transfer register is overwritten before it is input by
the processor.

REV 13.0.0

xTIMEcomposer User Guide 133/295

--warn-stack
Turns on warnings about possible stack corruption.

xSIM prints a warning if one XC task attempts to read or write to another task’s
workspace. This can happen if the stack space for a task is specified using either
#pragma stackfunction (see §8) or #pragma stackcalls (see §8).

--no-warn-registers
Don’t warn when a register is read before being written.

21.3 Tracing Options

--trace
-t Turns on instruction tracing for all tiles (see Figure 42).

--trace-to file
Turns on instruction tracing for all tiles. The trace is output to file.

--disable-rom-tracing
Turns off tracing for all instructions executed from ROM.

--enable-fnop-tracing
Turns on tracing of FNOP instructions.

Figure 42: Trace output for XS1 processors

Tile Core State Address Instruction Mem Cycle

Name I0 I1 I2 S0S1(T0) .. S0S1(Tn) . M S K N PC (sym + offset) : name operands address @val
from XN - * - - - n status pairs - - - - val L[adr]

D P d a b m s k n rn (val) S[adr]
A i res[id]
i e
I
p
m
s
w

I0: - No debug interrupt S1: - Interrupts and events disabled
I0: D Instruction caused debug interrupt S1: b Interrupts and events enabled
I1: * Instruction excepted S1: i Interrupts enabled and events disabled
I1: P Instruction paused S1: e Interrupts disabled and events enabled

I2: - Not in debug mode M: - MSYNC not set
I2: d Tile in debug mode M: m MSYNC set

S0: - Core not in use S: - SSYNC not set
S0: a Core active S: s SSYNC set
S0: A Core active (the instruction being traced belongs to this core) K: - INK not set
S0: i Core active with ININT bit set K: k INK set
S0: I Core active with ININT bit set (belongs to this core) N: - INENB not set
S0: p Core paused due to instruction fetch N: n INENB set
S0: m Core paused with MSYNC bit set rn (val) Value of register n
S0: s Core paused withSSYNC bit set res[id] Resource identifier
S0: w Core paused with WAITING bit set L/S[adr] Load from/Store to address

REV 13.0.0

xTIMEcomposer User Guide 134/295

--vcd-tracing args
Enables signal tracing. The trace data is output in the standard VCD file format.

If args contains any spaces, it must be enclosed in quotes. Its format is:

global-optionsopt〈-tile name 〈trace-options〉∗〉∗

The global options are:

-pads Turns on pad tracing.

-o file Places output in file.

The trace options are specific to the tile associated with the XN core declaration
name, for example tile[0].

The trace options are:

-ports Turns on port tracing.

-ports-detailed
Turns on more detailed port tracing.

-cycles Turns on clock cycle tracing.

-clock-blocks
Turns on clock block tracing.

-cores Turns on logical core tracing.

-instructions
Turns on instruction tracing.

To output traces from different nodes, tiles or logical cores to different files, this
option can be specified multiple times.

For example, the following command configures the simulator to trace the ports
on tile[0] to the file trace.vcd.

· xsim a.xe --vcd-tracing "-o trace.vcd -start-disabled -tile tile[0]
-ports"

Tracing by the VCD plugin can be enabled and disabled using the _traceStart()
and _traceStop() syscalls. The -start-disabled argument disables the vcd tracing
from the start, allowing the user to enable/disable only those sections of code
where tracing is desired. For example:

REV 13.0.0

xTIMEcomposer User Guide 135/295

#include <xs1.h>
#include <syscall.h>

port p1 = XS1_PORT_1A;

int main() {
p1 <: 1;
p1 <: 0;

_traceStart ();
p1 <: 1;
p1 <: 0;
_traceStop ();

p1 <: 1;
p1 <: 0;

return 0;
}

21.4 Loopback Plugin Options

The XMOS Loopback plugin configures any two ports on the target platform to be connected
together. The format of the arguments to the plugin are:

-pin package pin
Specifies the pin by its name on a package datasheet. The value of package must
match the Id attribute of a Package node (see §46.3) in the XN file used to compile
the program.

-port name n offset
Specifies n pins that correspond to a named port.

The value of name must match the Name attribute of a Port node (see §46.4.2) in
the XN file used to compile the program.

Setting offset to a non-zero value specifies a subset of the available pins.

-port tile p n offset
Specifies n pins that are connected to the port p on a tile.

The value of tile must match the Reference attribute of a Tile node (see §46.4.1)
in the XN file used to compile the program.

p can be any of the port identifiers defined in <xs1.h>. Setting offset to a non-zero
value specifies a subset of the available pins.

The plugin options are specified in pairs, one for each end of the connection. For example, the
following command configures the simulator to loopback the pin connected to port XS1_PORT_1A
on tile[0] to the pin defined by the port UART_TX in the program.

· xsim uart.xe --plugin LoopbackPort.dll '-port tile[0] XS1_PORT_1A 1 0 -port UART_TX
1 0'

REV 13.0.0

xTIMEcomposer User Guide 136/295

21.5 xSCOPE Options

--xscope args
Enables xSCOPE. file format.

If args contains any spaces, it must be enclosed in quotes. One of the following 2
options is mandatory:

-offline <filename>
Runs with xSCOPE in offline mode, placing the xSCOPE output in
the given file.

-realtime <URL:port>
Runs with xSCOPE in realtime mode, sending the xSCOPE output in
the given URL:port.

The following argument is optional:

-limit <num records>
Limts the xSCOPE output records to the given number.

For example, the following will run xSIM with xSCOPE enabled in offline mode:

· xsim app.xe --xscope "-offline xscope.xmt"

For example, the following will run xSIM with xSCOPE enabled in reatime mode:

· xsim app.xe --xscope "-realtime localhost:12345"

REV 13.0.0

22XSIM Testbench and Plugin Interfaces

IN THIS CHAPTER

· Implementing a Plugin

· Plugin Notifications

· Implementing a testbench

· Plugin API

· Testbench API

The XMOS simulator provides two interfaces that you can use to simulate your program within the
context of a larger system.

· The plugin interface allows you to connect one or more external devices to the simulator, with
all external devices clocked by the simulator, as shown in Figure 43.

· The testbench interface allows you to connect one or more simulators and external devices
together, all clocked under control of the testbench, as shown in Figure 44.

Figure 43: Plugins Interface

call

callback Plugin

call

callbackPlugin
XMOS

Simulator

Figure 44: Testbench Interface

callTestbench

Third-party
Model

Third-party
Model

XMOS
Simulator

REV 13.0.0

xTIMEcomposer User Guide 138/295

22.1 Implementing a Plugin

The plugin interface allows you to write models of external devices that interface with the XMOS
simulator. The example plugin shown below loops back two pins in the simulator.

#include "xsiplugin.h"
#include <assert.h>

XsiCallbacks *g_xsi;

XsiStatus plugin_create(void ** instance , XsiCallbacks *xsi ,
const char * arguments) {

assert(CHECK_INTERFACE_VERSION(xsi));
g_xsi = xsi;
return XSI_STATUS_OK;

}

XsiStatus plugin_clock(void * instance) {
unsigned value = 0;
XsiStatus status = g_xsi ->sample_pin("0", "X1D52", &value);
* instance = (void *)0;
if (status == XSI_STATUS_OK)

status = g_xsi ->drive_pin("0", "X1D53", value);
return status;

}

The simulator calls plugin_create at startup. The call to CHECK_INTERFACE_VERSION checks
whether the version of the interface supported by the simulator is compatible with the ver-
sion of the interface library used to compile the plugin. The parameter xsi is a structure of
function pointers that can be used to implement callbacks into the simulator. It is assigned to the
global variable g_xsi for later use.

The simulator calls plugin_clock on each tick of the processor clock. On each call, the plugin
samples the value on [package 0, pin X1D52] and drives it on [package 0, pin X1D53], effectively
looping back the two pins. The package name is taken from the XN file for the program running
on the simulator, and the pin name from the package datasheet.

An example loopback plugin is distributed with the tools. It can be found in
src/plugins/ExamplePlugin/. An example xc program that uses the plugin can be found in
examples/ExamplePluginTest.

REV 13.0.0

xTIMEcomposer User Guide 139/295

22.2 Plugin Notifications

The notification mechanism allows you to communicate between a plugin and code running on an
xCORE tile directly via a system call. An example is shown below:

#include <syscall.h>

#define TYPE_DISPLAY 0

int main() {
_plugins(TYPE_DISPLAY , 42, 99);
return 0;

}

#include <stdio.h>

#define TYPE_DISPLAY 0

XsiStatus plugin_notify(void *instance ,
int type , unsigned arg1 , unsigned arg2) {

if (type == TYPE_DISPLAY)
printf("Args: %\%d%, %\%d%, %\%d%\n", arg1 , arg2);

return XSI_STATUS_OK;
}

In the example above, the program running on the xCORE simulator calls the function _plugins
with a user-defined notification type and two arguments. This call causes the simulator to call
plugin_notify with these parameters. In this case, the notification function simply outputs the
parameters to the console.

REV 13.0.0

xTIMEcomposer User Guide 140/295

22.3 Implementing a testbench

The testbench interface allows you to instantiate an XMOS simulator within a larger system
environment. The testbench is responsible for clocking the entire system. The example testbench
below instantiates the XMOS system and clocks it until completion.

#include "xsidevice.h"
#include <assert.h>

void *xsim = 0;

int main(int argc , char **argv) {

XsiStatus status = xsi_create (&xsim , "test.xe");
assert(status == XSI_STATUS_OK);

while (status != XSI_STATUS_DONE) {
status = xsi_clock(xsim);
assert(status == XSI_STATUS_OK

|| status == XSI_STATUS_DONE);
}

status = xsi_terminate(xsim);
assert(status == XSI_STATUS_OK);
return 0;

}

The testbench calls xsi_create to create an instance of an XMOS simulator for the platform
defined by the given binary. On each iteration of the while loop, the testbench calls xsi_clock,
which causes the simulator to advance one or more logical cores by a single clock tick.

An example testbench is distributed with the tools. It can be found in the tools installation
directory src/testbenches/ExampleTestbench/. An example xc program that runs on the device
is provided in examples/ExampleTestbenchTest.

A C89 compiler is required to compile a plugin on your host PC. On Windows the library to link
against is lib/xsidevice.dll, and on Mac and Linux the library is lib/libxsidevice.so.

22.4 Plugin API

All plugins should include the header file xsiplugin.h. Except where otherwise stated, functions
return XSI_STATUS_OK on success.

You should provide implementations of the following functions to create, clock and terminate
your plugin.

XsiStatus plugin_create(void **instance,
XsiCallbacks *xsi,
const char *arguments)

REV 13.0.0

xTIMEcomposer User Guide 141/295

The simulator calls this function on startup. If multiple instances of the plugin are
required, instance can be used as a handle to enable multiple instantiations (for
example, by defining as an index into a global array of structures containing the
state for each instance of the plugin). xsi contains a structure of callback function
pointers, which the plugin can use to interface with the simulator. arguments
contains the command-line argument string passed to the plugin. On error, you
may return XSI_STATUS_INVALID_ARGS.

XsiStatus plugin_clock(void *instance)
By default, the simulator calls this function each time it increments the processor
clock. The clock rate can be changed by calling the function set_mhz.

XsiStatus plugin_notify(void *instance,
int type,
unsigned arg1,
unsigned arg2)

The simulator calls this function whenever a system call of type OS_PLUGINS is
executed by a program. This allows the target code to communicate with the
plugin.

XsiStatus plugin_terminate(void *instance)
The simulator calls this function immediately prior to terminating.

The callback functions provided by the structure passed to plugin_create are used to configure
the simulator.

22.4.1 Interfacing with the Simulator

During the call to plugin_create, the simulator provides a structure of callback functions (an
argument of type XsiCallbacks) that can be used to interface with the simulator.

The following callback functions are provided to configure the simulator.

XsiStatus CHECK_INTERFACE_VERSION(XsiCallbacks *)
CHECK_INTERFACE_VERSION checks whether the version of the interface library run-
ning on the simulator is compatible with the version of the interface used to
compile the plugin.

XsiStatus (*set_mhz)(double mhz)
set_mhz sets the rate at which the plugin is clocked in MHz. The simulator has a
mechanism that ensures that all processors and external plugins are clocked, over
time and on average, at the correct rate relative to the fastest component (and
hence one another).

XsiStatus (*reset)(XsiResetType type)
reset performs a device reset operation. The only supported value for type is
XSI_RESET_HARD, which performs a hard reset of all devices on the target platform.
This effect is the same as driving the package RESET pin.

REV 13.0.0

xTIMEcomposer User Guide 142/295

XsiStatus (*save_state)(const char *file)
save_state writes the simulator state to a file. If the file cannot be opened for
writing, the simulator returns XSI_STATUS_INVALID_FILE.

XsiStatus (*restore_state)(const char *file)
restore_state reads a simulator state file and continues execution from this point.
If the file cannot be opened, the simulator returns XSI_STATUS_INVALID_FILE.

In the following functions:

· The value of the parameter package must match the Id attribute of a Package node in the XN
file used to compile the running program.

· The value of pin must match the name of an I/O pin specified on the corresponding package
datasheet. On error, the simulator returns XSI_STATUS_INVALID_PACKAGE.

· The value of parameter tile must match the Reference attribute of a Tileref node in the XN file
used to compile the running program. On error, the simulator returns XSI_STATUS_INVALID_TILE.

· If parameters for both tile and port are provided, tile may be null, in which case port must
match the Name attribute of a Port node in the XN file used to compile the running program.
Otherwise, port must be a valid port identifier of the form XS1_PORT_xy. If the port is incorrectly
specified, the simulator returns XSI_STATUS_INVALID_PORT.

· If a parameter used to store a sampled value is null, the simulator returns XSI_STATUS_NULL_ARG.

The following callback functions are used to interface with the ports.

XsiStatus (*sample_pin)(const char *package, const char *pin, unsigned *var)
sample_pin reads the value on the specified pin and assigns it to a variable: if the
plugin was previously driving the pin, it stops driving it.

XsiStatus (*sample_port_pins)(const char *tile,
const char *port,
XsiPWord mask,
XsiPWord *var)

sample_port_pins reads the values on zero or more pins as specified by a mask,
and assigns to a variable: if bit n of the mask is 1, the pin connected to bit n of the
port is sampled, and if the plugin was previously driving the pin, it stops driving it;
otherwise no action is performed on the pin.

XsiStatus (*is_pin_driving)(const char *package, const char *pin, int *var)
is_pin_driving assigns a variable a value of 1 if the xCORE processor is currently
driving the pin, and 0 otherwise.

XsiStatus (*is_port_pins_driving)(const char *tile,
const char *port,
XsiPWord *var)

REV 13.0.0

xTIMEcomposer User Guide 143/295

is_port_pins_driving assigns a variable a value such that if bit n of the value is 1,
the xCORE processor is currently driving the pin connected to bit n of the specified
port; a bit value of 0 signifies that the pin is not currently being driven.

XsiStatus (*drive_pin)(const char *package, const char *pin, unsigned value)
drive_pin writes a value on the specified pin. The value continues to be held on
the pin until a subsequent call to a function that samples or drives the pin.

XsiStatus (*drive_port_pins)(const char *tile,
const char *port,
XsiPWord mask,
XsiPWord value)

drive_port_pins writes to zero or more pins as specified by a mask: if bit n of the
mask is 1, bit n of the value is written the pin connected to bit n of the specified
port, otherwise no action is performed on the pin. The value written to each pin
continues to be held on the pin until a subsequent call to a function that samples
or drives the pin.

The following callback functions are used to interface with the memory and debug registers.

XsiStatus (*read_mem)(const char *tile,
XsiWord32 address,
unsigned num_bytes,
unsigned char *data)

read_mem reads a number of bytes from xCORE tile memory, starting at the specified
address, and assigns them to a variable. The size of the data pointed to by data
must be at least as large as num_bytes. If the memory address is invalid, the
simulator returns XSI_STATUS_MEMORY_ERROR.

XsiStatus (*write_mem)(const char *tile,
XsiWord32 address,
unsigned num_bytes,
const unsigned char *data)

write_mem writes a number of bytes of data to xCORE tile memory, starting at
the specified address. The size of the data pointed to by data must be at least
as large as num_bytes. If the memory address is invalid, the simulator returns
XSI_STATUS_MEMORY_ERROR.

XsiStatus (*read_pswitch_reg)(const char *tile,
unsigned reg_num,
unsigned *var)

read_pswitch_reg reads the specified processor-switch register and writes it
to a variable. If the register number address is invalid, the simulator returns
XSI_STATUS_PSWITCH_ERROR.

REV 13.0.0

xTIMEcomposer User Guide 144/295

XsiStatus (*write_pswitch_reg)(const char *tile,
unsigned reg_num,
unsigned value)

write_pswitch_reg writes a value to the specified processor-switch regis-
ter. If the register number address is invalid, the simulator returns
XSI_STATUS_PSWITCH_ERROR.

22.5 Testbench API

A testbench should include the header file xsidevice.h. Except where otherwise stated, functions
return XSI_STATUS_OK on success.

The following functions are used to create, configure, clock and terminate an instance of an XMOS
simulator.

XsiStatus xsi_create(void **instance, const char *arguments)
xsi_create creates an instance of a simulator configured with the specified
command-line arguments.

The error return code is XSI_STATUS_INVALID_ARGS.

XsiStatus xsi_clock(void *instance)
xsi_clock steps the fastest processor in the system by one clock cycle, and may
step one or more slower processors by one clock cycle too. The simulator has a
mechanism that ensures that all processors are clocked, over time and on average,
at the correct rate relative to one another.

A return value of XSI_STATUS_OK indicates that the clocking operation completed,
and a value of XSI_STATUS_DONE indicates that the entire simulation has completed.

XsiStatus xsi_reset(void *instance, XsiResetType type)
xsi_reset performs a device reset operation. The only currently supported value
for type is XSI_RESET_HARD, which performs a hard reset of all devices on the target
platform. This effect is the same as driving the package RESET pin.

XsiStatus xsi_save_state(const char *file)
xsi_save_state writes the simulator state to a file.

If the file cannot be opened for writing, the function returns
XSI_STATUS_INVALID_FILE.

XsiStatus restore_state(const char *file)
xsi_restore_state reads a simulator state file and continues execution from this
point.

If the file cannot be opened, the function returns XSI_STATUS_INVALID_FILE.

XsiStatus xsi_terminate(void *instance)
xsi_terminate terminates the specified simulation instance.

REV 13.0.0

xTIMEcomposer User Guide 145/295

22.5.1 Interfacing with a Simulator

The following functions can be used to interface with devices in a simulation. In the following
functions:

· If the simulator instance is invalid, the function returns XSI_STATUS_INVALID_INSTANCE.

· The value of the parameter package must match the Id attribute of a Package node in the XN
file used to compile the running program.

· The value of pin must match the name of an I/O pin specified on the corresponding package
datasheet. On error, the function returns XSI_STATUS_INVALID_PACKAGE.

· The value of parameter tile must match the Reference attribute of a Tileref node in the XN file
used to compile the running program. On error, the function returns XSI_STATUS_INVALID_TILE.

· If parameters for both tilee and port are provided, tile may be null, in which case port must
match the Name attribute of a Port node in the XN file used to compile the running program.
Otherwise, port must be a valid port identifier of the form XS1_PORT_xy. If the port is incorrectly
specified, the function XSI_STATUS_INVALID_PORT.

· If a parameter used to store a sampled value is null, the function XSI_STATUS_NULL_ARG.

The following functions are used to interface with the ports.

XsiStatus *xsi_sample_pin(void *instance,
const char *package,
const char *pin,
unsigned *var)

xsi_sample_pin reads the value on the specified pin and writes it to a variable. If
the testbench was previously driving the pin, it stops driving it.

XsiStatus *xsi_sample_port_pins(void *instance,
const char *tile,
const char *port,
XsiPWord mask,
XsiPWord *var)

xsi_sample_port_pins reads the values on zero or more pins as specified by a
mask, and assigns to a variable: if bit n of the mask is 1, the pin connected to bit n
of the port is sampled, and if the testbench was previously driving the pin, it stops
driving it; otherwise no action is performed on the pin.

XsiStatus xsi_is_pin_driving(void *instance,
const char *package,
const char *pin,
int *var)

xsi_is_pin_driving assigns a variable a value of 1 if the xCORE tile is currently
driving the pin, and 0 otherwise.

REV 13.0.0

xTIMEcomposer User Guide 146/295

XsiStatus *xsi_is_port_pins_driving(void *instance,
const char *tile,
const char *port,
XsiPWord mask,
XsiPWord *var)

xsi_is_port_pins_driving assigns a variable a value such that if bit n of the value
is 1, the xCORE tile is currently driving the pin connected to bit n of the specified
port; a bit value of 0 signifies that the pin is not currently being driven.

XsiStatus *xsi_drive_pin(void *instance,
const char *package,
const char *pin,
unsigned value)

xsi_drive_pin writes a value on the specified pin. The value continues to be held
on the pin until a subsequent call to a function that samples or drives the pin.

XsiStatus xsi_drive_port_pins(void *instance,
const char *tile,
const char *port,
XsiPWord mask,
XsiPWord value)

xsi_drive_port_pins writes to zero or more pins as specified by a mask: if bit n
of the mask is 1, bit n of the value is written the pin connected to bit n of the
specified port, otherwise no action is performed on the pin. The value written to
each pin continues to be held on the pin until a subsequent call to a function that
samples or drives the pin.

The error return codes are XSI_STATUS_INVALID_TILE and XSI_INVALID_PORT.

The following functions are used to interface with the memory and debug registers.

XsiStatus xsi_read_mem(void *instance,
const char *tile,
XsiWord32 address,
unsigned num_bytes,
unsigned char *data)

xsi_read_mem reads a number of bytes from xCORE tile memory, starting at the
specified address, and assigns them a variable. The size of the data pointed to by
data must be at least as large as num_bytes. If the memory address is invalid, the
function returns XSI_STATUS_MEMORY_ERROR.

XsiStatus xsi_write_mem(void *instance,
char *tile,
XsiWord32 address,
unsigned num_bytes,
const unsigned char *data)

REV 13.0.0

xTIMEcomposer User Guide 147/295

xsi_write_mem writes a number of bytes of data to xCORE tile memory, starting
at the specified address. The size of the data pointed to by data must be at
least as large as num_bytes. If the memory address is invalid, the function returns
XSI_STATUS_MEMORY_ERROR.

XsiStatus xsi_read_pswitch_reg(void *instance,
const char *tile,
unsigned reg_num,
unsigned *var)

xsi_read_pswitch_reg reads the specified processor-switch register and writes
it to a variable. If the register number address is invalid, the function returns
XSI_STATUS_PSWITCH_ERROR.

XsiStatus xsi_write_pswitch_reg(void *instance,
const char *tile,
unsigned reg_num,
unsigned value)

xsi_write_pswitch_reg writes a value to the specified processor-switch reg-
ister. If the register number address is invalid, the function returns
XSI_STATUS_PSWITCH_ERROR.

REV 13.0.0

Part I

Debugging

CONTENTS

· Use xTIMEcomposer to debug a program

· Debug with printf in real-time

REV 13.0.0

23Use xTIMEcomposer to debug a program

IN THIS CHAPTER

· Launch the debugger

· Control program execution

· Examine a suspended program

· Set a breakpoint

· View disassembled code

The xCORE Debugger lets you see what’s going on “inside” your program while it
executes on hardware or on the simulator. It can help you identify the cause of any
erroneous behavior.

Figure 45:

Debug
perspective

REV 13.0.0

xTIMEcomposer User Guide 150/295

For full visibility of your program, you must compile it with debugging enabled
(see §9.3). This causes the compiler to add symbols to the executable that let the
debugger make direct associations back to the source code. Note that compiling
with optimizations enabled (see §9.4) can also make debugging more difficult.

23.1 Launch the debugger

To load a program under control of the debugger, follow these steps:

1. Select a project in the Project Explorer.

2. Choose Run · Debug Configurations.

3. In the left panel, double-click XCore Application. xTIMEcomposer creates a
new configuration and displays the default settings in the right panel.

4. In the Name text box, enter a name for the configuration.

5. xTIMEcomposer tries to identify the target project and executable for you. To
select one yourself, click Browse to the right of the Project text box and select
your project in the Project Selection dialog box. Then click Search Project and
select the executable file in the Program Selection dialog box.

You must have previously compiled your program without any errors for the
executable to be available for selection.

6. If you have a development board connected to your system, in the the Device
options panel check the hardware option and select your debug adapter from
the Adapter list. Alternatively, check the simulator option to run your program
on the simulator.

7. To save the configuration and launch the debugger, click Debug. If you are
asked whether to open the Debug perspective, check Remember my decision
and click Yes.

xTIMEcomposer loads your program in the debugger and opens it in the Debug
perspective.

xTIMEcomposer remembers the configuration last used to load your program. To
debug the program later using the same settings, just click the Debug button. To
use a different configuration, click the arrow to the right of the Debug button and
select a configuration from the drop-down list.

23.2 Control program execution

Once launched, the debugger runs the program until either an exception is raised
or you suspend execution by clicking the Suspend button .

Click the Resume button to continue executing a suspended program, or use one
of the step controls to advance the core selected in the Debug view incrementally:

· Step Into: Executes a single line of source code on the core selected in the

REV 13.0.0

xTIMEcomposer User Guide 151/295

Debug view. If the next line of code is a function call, the debugger suspends
at the first statement in the called function. All other cores are resumed.

· Step over: Executes a single line of source code on the core selected in the
Debug view. All other cores are resumed.

· Step return: Steps the core selected in the Debug view until the current function
returns. If the next line of code is a function call, the debugger executes the
entire function. All other cores are resumed.

· Step through: Switches the debugger context to the corresponding input core
of a channel output statement. This is useful for following the path of data as it
flows between cores. No cores are resumed.

When debugging optimized code, a step operation is not guaranteed to advance to
the next line in the source code, since the compiler may have reordered instruction
execution to improve performance.

23.3 Examine a suspended program

Once a program is suspended, you can query the state of each core and can inspect
the values held in registers and memory.

· Examine a core’s call stack: The Debug view displays a list of software tasks,
each of which can be expanded to show its call stack, as shown in Figure 46.

Figure 46:

Debug view

In the example above, the tile tile[0] is suspended at a breakpoint in the
function send_data on line 25 of the file debug.xc.

REV 13.0.0

xTIMEcomposer User Guide 152/295

· Examine Variables: The Variables view displays variables and their values. In
the Debug view click on any function in a core’s call stack to view its variables,
as shown in Figure 23.3.

Figure 47:

Variables
view

To view a global variable, right-click in the Variables view, select Add Global
Variables from the pop-up menu to open a dialog box and select the global
variable to add to the view.

Compiling a program without optimizations guarantees that every variable is
held in memory for the duration of its scope so that its value can always be
displayed. If optimizations are enabled, a variable may not be available to be
examined, resulting in the message <value optimized out>.

You can do the following with variables:

· Display a variable’s value in hexadecimal format: Right-click on a variable
to bring up a menu and choose Format · Hexadecimal. You can also choose
binary, decimal or normal. The normal format is determined by the type of the
variable.

· Change a variable’s value: Click on a value to highlight it, enter a new value
and press Enter. The table entry is highlighted yellow to indicate its value has
changed. This allows you to test what happens under what-if scenarios.

· Prevent the debugger from reading a variable: Right-click on a variable and
choose Disable from the contextual menu. This is useful if the variable’s type is
qualified with volatile. To apply settings to multiple variables at once, press
Ctrl (Windows, Linux) or (Mac) while you click on multiple variables, then
right-click and select an option from the contextual menu.

· Examine Memory: The Memory view provides a list of memory monitors, each
representing a section of memory. To open the Memory view, choose Window ·
Show View · Memory. In the Debug view click on any core to view the contents
of its memory, as shown in Figure 23.3.

Figure 48:

Memory view

REV 13.0.0

xTIMEcomposer User Guide 153/295

To specify a memory location to view, click the Add button to open the Memory
Monitor dialog box, enter a memory location and click OK. You can enter either
an absolute address or a C/XC expression. To view the contents of an array just
enter its name.

To display the memory contents in a different format such as Hex or ASCII, click the
New Renderings tab, select a format and click Add Renderings. xTIMEcomposer
adds new tabs in the panel to the right of the Memory view, each showing a
different interpretation of the values in memory.

23.4 Set a breakpoint

A breakpoint is a marker in the program that instructs the debugger to interrupt
execution so that you can investigate the state of the program. You can add a
breakpoint to any executable line of code, causing execution to suspend before
that line of code executes.

To add a breakpoint, double-click the marker bar in the left margin of the code
editor next to the line at which you wish to suspend execution. A blue dot is
displayed to indicate the presence of the breakpoint. Note that the breakpoint
applies to every core that executes the function.

Breakpoints are also displayed in the Breakpoints view. To open the Breakpoints
view, choose Window · Show · View · Breakpoints. Double-click on a breakpoint
to locate the corresponding line in the source code editor.

Here are some other things can do with breakpoints:

· Set a conditional breakpoint: Right-click on a breakpoint marker to bring up
a contextual menu, and choose Breakpoint Properties to display a properties
dialog box. Click the Common option in the left panel and enter a C/XC condi-
tional expression in the Condition text box in the right panel. The expression
can contain any variables in the scope of the breakpoint.

· Set a conditional breakpoint: Right-click on a breakpoint marker to bring up
a contextual menu, and choose Breakpoint Properties to display a properties
dialog box. Click the Common option in the left panel and enter a C/XC condi-
tional expression in the Condition text box in the right panel. The expression
can contain any variables in the scope of the breakpoint.

· Set a watchpoint on a global variable: A watchpoint is a special breakpoint
that suspends execution whenever the value of an expression changes (without
specifying where it might happen). Right-click anywhere in the Breakpoints view
and choose Add Watchpoint C/XC from the contextual menu. Enter a C/XC
expression in the dialog box, for example a[MAX]. Select Write to break when
the expression is written, and Read to break when the expression is read.

· Disable a breakpoint: In the Breakpoints view, clear the checkbox next to a
breakpoint. Enable the checkbox to re-enable the breakpoint.

· Remove a breakpoint: Double-click on a breakpoint marker in the code editor
to remove it. Alternatively, right-click a breakpoint in the Breakpoints view and

REV 13.0.0

xTIMEcomposer User Guide 154/295

select Remove from the contextual menu; to remove all breakpoints, select
Remove All.

23.5 View disassembled code

The Disassembly view displays the assembly instructions that are executed on the
target platform. To open the Disassembly view, choose Window · Show View ·
Disassembly.

Figure 49:

Disassembly
view

xTIMEcomposer automatically enables instruction stepping mode whenever the
Disassembly view has focus. Alternatively, click the Instruction Stepping Mode
button to enable. Once enabled, click the Step button to advance the program by
a single assembly instruction.

REV 13.0.0

24Debug with printf in real-time

IN THIS CHAPTER

· Redirect stdout and stderr to the xTAG

· Run a program with xTAG output enabled

· Output using the UART interface

The xCORE debugger lets you suspend execution of a program in order to analyze
its internal state. However, if your program contains timing-critical behavior, for
example due to it implementing a real-time communication protocol, the act of
suspending the program may cause other system components to fail, preventing
further debugging.

An alternative approach to debugging is to add trace statements to your program
that are used to observe its internal behavior at run-time (sometimes referred to as
printf debugging). By printing the results of intermediate calculations, you can
quickly isolate where errors occur in your program.

In a traditional debugging environment, outputting data using a standard such as
JTAG results in interrupts that block core execution, slowing your program down
considerably. xTIMEcomposer lets you redirect the standard streams stdout and
stderr to an xTAG debug adapter, where the data is buffered until it can be output
to the host.

xSYS

xCONNECT Links

Target Hardware Platform

Program
being

debugged
USB

xTIMEcomposer
CONSOLE

Transfer
Buffer

xTAG >
Figure 50:

xTAG debug
configuration

with I/O
redirection

In this configuration, calls to output routines such as printf complete as soon
as the data has been output on an xCONNECT Link, minimizing the effect on the
program’s timing characteristics. This allows debugging statements to be added to
many timing-critical code sections and viewed in a console during execution. In the
case of a program crash, all remaining contents in the xTAG buffer is forwarded to
the PC, ensuring important information is not lost.

If you are using a legacy FTDI or xTAG-1 debug adapter, or if the XSYS connector
on your target hardware does not provide an xCONNECT Link, you can output
data over your adapter’s UART interface instead (see §24.3). Note that the UART
interface offers significantly reduced performance.

REV 13.0.0

xTIMEcomposer User Guide 156/295

24.1 Redirect stdout and stderr to the xTAG

The program below redirects standard output to the xTAG.

#include <stdio.h>
#include <xscope.h>

port receive;
port transmit;

int process(int);

void xscope_user_init(void) {
xscope_register (0);
xscope_config_io(XSCOPE_IO_BASIC);

}

int main() {

while (1) {
int dataIn , dataOut;

receive :> dataIn;
dataOut = process(dataIn);

/* Debug Information */
if (dataOut < 0)

printf("%d %d", dataIn , dataOut);

transmit <: dataOut;
}

}

In the constructor xscope_user_init, the call to xscope_register initializes the
xTAG interface, and the call to xscope_config_io redirects the streams stdout and
stderr to this interface.

The main program inputs data from a port, performs a computation on it and
outputs the result to another port. It uses the standard output function printf to
log instances where the computed result is less than zero.

You can use the C standard I/O functions on any core at the same time. This usage
results in a single channel end being allocated on each tile on which data is output.

You can timestamp the output data by calling xscope_config_io with the option
XSCOPE_IO_TIMED. This causes the output timestamp to be displayed with the data
in the console. Note that this also reduces the amount of data that can be buffered
at any time.

REV 13.0.0

xTIMEcomposer User Guide 157/295

24.2 Run a program with xTAG output enabled

To redirect standard output to the xTAG and display it in the console, you must
build and run your program with the xSCOPE instrumentation library. To build and
run your program, follow these steps:

1. Open the Makefile for your project.

2. Locate the XCC_FLAGS_config variable for your build configuration, for example
XCC_FLAGS_Release.

3. Add the option -fxscope.

4. If you are developing using xTIMEcomposer Studio, create a Run Configuration
for your target device (see §15.1). In the xSCOPE tab, select Offline mode.
Click Run to save and run the configuration.

xTIMEcomposer loads your program, displaying data received from the xTAG in
the console.

5. If you are developing using the command-line tools, pass the option --xscope
to XRUN, for example:

· xrun --xscope myprog.xe

XRUN loads your program and remains attached to the xTAG adapter, displaying
data received from it in the terminal. XRUN terminates when the program
performs a call to exit.

24.3 Output using the UART interface

If you are using a legacy FTDI or XTAG-1 debug adapter, or if the XSYS connector
on your target hardware does not provide an xCONNECT Link, you can output data
over the UART interface provided by your adapter.

To use the UART interface, you must provide the xSCOPE library with a 1-bit UART
TX port that has been initialized with the pin connected to the UART-TX pin on
your debug adapter. An example initialization is shown below.

#include <platform.h>
#include <xscope.h>

port uart_tx = PORT_UART_TX;

void xscope_user_init(void) {
xscope_register (0);
xscope_config_uart(uart_tx);
xscope_config_io(XSCOPE_IO_BASIC);

}

REV 13.0.0

xTIMEcomposer User Guide 158/295

To run your program in xTIMEcomposer Studio, create a Run Configuration for
your target device (see §15.1) and select the option Run UART Server.

To run your program using the command-line tools, pass the option --uart to
XRUN, for example:

· xrun --uart --xscope myprog.xe

Because the UART interface uses a port instead of an xCONNECT Link, you can use
the C standard I/O functions on a single tile only.

REV 13.0.0

Part J

Flash Programming

CONTENTS

· Design and manufacture systems with flash memory

· libflash API

· List of devices natively supported by libflash

· Add support for a new flash device

· XFLASH Command-Line Manual

REV 13.0.0

25Design and manufacture systems with flash memory

IN THIS CHAPTER

· Boot a program from flash memory

· Generate a flash image for manufacture

· Perform an in-field upgrade

· Customize the flash loader

xTIMEcomposer can be used to target xCORE devices that use SPI flash memory for
booting and persistent storage. The xCORE flash format is shown in Figure 51.

Flash
loader

Factory
image0 1 2 3

Upgrade
image

BOOT PARTITION DATA
PARTITION0

Upgrade
image

Default
0 bytes

(unavailable)

Sector boundariesHardware protected

Figure 51:

Flash format
diagram

The flash memory is logically split between a boot and data partition. The boot
partition consists of a flash loader followed by a “factory image” and zero or more
optional “upgrade images.” Each image starts with a descriptor that contains a
unique version number, a header that contains a table of code/data segments for
each tile used by the program and a CRC. By default, the flash loader boots the
image with the highest version with a valid CRC.

25.1 Boot a program from flash memory

To load a program into an SPI flash memory device on your development board,
start the command-line tools (see §3.2) and enter the following commands:

1. xflash -l

XFLASH prints an enumerated list of all JTAG adapters connected to your PC and
the devices on each JTAG chain, in the form:

ID Name Adapter ID Devices

-- ---- ---------- -------

2. xflash --id ID program.xe

XFLASH generates an image in the xCORE flash format that contains a first stage
loader and factory image comprising the binary and data segments from your

REV 13.0.0

xTIMEcomposer User Guide 161/295

compiled program. It then writes this image to flash memory using the xCORE
device.

The XN file used to compile your program must define an SPI flash device and
specify the four ports of the xCORE device to which it is connected (see XM-
000929-PC).

25.2 Generate a flash image for manufacture

In manufacturing environments, the same program is typically programmed into
multiple flash devices.

To generate an image file in the xCORE flash format, which can be subsequently
programmed into flash devices, start the command-line tools (see §3.2) and enter
the following command:

· xflash program.xe -o image-file

XFLASH generates an image comprising a first stage loader and your program as
the factory image, which it writes to the specified file.

25.3 Perform an in-field upgrade

xTimeComposer and the libflash library let you manage multiple firmware upgrades
over the life cycle of your product. You can use XFLASH to create an upgrade
image and, from within your program, use libflash to write this image to the boot
partition. Using libflash, updates are robust against partially complete writes, for
example due to power failure: if the CRC of the upgrade image fails during boot,
the previous image is loaded instead.

25.3.1 Write a program that upgrades itself

The example program in Figure 52 uses the libflash library to upgrade itself.

The call to fl_connect opens a connection between the xCORE and SPI devices,
and the call to fl_getPageSize determines the SPI device’s page size. All read and
write operations occur at the page level.

The first upgrade image is located by calling fl_getFactoryImage and then getNext-
BootImage. Once located, fl_startImageReplace prepares this image for replace-
ment by a new image with the specified (maximum) size. fl_startImageReplace
must be called until it returns 0, signifying that the preparation is complete.

The function fl_writeImagePage writes the next page of data to the SPI device.
Calls to this function return after the data is output to the device but may return
before the device has written the data to its flash memory. This increases the
amount of time available to the processor to fetch the next page of data. The
function fl_endWriteImage waits for the SPI device to write the last page of data to
its flash memory. To simplify the writing operation, XFLASH adds padding to the
upgrade image to ensure that its size is a multiple of the page size.

REV 13.0.0

http://www.xmos.com/doc/XM-000929-PC/latest#xn-spec-externaldevice
http://www.xmos.com/doc/XM-000929-PC/latest#xn-spec-externaldevice

xTIMEcomposer User Guide 162/295

#include <platform.h>
#include <flash.h>

#define MAX_PSIZE 256

/* initializers defined in XN file
* and available via platform.h */

fl_SPIPorts SPI = { PORT_SPI_MISO ,
PORT_SPI_SS ,
PORT_SPI_CLK ,
PORT_SPI_MOSI ,
XS1_CLKBLK_1 };

int upgrade(chanend c, int usize) {

/* obtain an upgrade image and write
* it to flash memory
* error checking omitted */

fl_BootImageInfo b;
int page[MAX_PSIZE];
int psize;

fl_connect(SPI);

psize = fl_getPageSize ();
fl_getFactoryImage(b);
fl_getNextBootImage(b);

while(fl_startImageReplace(b, usize))
;

for (int i=0; i page[j];)
fl_writeImagePage(page);

fl_endWriteImage ();

fl_disconnect ();

return 0;
}

int main() {
/* main application - calls upgrade
* to perform an in-field upgrade */

}

Figure 52:

C program
that uses

libflash to
upgrade itself

The call fl_disconnect closes the connection between the xCORE and SPI devices.

REV 13.0.0

xTIMEcomposer User Guide 163/295

25.3.2 Build and deploy the upgrader

To build and deploy the first release of your program, start the command-line tools
(see §3.2) and enter the following commands:

1. xcc file.xc -target=boardname -lflash -o first-release.xe

XCC compiles your program and links it against libflash. Alternatively add the
option -lflash to your Makefile.

2. xflash first-release.xe -o manufacture-image

XFLASH generates an image in the xCORE flash format that contains a first stage
loader and the first release of your program as the factory image.

To build and deploy an upgraded version of your program, enter the following
commands:

1. xcc file.xc -target=boardname -lflash -o latest-release.xe

XCC compiles your program and links it against libflash.

2. xflash --upgrade version latest-release.xe -o upgrade-image

XFLASH generates an upgrade image with the specified version number, which
must be greater than 0. Your program should obtain this image to upgrade
itself.

If the upgrade operation succeeds, upon resetting the device the loader boots the
upgrade image, otherwise it boots the factory image.

25.4 Customize the flash loader

xTIMEcomposer lets you customize the mechanism for choosing which image is
loaded from flash. The example program in Figure 53 determines which image to
load based on the value at the start of the data partition.

The xCORE loader first calls the function init, and then iterates over each image
in the boot partition. For each image, it calls checkCandidateImageVersion with
the image version number and, if this function returns non-zero and its CRC
is validated, it calls recordCandidateImage with the image version number and
address. Finally, the loader calls reportSelectedImage to obtain the address of the
selected image.

To produce a custom loader, you are required to define the functions init,
checkCandidateImageVersion, recordCandidateImage and reportSelectedImage.

The loader provides the function readFlashDataPage.

REV 13.0.0

xTIMEcomposer User Guide 164/295

extern void *readFlashDataPage(unsigned addr);

int dpVersion;
void *imgAdr;

void init(void) {
void *ptr = readFlashDataPage (0);
dpVersion = *(int *)ptr;

}

int checkCandidateImageVersion(int v) {
return v == dpVersion;

}

void recordCandidateImage(int v, unsigned adr) {
imgAdr = adr;

}

unsigned reportSelectedImage(void) {
return imgAdr;

}

Figure 53:

C functions
that

customize
the flash

loader

25.4.1 Build the loader

To create a flash image that contains a custom flash loader and factory image, start
the command-line tools (see §3.2) and enter the following commands:

1. xcc -c file.xc -o loader.o

XCC compiles your functions for image selection, producing a binary object.

2. xflash bin.xe --loader loader.o

XFLASH writes a flash image containing the custom loader and factory
image to the specified file.

25.4.2 Add additional images

The following command builds a flash image that contains a custom flash loader, a
factory image and two additional images:

· xflash factory.xe --loader loader.o --upgrade 1 usb.xe 0x20000
--upgrade 2 avb.xe

The arguments to --upgrade include the version number, executable file and an
optional size in bytes. XFLASH writes each upgrade image on the next sector
boundary. The size argument is used to add padding to an image, allowing it to be
field-upgraded in the future by a larger image.

REV 13.0.0

26libflash API

IN THIS CHAPTER

· General Operations

· Boot Partition Functions

· Data Partition Functions

The libflash library provides functions for reading and writing data to SPI flash devices that use
the xCORE format shown in the diagram below.

Figure 54: Flash format diagram

Flash
loader

Factory
image0 1 2 3

Upgrade
image

BOOT PARTITION DATA
PARTITION0

Upgrade
image

Default
0 bytes

(unavailable)

Sector boundariesHardware protected

All functions are prototyped in the header file <flash.h>. Except where otherwise stated, functions
return 0 on success and non-zero on failure.

26.1 General Operations

The program must explicitly open a connection to the SPI device before attempting to use it, and
must disconnect once finished accessing the device.

The functions fl_connect and fl_connectToDevice require an argument of type fl_SPIPorts,
which defines the four ports and clock block used to connect to the device.

typedef struct {
in buffered port:8 spiMISO;
out port spiSS;
out port spiCLK;
out buffered port:8 spiMOSI;
clock spiClkblk;

} fl_SPIPorts;

REV 13.0.0

xTIMEcomposer User Guide 166/295

int fl_connect(fl_SPIPorts *SPI)
fl_connect opens a connection to the specified SPI device.

int fl_connectToDevice(fl_SPIPorts *SPI, fl_DeviceSpec spec[], unsigned n)
fl_connectToDevice opens a connection to an SPI device. It iterates through an
array of n SPI device specifications, attempting to connect using each specification
until one succeeds.

int fl_getFlashType(void)
fl_getFlashType returns an enum value for the flash device. The enumeration of
devices known to libflash is given below.

typedef enum {
UNKNOWN = 0,
ALTERA_EPCS1 ,
ATMEL_AT25DF041A ,
ATMEL_AT25FS010 ,
ST_M25PE10 ,
ST_M25PE20 ,
WINBOND_W25X40

} fl_FlashId;

If the function call fl_connectToDevice(p, spec, n) is used to connect to a flash
device, fl_getFlashType returns the parameter value spec[i].flashId where i is
the index of the connected device.

unsigned fl_getFlashSize(void)
fl_getFlashSize returns the capacity of the SPI device in bytes.

int fl_disconnect(void)
fl_disconnect closes the connection to the SPI device.

26.2 Boot Partition Functions

By default, the size of the boot partition is set to the size of the flash device. Access to boot
images is provided through an iterator interface.

int fl_getFactoryImage(fl_BootImageInfo *bootImageInfo)
fl_getFactoryImage provides information about the factory boot image.

int fl_getNextBootImage(fl_BootImageInfo *bootImageInfo)
fl_getNextBootImage provides information about the next upgrade image. Once
located, an image can be upgraded. Functions are also provided for reading the
contents of an upgrade image.

unsigned fl_getImageVersion(fl_BootImageInfo *bootImageInfo)
fl_getImageVersion returns the version number of the specified image.

REV 13.0.0

xTIMEcomposer User Guide 167/295

int fl_startImageReplace(fl_BootImageInfo *, unsigned maxsize)
fl_startImageReplace prepares the SPI device for replacing an image. The old
image can no longer be assumed to exist after this call.

Attempting to write into the data partition or the space of another upgrade image
is invalid. A non-zero return value signifies that the preparation is not yet complete
and that the function should be called again. This behavior allows the latency of a
sector erase to be masked by the program.

int fl_startImageAdd(fl_BootImageInfo*, unsigned maxsize, unsigned padding)
fl_startImageAdd prepares the SPI device for adding an image after the specified
image. The start of the new image is at least padding bytes after the previous
image.

Attempting to write into the data partition or the space of another upgrade image
is invalid. A non-zero return value signifies that the preparation is not yet complete
and that the function must be called again. This behavior allows the latency of a
sector erase to be masked by the program.

int fl_startImageAddAt(unsigned offset, unsigned maxsize)
fl_startImageAddAt prepares the SPI device for adding an image at the specified
address offset from the base of the first sector after the factory image.

Attempting to write into the data partition or the space of another upgrade image
is invalid. A non-zero return value signifies that the preparation is not yet complete
and that the function must be called again.

int fl_writeImagePage(const unsigned char page[])
fl_writeImagePage waits until the SPI device is able to accept a request and then
outputs the next page of data to the device. Attempting to write past the maximum
size passed to fl_startImageReplace, fl_startImageAdd or fl_startImageAddAt
is invalid.

int fl_writeImageEnd(void)
fl_writeImageEnd waits until the SPI device has written the last page of data to its
memory.

int fl_startImageRead(fl_BootImageInfo *b)
fl_startImageRead prepares the SPI device for reading the contents of the specified
upgrade image.

int fl_readImagePage(unsigned char page[])
fl_readImagePage inputs the next page of data from the SPI device and writes it to
the array page.

int fl_deleteImage(fl_BootImageInfo* b)
fl_deleteImage erases the upgrade image with the specified image.

REV 13.0.0

xTIMEcomposer User Guide 168/295

26.3 Data Partition Functions

All flash devices are assumed to have uniform page sizes but are not assumed to have uniform
sector sizes. Read and write operations occur at the page level, and erase operations occur at
the sector level. This means that to write part of a sector, a buffer size of at least one sector is
required to preserve other data.

In the following functions, writes to the data partition and erasures from the data partition are not
fail-safe. If the operation is interrupted, for example due to a power failure, the data in the page
or sector is undefined.

unsigned fl_getDataPartitionSize(void)
fl_getDataPartitionSize returns the size of the data partition in bytes.

int fl_readData(unsigned offset, unsigned size, unsigned char dst[])
fl_readData reads a number of bytes from an offset into the data partition and
writes them to the array dst.

unsigned fl_getWriteScratchSize(unsigned offset, unsigned size)
fl_getWriteScratchSize returns the buffer size needed by fl_writeData for the
given parameters.

int fl_writeData(unsigned offset,
unsigned size,
const unsigned char src[],
unsigned char buffer[])

fl_writeData writes the array src to the specified offset in the data partition. It
uses the array buffer to preserve page data that must be re-written.

26.3.1 Page-Level Functions

unsigned fl_getPageSize(void)
fl_getPageSize returns the page size in bytes.

unsigned fl_getNumDataPages(void)
fl_getNumDataPages returns the number of pages in the data partition.

unsigned fl_writeDataPage(unsigned n, const unsigned char data[])
fl_writeDataPage writes the array data to the n-th page in the data partition. The
data array must be at least as big as the page size; if larger, the highest elements
are ignored.

unsigned fl_readDataPage(unsigned n, unsigned char data[])
fl_readDataPage reads the n-th page in the data partition and writes it to the array
data. The size of data must be at least as large as the page size.

REV 13.0.0

xTIMEcomposer User Guide 169/295

26.3.2 Sector-Level Functions

unsigned fl_getNumDataSectors(void)
fl_getNumDataSectors returns the number of sectors in the data partition.

unsigned fl_getDataSectorSize(unsigned n)
fl_getDataSectorSize returns the size of the n-th sector in the data partition in
bytes.

unsigned fl_eraseDataSector(unsigned n)
fl_eraseDataSector erases the n-th sector in the data partition.

unsigned fl_eraseAllDataSectors(void)
fl_eraseAllDataSectors erases all sectors in the data partition.

REV 13.0.0

27List of devices natively supported by libflash

libflash supports a wide range of flash devices available in the market. Each flash
device is described using a SPI specification file. The table in Figure 55 lists the
flash devices for which SPI spec files are included with xTIMEcomposer.

Manufacturer Part Number Enabled in libflash by default

Altera EPCS1 Y

AMIC A25L016 N

A25L40P N

A25L40PT N

A25L40PUM N

A25L80P N

Atmel AT25DF021 N

AT25DF041A Y

AT25F512 N

AT25FS010 Y

ESMT F25L004A N

Macronix MX25L1005C N

NUMONYX M25P10 N

M25P16 N

M25P40 N

M45P10E N

SPANSION S25FL204K N

SST SST25VF010 N

SST25VF016 N

SST25VF040 N

ST Microelectronics M25PE10 Y

M25PE20 Y

Winbond W25X10 N

W25X20 N

W25X40 Y

Figure 55:

List of flash
devices

supported
natively by

libflash

REV 13.0.0

28Add support for a new flash device

IN THIS CHAPTER

· Libflash Device ID

· Page Size and Number of Pages

· Address Size

· Clock Rate

· Read Device ID

· Sector Erase

· Write Enable/Disable

· Memory Protection

· Programming Command

· Read Data

· Sector Information

· Status Register Bits

· Add Support to xTimeComposer

· Select a Flash Device

To support a new flash device, a configuration file must be written that describes
the device characteristics, such as page size, number of pages and commands for
reading, writing and erasing data. This information can be found in the datasheet
for the flash device. Many devices available in the market can be described using
these configuration parameters; those that cannot are unsupported.

The configuration file for the Numonyx M25P10-A3 is shown below. The device is
described as an initializer for a C structure, the values of which are described in
the following sections.

3http://www.xmos.com/references/m25p10a

REV 13.0.0

http://www.xmos.com/references/m25p10a

xTIMEcomposer User Guide 172/295

10, /* 1. libflash device ID */
256, /* 2. Page size */
512, /* 3. Number of pages */
3, /* 4. Address size */
4, /* 5. Clock divider */
0x9f , /* 6. RDID cmd */
0, /* 7. RDID dummy bytes */
3, /* 8. RDID data size in bytes */
0x202011 , /* 9. RDID manufacturer ID */
0xD8 , /* 10. SE cmd */
0, /* 11. SE full sector erase */
0x06 , /* 12. WREN cmd */
0x04 , /* 13. WRDI cmd */
PROT_TYPE_SR , /* 14. Protection type */
{{0x0c ,0x0},{0,0}}, /* 15. SR protect and unprotect cmds */
0x02 , /* 16. PP cmd */
0x0b , /* 17. READ cmd */
1, /* 18. READ dummy bytes*/
SECTOR_LAYOUT_REGULAR , /* 19. Sector layout */
{32768 ,{0 ,{0}}} , /* 20. Sector sizes */
0x05 , /* 21. RDSR cmd*/
0x01 , /* 22. WRSR cmd */
0x01 , /* 23. WIP bit mask */

28.1 Libflash Device ID

10, /* 1. libflash device ID */

This value is returned by libflash on a call to the function fl_getFlashType so that
the application can identify the connected flash device.

28.2 Page Size and Number of Pages

10, /* 1. libflash device ID */
256, /* 2. Page size */

These values specify the size of each page in bytes and the total number of pages
across all available sectors. On the M25P10-A datasheet, these can be found from
the following paragraph on page 6:

The memory is organized as 4 sectors, each containing 128 pages. Each page
is 256 bytes wide. Thus, the whole memory can be viewed as consisting of 512
pages, or 131,072 bytes.

REV 13.0.0

xTIMEcomposer User Guide 173/295

28.3 Address Size

3, /* 4. Address size */

This value specifies the number of bytes used to represent an address. Figure 56
reproduces the part of the M25P10-A datasheet that provides this information. In
the table, all instructions that require an address take three bytes.

Instruction Description One-byte instruction Address Dummy Data

code byte bytes bytes

WREN Write Enable 0000 0110 06h 0 0 0

WRDI Write Disable 0000 0100 04h 0 0 0

RDID Read 1001 1111 9Fh 0 0 1 to 3

RDSR Read Status Register 0000 0101 05h 0 0 1 to ∞
WRSR Write Status Register 0000 0001 01h 0 0 1

READ Read Data Bytes 0000 0011 03h 3 0 1 to ∞
FAST_READ Read Data Bytes at

Higher Speed
0000 1011 0Bh 3 1 1 to ∞

PP Page Program 0000 0010 02h 3 0 1 to 256

SE Sector Erase 1101 1000 D8h 3 0 0

BE Bulk Erase 1100 0111 C7h 0 0 0

DP Deep Power-down 1011 1001 B9h 0 0 0

RES Release from Deep
Power-down, and
Read Electronic
Signature

1010 1011 ABh 0 3 1 to ∞

Release from Deep
Power-down

0 0 0

Figure 56:

Table 4 on
page 17 of
M25P10-A
datasheet

28.4 Clock Rate

4, /* 5. Clock divider */

This value is used to determine the clock rate for interfacing with the SPI device. For
a value of n, the SPI clock rate used is 100/2*n MHz. libflash supports a maximum
of 12.5MHz.

Figure 57 reproduces the part of the M25P10-A datasheet that provides this
information. The AC characteristics table shows that all instructions used in the
configuration file, as discussed throughout this document, can operate at up to
25MHz. This is faster than libflash can support, so the value 4 is provided to
generate a 12.5MHz clock.

In general, if the SPI device supports different clock rates for different commands
used by libflash, the lowest value must be specified.

REV 13.0.0

xTIMEcomposer User Guide 174/295

Symbol Alt. Parameter Min Typ Max Unit

fC fC Clock frequency for the following
instructions: FAST_READ, PP, SE, BE,
DP, RES, WREN, WRDI, RDSR, WRSR

D.C. 25 MHz

fR Clock frequency for READ instructions D.C. 20 MHz

tCH tCLH Clock High time 18 ns

tCL tCLL Clock Low time 18 ns

Figure 57:

Table 18 on
page 40 of
M25P10-A
datasheet
(first four

entries only).

28.5 Read Device ID

0x9f , /* 6. RDID cmd */
0, /* 7. RDID dummy bytes */
3, /* 8. RDID data size in bytes */
0x202011 , /* 9. RDID manufacturer ID */

Most flash devices have a hardware identifier that can be used to identify the
device. This is used by libflash when one or more flash devices are supported by
the application to determine which type of device is connected. The sequence for
reading a device ID is typically to issue an RDID (read ID) command, wait for zero
or more dummy bytes, and then read one or more bytes of data.

Figure 56 reproduces the part of the M25P10-A datasheet that provides this
information. The row for the instruction RDID shows that the command value is
0x9f, that there are no dummy bytes, and one to three data bytes. As shown in
Figure 58 and Figure 59, the amount of data read depends on whether just the
manufacturer ID (first byte) is required, or whether both the manufacturer ID and
the device ID (second and third bytes) are required. All three bytes are needed to
uniquely identify the device, so the manufacturer ID is specified as the three-byte
value 0x202011.

Manufacturer identification Device identification

Memory type Memory capacity

20h 20h 11h

Figure 58:

Table 5 on
page 19 of
M25P10-A
datasheet

In general, if there is a choice of RDID commands then the JEDEC compliant one
should be preferred. Otherwise, the one returning the longest ID should be used.

REV 13.0.0

xTIMEcomposer User Guide 175/295

C

D

S

Instruction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 28 29 30 31

Q

Manufacturer identification
High Impedance

MSB

15 14 13 0123

Device identification

MSB

Figure 59:

Figure 9 on
page 19 of
M25P10-A
datasheet

28.6 Sector Erase

0xD8 , /* 10. SE cmd */
0, /* 11. SE full sector erase */

Most flash devices provide an instruction to erase all or part of a sector.

Figure 56 reproduces the part of the M25P10-A datasheet that provides this
information. The row for the instruction SE shows that the command value is 0xd8.
On the M25P10-A datasheet, the amount of data erased can be found from the
first paragraph on page 28:

The Sector Erase (SE) instruction sets to ‘1’ (FFh) all bits inside the chosen
sector.

In this example the SE command erases all of the sector, so the SE data value is set
to 0. If the number of bytes erased is less than a full sector, this value should be
set to the number of bytes erased.

28.7 Write Enable/Disable

0x06 , /* 12. WREN cmd */
0x04 , /* 13. WRDI cmd */

Most flash devices provide instructions to enable and disable writes to memory.
Figure 56 reproduces the part of the M25P10-A datasheet that provides this
information. The row for the instruction WREN shows that the command value is
0x06, and the row for the instruction WRDI shows that the command value is 0x04.

REV 13.0.0

xTIMEcomposer User Guide 176/295

28.8 Memory Protection

PROT_TYPE_SR , /* 14. Protection type */
{{0x0c ,0x0},{0,0}}, /* 15. SR protect and unprotect cmds */

Some flash devices provide additional protection of sectors when writes are enabled.
For devices that support this capability, libflash attempts to protect the flash image
from being accidentally corrupted by the application. The supported values for
protection type are:

PROT_TYPE_NONE
The device does not provide protection

PROT_TYPE_SR
The device provides protection by writing the status register

PROT_TYPE_SECS
The device provides commands to protect individual sectors

The protection details are specified as part of a construction of the form:

{{a,b},{c,d}}

If the device does not provide protection, all values should be set to 0. If the device
provides SR protection, a and b should be set to the values to write to the SR to
protect and unprotect the device, and c and d to 0. Otherwise, c and d should be
set to the values to write to commands to protect and unprotect the device, and a
and b to 0.

Figure 60 and Figure 61 reproduce the parts of the M25P10-A datasheet that
provide this information. The first table shows that BP0 and BP1 of the status
register should be set to 1 to protect all sectors, and both to 0 to disable protection.
The second table shows that these are bits 2 and 3 of the SR.

Status Memory content

Register

Content

BP1 BP0 Protected area Unprotected area

bit bit

0 0 none All sectors (four sectors: 0, 1, 2 and 3)

0 1 Upper quarter (sector 3) Lower three-quarters (three sectors: 0
to 2)

1 0 Upper half (two sectors: 2 and 3) Lower half (sectors 0 and 1)

1 1 All sectors (four sectors: 0, 1, 2 and
3)

none

Figure 60:

Table 2 on
page 13 of
M25P10-A
datasheet

REV 13.0.0

xTIMEcomposer User Guide 177/295

b7 b0

SRWD 0 0 0 BP1 BP0 WEL WIP

Status Register Write Protect

Block Protect bits

Write Enable Latch bit

Write In Progress bit

Figure 61:

Table 6 on
page 20 of
M25P10-A
datasheet

28.9 Programming Command

0x02 , /* 16. PP cmd */

Devices are programmed either a page at a time or a small number of bytes at
a time. If page programming is available it should be used, as it minimizes the
amount of data transmitted over the SPI interface.

Figure 56 reproduces the part of the M25P10-A datasheet that provides this
information. In the table, a page program command is provided and has the value
0x02.

If page programming is not supported, this value is a concatenation of three
separate values. Bits 0..7 must be set to 0. Bits 8..15 should contain the program
command. Bits 16..23 should contain the number of bytes per command. The
libflash library requires that the first program command accepts a three byte
address but subsequent program command use auto address increment (AAI).

An example of a device without a PP command is the ESMT F25L004A4. Figure 62
reproduces the part of the F25L004A datasheet that provides this information. In
the timing diagram, the AAI command has a value 0xad, followed by a three-byte
address and two bytes of data.

Symbol Parameter Minimum Units

TPU-READ VDD Min to Read Operation 10 µs

TPU-WRITE VDD Min to Write Operation 10 µs

Figure 62:

Table 7 on
page 12 of
F25L004A
datasheet.

The corresponding entry in the specification file is:

0x00 |(0xad <<8)|(2<<16), /* No PP, have AAI for 2 bytes */

4http://www.xmos.com/references/f25l004

REV 13.0.0

http://www.xmos.com/references/f25l004

xTIMEcomposer User Guide 178/295

28.10 Read Data

0x0b , /* 17. READ cmd */
1, /* 18. READ dummy bytes*/

The sequence for reading data from a device is typically to issue a READ command,
wait for zero or more dummy bytes, and then read one or more bytes of data.

Figure 56 reproduces the part of the M25P10-A datasheet that provides this
information. There are two commands that can be used to read data: READ and
FAST_READ. The row for the instruction FAST_READ shows that the command value
is 0x0b, followed by one dummy byte.

28.11 Sector Information

SECTOR_LAYOUT_REGULAR , /* 19. Sector layout */
{32768 ,{0 ,{0}}} , /* 20. Sector sizes */

The first value specifies whether all sectors are the same size. The supported
values are:

SECTOR_LAYOUT_REGULAR
The sectors all have the same size

SECTOR_LAYOUT_IRREGULAR
The sectors have different sizes

On the M25P10-A datasheet, this can be found from the following paragraph on
page 15:

The memory is organized as:

· 131,072 bytes (8 bits each)

· 4 sectors (256 Kbits, 32768 bytes each)

· 512 pages (256 bytes each).

The sector sizes is specified as part of a construction: {a, {b, {c}}}. For regular
sector sizes, the size is specified in a. The values of b and c should be 0.

For irregular sector sizes, the size number of sectors is specified in b. The log base
2 of the number of pages in each sector is specified in c. The value of a should be
0. An example of a device with irregular sectors is the AMIC A25L80P5. Figure 63
reproduces the part of this datasheet that provides the sector information.

5http://www.xmos.com/references/a25l80p

REV 13.0.0

http://www.xmos.com/references/a25l80p

xTIMEcomposer User Guide 179/295

Sector Sector Size (Kb) Address Range

15 64 F0000h FFFFFh

14 64 E0000h EFFFFh

13 64 D0000h DFFFFh

12 64 C0000h CFFFFh

11 64 B0000h BFFFFh

10 64 A0000h AFFFFh

9 64 90000h 9FFFFh

8 64 80000h 8FFFFh

7 64 70000h 7FFFFh

6 64 60000h 6FFFFh

5 64 50000h 5FFFFh

4 64 40000h 4FFFFh

3 64 30000h 3FFFFh

2 64 20000h 2FFFFh

1 64 10000h 1FFFFh

0-4 32 08000h 0FFFFh

0-3 16 04000h 07FFFh

0-2 8 02000h 03FFFh

0-1 4 01000h 01FFFh

0-0 4 00000h 00FFFh

Figure 63:

Table 2 on
page 7 of
A25L80P

datasheet

The corresponding entry in the specification file is:

SECTOR_LAYOUT_IRREGULAR ,
{0,{20,{4,4,5,6,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8}}},

28.12 Status Register Bits

0x05 , /* 21. RDSR cmd*/
0x01 , /* 22. WRSR cmd */
0x01 , /* 23. WIP bit mask */

Most flash devices provide instructions to read and write a status register, including
a write-in-progress bit mask.

Figure 56 reproduces the part of the M25P10-A datasheet that documents the
RDSR and WRSR commands. The diagram in Figure 61 shows that the WIP bit is in
bit position 0 of the SR, resulting in a bit mask of 0x01.

REV 13.0.0

xTIMEcomposer User Guide 180/295

28.13 Add Support to xTimeComposer

A configuration file can be used with libflash or xflash. The example program
below uses libflash to connect to a M25P10-A device, the configuration parameters
which are specified in m25p10a.

#include "platform.h"
#include "flash.h"
#include "flashlib.h"
#include "stdio.h"
#include "stdlib.h"

fl_PortHolderStruct SPI = {PORT_SPI_MISO ,
PORT_SPI_SS ,
PORT_SPI_CLK ,
PORT_SPI_MOSI ,
XS1_CLKBLK_1 };

fl_DeviceSpec myFlashDevices [] = {
{

#include "m25p10a"
}

};

int flash_access () {
if (fl_connectToDevice(SPI , myFlashDevices ,

sizeof(myFlashDevices)/sizeof(fl_DeviceSpec)) != 0) {
printf("No supported flash devices found.\n"); exit (1);

} else {
printf("Found custom flash device m25p10a .\n"); exit (0);
}
return 0;

}

int main() {
// multicore main is required for xscope
par {

on stdcore [0] : flash_access ();
}

}

The custom flash device must be specified in the XN file as follows:

<ExternalDevices >
<Device NodeId="0" Tile="0" Name="bootFlash"

Class="SPIFlash" Type="M25P10A">
<Attribute Name="PORT_SPI_MISO" Value="PORT_SPI_MISO" />
<Attribute Name="PORT_SPI_SS" Value="PORT_SPI_SS" />
<Attribute Name="PORT_SPI_CLK" Value="PORT_SPI_CLK" />
<Attribute Name="PORT_SPI_MOSI" Value="PORT_SPI_MOSI" />

</Device >
</ExternalDevices >

REV 13.0.0

xTIMEcomposer User Guide 181/295

To compile an image file that links to the lib flash library, start the command-line
tools (see §3.2) and enter the following command:

· xcc main.xc -o prog.xe -target=target_with_custom_flash.xn -lflash

To generate an image file in the xCORE flash format, which can be subsequently
programmed into the above flash device, enter the following command:

· xflash prog.xe -o imgfile --spi-spec m25p10a

XFLASH generates an image for the custom flash device, which it writes to the
specified image file.

28.14 Select a Flash Device

When selecting a flash device for use with an xCORE device, the following guidelines
are recommended:

· If access to the data partition is required, select a device with fine-grained erase
granularity, as this will minimize the gaps between the factory and upgrade
images, and will also minimize the amount of data that libflash needs to buffer
when writing data.

· Select a device with sector protection if possible, to ensure that the bootloader
and factory image are protected from accidental corruption post-deployment.

· Select a flash speed grade suitable for the application. Boot times are minimal
even at low speeds.

REV 13.0.0

29XFLASH Command-Line Manual

IN THIS CHAPTER

· Overall Options

· Target Options

· Security Options

· Programming Options

XFLASH creates binary files in the xCORE flash format, as illustrated in the diagram below. It can
also program these files onto flash devices used to boot XMOS systems.

Figure 64: Flash format diagram

Flash
loader

Factory
image0 1 2 3

Upgrade
image

BOOT PARTITION DATA
PARTITION0

Upgrade
image

Default
0 bytes

(unavailable)

Sector boundariesHardware protected

29.1 Overall Options

The following options are used to specify the program images and data that makes up the binary
and its layout. Padding is inserted when required to ensure that images are aligned on sector
boundaries.

xe-file [size]
--factory xe-file [size]

Specifies xe-file as the factory image. If size is specified, padding is inserted to
make the space between the start of this image and the next image at least the
specified size. The default unit of size is “bytes;” the size can be postfixed with k
to specify a unit of kilobytes.

At most one factory image may by specified.

--upgrade id xe-file [size]
Specifies xe-file as an upgrade image with version id. Each version number must be
a unique number greater than 0. If size is specified, padding is inserted to make
the space between the start of this image and the next image at least the specified
size. The default unit of size is “bytes;” the size can be postfixed with k to specify
a unit of kilobytes.

REV 13.0.0

xTIMEcomposer User Guide 183/295

Multiple upgrade images are inserted into the boot partition in the order specified
on the command line.

If no factory image is specified, a single upgrade image may be specified and
written to a file with the option -o.

--factory-version version
Specifies version as the tools release master version that was used to create the
factory image. The version number must be equal to or greater than 12. This
option need only be specified when --upgrade is provided but --factory is not.
This option will ensure that the produced flash upgrade image is of the correct
format for the installed factory image.

--boot-partition-size n
Specifies the size of the boot partition to be n bytes. If left unspecified, the default
size used is the total size of the flash device. n must be greater than or equal
to the minimum size required to store the boot loader, factory image and any
upgrade images.

--s2l-partition-size n
Specifies the size of the stage 2 loader partition to be n bytes. If left unspecified,
the default size is used. This option should only be used when the xflash error
F03010 Failed to compile stage two loader is encountered due to a constraints
check failure. This failure normally happens when there is a large number of nodes
in a network to be booted from flash causing the stage 2 loader to exceed it’s
default allocated partition.

--data file Specifies the contents of file to be written to the data partition.

--loader file
Specifies custom flash loader functions in file (see §25.4). The file may be either
an object (.o) or archive (.a).

By default, the xCORE flash loader loads the image with the highest version number
that validates against its CRC.

--verbose Prints additional information about the program when loaded onto the target
system.

--help Prints a description of the supported command line options.

--version Displays the version number and copyrights.

29.2 Target Options

The following options are used to specify which flash device the binary is to be programmed on.
The type of flash device used determines the values for the SPI divider, sector size and memory
capacity.

--list-devices
-l Prints an enumerated list of all JTAG adapters connected to the PC and the devices

on each JTAG chain, in the form:

REV 13.0.0

xTIMEcomposer User Guide 184/295

ID Name Adapter ID Devices

-- ---- ---------- -------

The adapters are ordered by their serial numbers.

--id ID Specifies the adapter connected to the target hardware.

XFLASH connects to the target platform and determines the type of flash device
connected to it.

--adapter-id ADAPTER-SERIAL-NUMBER
Specifies the serial number of the adapter connected to the target hardware.
XFLASH connects to the target hardware and determines the type of flash device
connected to it.

--jtag-speed n
Sets the divider for the JTAG clock to n. The corresponding JTAG clock speed is
6/(n+1)MHz. The default value of the divider for the JTAG clock is 0, representing
6MHz.

--spi-spec file
Enables support for the flash device specified in file (see §28).

--spi-div n Sets the divider for the SPI clock to n, producing an SPI clock speed of 100/2nMHz.
By default, if no target is specified, the divider value is set to 3 (16.7MHz).

--noinq Does not run the device inquisitor program, which checks that images are aligned
on sector boundaries. If --noinq is omitted XFLASH expects to be able to connect
to the device via JTAG.

--disable-boot-link-warn
Disables a warning emitted when the links between nodes do not allow for boot-
from-link to work, for example only links lower than link 3 have been specified as
connected on bootee nodes, whereas the boot rom enables links 4-7 (and link 3 if
a primary tile).

29.3 Security Options

The following options are used in conjunction with the AES Module (see §30.1).

--key keyfile
Encrypts the images in the boot partition using the keys in keyfile.

--disable-otp
Causes the flash loader to disable access to OTP memory after the program is
booted. This is default if the option --key is used.

--enable-otp
Causes the flash loader to enable access to OTP memory after the program is
booted. This is default unless the option --key is used.

REV 13.0.0

xTIMEcomposer User Guide 185/295

29.4 Programming Options

By default, XFLASH programs the generated binary file to the target flash device.

-o file Places output in file, disabling programming.

If the target platform is booted from more than one flash device, multiple output
files are created, one for each device. The name of each output file is file_node,
where node is the value of the Id attribute (see §46.4) of the corresponding node.

The following options perform generic read, write and erase operations on the target flash device.
A target XN file must be specified, which provides ports used to communicate with the SPI device
on the hardware platform.

--target-file xn-file [node]
Specifies xn-file as the target platform.

If xn-file specifies more than one flash device, a value for node must be specified.
This value must correspond to the Id attribute (see §46.4) of the node connected
to the target flash device.

--target platform [node]
Specifies a target platform. The platform configuration must be specified in the file
platform.xn, which is searched for in the paths specified by the XCC_DEVICE_PATH
environment variable (see §9.8).

If xn-file specifies more than one flash device, a value for node must be specified.
This value must correspond to the Id attribute (see §46.4) of the node connected
to the target flash device.

--erase-all Erases all memory on the flash device.

--read-all Reads the contents of all memory on the flash device and writes it to a file on the
host. Must be used with -o.

--write-all file
Writes the bytes in file to the flash device.

REV 13.0.0

Part K

Security and OTP Programming

CONTENTS

· Safeguard IP and device authenticity

· XBURN Command-Line Manual

REV 13.0.0

30Safeguard IP and device authenticity

IN THIS CHAPTER

· The xCORE AES module

· Develop with the AES module enabled

· Production flash programming flow

· Production OTP programming flow

xCORE devices contain on-chip one-time programmable (OTP) memory that can be
blown during or after device manufacture testing. You can program the xCORE
AES Module into the OTP of a device, allowing programs to be stored encrypted on
flash memory. This helps provide:

· Secrecy

Encrypted programs are hard to reverse engineer.

· Program Authenticity

The AES loader will not load programs that have been tampered with or other
third-party programs.

· Device Authenticity

Programs encrypted with your secret keys cannot be cloned using xCORE devices
provided by third parties.

Once the AES Module is programmed, the OTP security bits are blown, transforming
each tile into a “secure island” in which all computation, memory access, I/O and
communication are under exclusive control of the code running on the tile. When
set, these bits:

· force boot from OTP to prevent bypassing,

· disable JTAG access to the tile to prevent the keys being read, and

· stop further writes to OTP to prevent updates.

The AES module provides a strong level of protection from casual hackers. It is
important to realize, however, that there is no such thing as unbreakable security
and there is nothing you can do to completely prevent a determined and resourceful
attacker from extracting your keys.

REV 13.0.0

xTIMEcomposer User Guide 188/295

30.1 The xCORE AES module

The xCORE AES Module authenticates and decrypts programs from SPI flash devices.
When programmed into a device, it enables the following secure boot procedure,
as illustrated in Figure 65.

Start

Execute program

Primary boot

Secure boot
bit set

Standard boot
(not shown)

Load and
authenticate
flash loader

Load and
authenticate

encrypted image

Decrypt and
load program

segments

Boot ROM

Flash Device

xCORE Device

Yes

No

OTP Memory

Security Bits

128b Authentication Key

128b Decryption Key

Flash Loader

Factory Image

0

1

Upgrade Image

Load secure
boot loader

AES Loader

Figure 65:

Secure boot
procedure

used with the
AES Module

1. The device loads the primary bootloader from its ROM, which detects that the
secure boot bit is set in the OTP and then loads and executes the AES Module
from OTP.

2. The AES Module loads the flash loader into RAM over SPI.

3. The AES Module authenticates the flash loader using the CMAC-AES-128 al-
gorithm and the 128-bit authentication key. If authentication fails, boot is
halted.

4. The AES Module places the authentication key and decryption key in registers
and jumps to the flash loader.

REV 13.0.0

xTIMEcomposer User Guide 189/295

The flash loader performs the following operations:

1. Selects the image with the highest number that validates against its CRC.

2. Authenticates the selected image header using its CMAC tag and authentication
key. If the authentication fails, boot is halted.

3. Authenticates, decrypts and loads the table of program/data segments into
memory. If any images fail authentication, the boot halts.

4. Starts executing the program.

For multi-node systems, the AES Module is written to the OTP of one tile, and a
secure boot-from-xCONNECT Link protocol is programmed into all other tiles.

30.2 Develop with the AES module enabled

You can activate the AES Module at any time during development or device manu-
facture. In a development environment, you can activate the module but leave the
security bits unset, enabling:

· XFLASH to use the device to load programs onto flash memory,

· XGDB to debug programs running on the device, and

· XBURN to later write additional OTP bits to protect the device.

In a production environment, you must protect the device to prevent the keys from
being read out of OTP by the end user.

To program the AES Module into the xCORE device on your development board,
start the command-line tools (see §3.2) and enter the following commands:

1. xburn --genkey keyfile

XBURN writes two random 128-bit keys to keyfile. The first line is the authenti-
cation key, the second line the decryption key.

The keys are generated using the open-source library crypto++. If you prefer,
you can create this file and provide your own keys.

2. xburn -l

XBURN prints an enumerated list of all JTAG adapters connected to your PC and
the devices on each JTAG chain, in the form:

ID - NAME (ADAPTER-SERIAL-NUMBER)

3. xburn --id ID --lock keyfile --target-file target.xn --enable-jtag
--disable-master-lock

XBURN writes the AES Module and security keys to the OTP memory of the target
device and sets its secure boot bit. The SPI ports used for booting are taken
from the XN file (see XM-000929-PC).

REV 13.0.0

http://www.xmos.com/doc/XM-000929-PC/latest#xn-spec-externaldevice

xTIMEcomposer User Guide 190/295

To encrypt your program and write it to flash memory, enter the command:

· xflash --id ID bin.xe --key keyfile

To protect the xCORE device, preventing any further development, enter the
command:

· xburn --id ID --target-file target.xn --disable-jtag --lock keyfile

30.3 Production flash programming flow

In production manufacturing environments, the same program is typically pro-
grammed into multiple SPI devices.

To generate an encrypted image in the xCORE flash format, start the command-line
tools (see §3.2) and enter the following command:

· xflash prog.xe -key keyfile -o image-file

This image can be programmed directly into flash memory using a third-party flash
programmer, or it can be programmed using XFLASH (via an xCORE device). To
program using XFLASH, enter the following commands:

1. xflash -l

XFLASH prints an enumerated list of all JTAG adapters connected to your PC and
the devices on each JTAG chain, in the form:

ID - NAME (ADAPTER-SERIAL-NUMBER)

2. xflash --id ID --target-file platform.xn --write-all image-file

XFLASH generates an image in the xCORE flash format that contains a first stage
loader and factory image comprising the binary and data segments from your
compiled program. It then writes this image to flash memory using the xCORE
device.

The XN file must define an SPI flash device and specify the four ports of the xCORE
device to which it is connected (see XM-000929-PC).

REV 13.0.0

http://www.xmos.com/doc/XM-000929-PC/latest#xn-spec-externaldevice

xTIMEcomposer User Guide 191/295

30.4 Production OTP programming flow

In production manufacturing environments, the same keys are typically pro-
grammed into multiple xCORE devices.

To generate an image that contains the AES Module and security keys to be
written to the OTP, start the command-line tools (see §3.2) and enter the following
commands:

1. xburn --genkey keyfile

XBURN writes two random 128-bit keys to keyfile. The first line is the authenti-
cation key, the second line the decryption key.

The keys are generated using the open-source library crypto++. If you prefer,
you can create this file and provide your own keys.

2. xburn --target-file target.xn --lock keyfile -o aes-image.otp

XBURN generates an image that contains the AES Module, security keys and the
values for the security bits.

The image contains the keys and must be kept secret.

To write the AES Module and security bits to a device in a production environment,
enter the following commands:

1. xburn -l

XBURN prints an enumerated list of all JTAG adapters connected to the host and
the devices on each JTAG chain, in the form:

ID - NAME (ADAPTER-SERIAL-NUMBER)

2. xburn --id ID --target-file target.xn aes-image.otp

XBURN loads a program onto the device that writes the AES Module and security
keys to the OTP, and sets its secure boot bits. XBURN returns 0 for success or
non-zero for failure.

REV 13.0.0

31XBURN Command-Line Manual

IN THIS CHAPTER

· Overall Options

· Security Register Options

· Target Options

· Programming Options

XBURN creates OTP images, and programs images into the OTP memory of xCORE devices.

31.1 Overall Options

The following options are used to specify the OTP image and security register contents.

xe-file Specifies bootable images to be constructed from the loadable segments from
xe-file and a default set of security bits (see Figure 66).

otp-file Specifies the OTP segments from otp-file which includes the security register value.

--lock keyfile
Specifies the XCORE AES boot module (see §30.1) and a default set of security bits
(see Figure 66).

--genkey keyfile
Outputs to keyfile two 128-bit keys used for authentication and decrpytion. The
keys are generated using the open-source library crypto++.

This option is not valid with --burn or --lock.

--mac-address mac
Writes a MAC address to the end of the OTP. The MAC address should be specified in
the form 12:34:56:78:9A:BC. Multiple MAC addresses can be written by specifying
the --mac-address option multiple times. MAC addresses are written to the OTP in
the order the options appear.

--serial-number serial
Writes a 32-bit serial number to the end of the OTP.

--read Prints the entire contents of the OTP.

--help Prints a description of the supported command-line options.

--version Displays the version number and copyrights.

REV 13.0.0

xTIMEcomposer User Guide 193/295

31.2 Security Register Options

The following options are used to specify the contents of the OTP security register, overriding the
default options for burning XE images, OTP images and the AES module, as given in Figure 66.

Figure 66: Default security bits written by XBURN

Security Bit XE Image OTP Image AES Module (--lock)

OTP Boot Enabled As per OTP image file Enabled

JTAG Access Enabled Disabled

Plink Access Enabled Enabled

Global Debug Enabled Disabled

Master Lock Disabled Enabled

--enable-otp-boot
Enables boot from OTP.

--disable-jtag
Disables JTAG access. Once disabled, it is not possible to gain debug access to the
device or to read the OTP.

This option does not disable boundary scan.

--disable-plink-access
Disables access to the plink registers from other tiles. Disabling plink access
restricts all access of the registers of each plinks to the tile local to that plink.

--disable-global-debug
Prevents the device from participating in global debug. Disabling global debug
prevents the tiles from entering debug using the global debug pin.

--enable-master-lock
Enables the OTP master lock. No further modification of the OTP is permitted.

31.3 Target Options

The following options are used to specify the target hardware platform.

--list-devices
-l Prints an enumerated list of all JTAG adapters connected to the host and the devices

on each JTAG chain, in the form:

ID - NAME (ADAPTER-SERIAL-NUMBER)

The adapters are ordered by their serial numbers.

--id ID Specifies the adapter connected to the target hardware.

REV 13.0.0

xTIMEcomposer User Guide 194/295

--adapter-id ADAPTER-SERIAL-NUMBER
Specifies the serial number of the adapter connected to the target hardware.

--jtag-speed n
Sets the divider for the JTAG clock to n. The corresponding JTAG clock speed is
6/(n+1)MHz. The default value is 0 (6MHz).

--spi-div n Sets the divider used in the AES Module for the SPI clock to n. The corresponding
SPI clock speed is set to 100/(2n) MHz. The deafult value is 20 (2.5MHz).

This option is only valid with --lock.

--target-file xn-file
Specifies xn-file as the target platform.

--target platform
Specifies a target platform. The platform configuration must be specified in the file
platform.xn, which is searched for in the paths specified by the XCC_DEVICE_PATH
environment variable (see §9.8).

31.4 Programming Options

By default, XBURN writes the specified OTP images to the target platform.

-o otp-file Place output in otp-file, disabling programming.

--make-exec xe-file
Place an executable in xe-file that when run on an xCORE device performs the
specified OTP burning operation; disables programming.

The XE file can be run later using XRUN.

--force
-f Do not prompt before writing the OTP. This is not default.

--size-limit n
Limits the amounts of OTP memory written to the first n bytes of the OTP. If the
image doesn’t fit within the specified limit an error will be given.

REV 13.0.0

Part L

Programming in C/XC

CONTENTS

· Calling between C/C++ and XC

· XC Implementation-Defined Behavior

· C Implementation-Defined Behavior

· C and C++ Language Reference

REV 13.0.0

32Calling between C/C++ and XC

IN THIS CHAPTER

· Passing arguments from XC to C/C++

· Passing arguments from C/C++ to XC

In certain cases, it is possible to pass arguments of one type in XC to function parameters that
have different types in C/C++, and vice versa.

To help simplify the task of declaring common functions between C/C++ and XC, the system
header file xccompat.h contains various type definitions and macro defines. See the header file
for documentation.

32.1 Passing arguments from XC to C/C++

A function defined in C/C++ with a parameter of type unsigned int can be declared in XC as
taking a parameter of type port, chanend or timer.

A function defined in C/C++ with a parameter of type “pointer to T” can be declared in XC as
taking a parameter of type “reference to T” or “nullable reference to T.”

A function defined in C/C++ with a parameter of type “pointer to T” can be declared in XC as
taking a parameter of type “array of T.”

32.2 Passing arguments from C/C++ to XC

A function defined in XC with a parameter of type port, chanend or timer can be declared in C/C++
as taking a parameter of type unsigned int.

A function defined in XC with a parameter of type “reference to T” or “nullable reference to T” can
be declared in C/C++ as taking a parameter of type “pointer to T.”

A function defined in XC with a parameter of type “array of T” can be declared in C/C++ as taking a
parameter of type “pointer to type T.” In this case, the xCORE linker inserts code to add an implicit
array bound parameter equal to the maximum value of the unsigned int type.

REV 13.0.0

33XC Implementation-Defined Behavior

A conforming XC implementation is required to document its choice of behavior for all parts of
the language specification that are designated implementation-defined. In the following section,
all choices that depend on an externally determined application binary interface are listed as
“determined by ABI,” and are documented in the Application Binary Interface Specification (see §44).

· The value of a multi-character constant (§1.5.2).

The value of a multi-character constant is the same as the value of its first character; all other
characters are ignored.

· Whether identical string literals are distinct (§1.6).

Identical string literals are not distinct; they are implemented in a single location in memory.

· The available range of values that may be stored into a char and whether the value is
signed (§3.2).

The size of char is 8 bits. Whether values stored in a char variable are signed or not is
determined by the ABI.

· The number of pins interfaced to a port and used for communicating with the environ-
ment; and the value of a port or clock not declared extern and not explicitly initialized
(§3.2, §7.7).

The number of pins connected to a port for communicating with the environment is defined
either by the explicit initializer for its declarator. If no initializer is provided, the compiler
produces an error message.

· The notional transfer type of a port, the notional counter type of a port, and the notional
counter type of a timer (§3.2).

The notional types are determined by the ABI.

· The value of an integer converted to a signed type such that its value cannot be repre-
sented in the new type (§5.2).

When any integer is converted to a signed type and its value cannot be represented in the new
type, its value is truncated to the width of the new type and sign extended.

· The handing of overflow, divide check, and other exceptions in expression evaluation
(§6).

All conditions (divide by zero, mod zero and overflow of signed divide / mod) result in undefined
behaviour.

· The notion of alignment (§6.3.4).

An alignment of 2n guarantees that the least significant n bits of the address in memory are 0.
The specific alignment of the types is determined by the ABI.

REV 13.0.0

xTIMEcomposer User Guide 198/295

· The value and the type of the result of sizeof (§6.4.6).

The value of the result of the sizeof operator is determined by the ABI. The type of the result is
unsigned int.

· Attempted run-time division by zero (§6.6).

Attempted run-time division by zero results in a trap.

· The extent to which suggestions made by using the inline function specifier are effective
(§7.3).

The inline function specifier is taken as a hint to inline the function. The compiler tries to
inline the function at all optimization levels above -O0.

· The extent to which suggestions made by using the register storage class specifier are
effective (§7.7.4).

The register storage class specifier causes the register allocator to try and place the variable in
a register within the function. However, the allocator is not guaranteed to place it in a register.

· The supported predicate functions for input operations (§8.3).

The set of supported predicate functions is documented in §43.8.

· The meaning of inputs and outputs on ports (§8.3.2).

The inputs and outputs on ports map to in and out instructions on port resources, the behaviour
of which is defined in the XS1 Ports Specification (see X1373).

· The extent to which the underlying communication protocols are optimized for transac-
tion communications (§8.9).

The communication protocols are determined by the ABI.

· Whether a transaction is invalidated if a communication occurs such that the number of
bytes output is unequal to the number of byte input, and the value communicated (§11).

This is determined by the ABI.

· The behavior of an invalid operation (§12).

Except as described below, all invalid operations are either reported as compilation errors or
cause a trap at run-time.

· The behavior of an invalid master transaction statement is undefined; an invalid slave
transaction always traps.

· The unsafe pragma (see §8) can be used to disable specific safety checks, resulting in
undefined behavior for invalid operations.

REV 13.0.0

http://www.xmos.com/docnum/X1373

34C Implementation-Defined Behavior

IN THIS CHAPTER

· Environment

· Identifiers

· Characters

· Floating point

· Hints

· Preprocessing directives

· Library functions

· Locale-Specific Behavior

A conforming C99 implementation is required to document its choice of behavior for all parts
of the language specification that are designated implementation-defined. xTIMEcomposer
implementation-defined behavior matches that of GCC 4.2.16 except for the choices listed below.

The following section headings refer to sections in the C99 specification (see §35.1) and all choices
that depend on an externally determined application binary interface are listed as “determined by
ABI,” and are documented in the Application Binary Interface Specification (see §44).

Only the supported C99 features are documented.

34.1 Environment

· The name and type of the function called at program startup in a freestanding environ-
ment (5.1.2.1).

A hosted environment is provided.

· An alternative manner in which the main function may be defined (5.1.2.2.1).

There is no alternative manner in which main may be defined.

· The values given to the strings pointed to by argv argument to main (5.1.2.2.1).

The value of argc is equal to zero. argv[0] is a null pointer. There are no other array members.

· What constitutes an interactive device (5.1.2.3).

All streams are refer to interactive devices.

· Signal values other than SIGFPE, SIGILL, and SIGSEGV that correspond to a computational
exception (7.14.1.1).

6http://www.xmos.com/references/gcc-4.2.1-c-implementation

REV 13.0.0

http://www.xmos.com/references/gcc-4.2.1-c-implementation

xTIMEcomposer User Guide 200/295

No other signal values correspond to a computational exception.

· Signal values for which is equivalent of signal(sig, SIG_IGN); is executed at program
startup (7.14.1.1).

At program startup the equivalent of signal(sig, SIG_DFL); is executed for all signals.

· The set of environment names and the method for altering the environment list used by
the getenv function (7.20.4.5).

The set of environment names is empty. There is no method for altering the environment list
used by the getenv function.

· The manner of execution of the string by the system function used by the getenv function
(7.20.4.6).

This is determined by the execution environment.

34.2 Identifiers

· The number of significant initial characters in an identifier (5.2.4.1, 6.4.1).

All characters in identifiers (with or without external linkage) are significant.

34.3 Characters

· The value of the members of the execution character set (5.2.1).

This is determined by the ASCII character set.

· The unique value of the member of the execution character set produced for each of the
standard alphabetic escape sequences (5.2.2).

This is determined by the ASCII character set.

· The value of a char object into which has been stored any character other than a member
of the basic execution set (6.2.5).

The value of any character other than a member of the basic execution set is determined by the
ASCII character set.

· The mapping of members of the source character set (in character constants and string
literals) to members of the execution character set (6.4.4.4, 5.1.1.2).

The source character set is required to be the ASCII character set. Each character in the source
character set is mapped to the same character in the execution character set.

· The value of an integer character constant containing more than one character or contain-
ing a character or escape sequence that does not map to a single-byte execution character
(6.4.4.4).

The value of an integer character constant containing more than one character is equal to
the value of the last character in the character constant. The value of an integer character
constant containing a character or escape sequence that does not map to a single-byte execution
character is equal to the value reduced modulo 2n to be within range of the char type, where n
is the number of bits in a char.

REV 13.0.0

xTIMEcomposer User Guide 201/295

· The value of a wide character constant containing more than one multibyte character, or
containing a multibyte character or escape multibyte character, or containing a multibyte
character or escape sequence not represented in the extended execution character set
(6.4.4.4).

Wide character constants must not contain multibyte characters.

· The current locale used to convert a wide character constant consisting of a single multi-
byte character that maps to a member of the extended execution character set into a
corresponding wide character code (6.4.4.4).

Wide character constants must not contain multibyte characters.

· The value of a string literal containing a multibyte character or escape sequence not
represented in the execution character set (6.4.5).

String literals must not contain multibyte characters. If an escape sequence not represented in
the execution character set is used in a string literal, the value of the corresponding character
in the string is the same as the value that would be given to an integer character constant
consisting of that escape sequence.

34.4 Floating point

· The accuracy of the floating-point operations and of the library functions in <math.h> and
<complex.h> that return floating-point results (5.2.4.2.2).

This is intentionally left undocumented.

· Additional floating-point exceptions, rounding modes, environments, and classifications,
and their macros names (7.6, 7.12).

No additional floating-point exceptions, rounding modes, environments or classifications are
defined.

34.5 Hints

· The extent to which suggestions made by using the register storage-class specifier are
effective (6.7.1).

The register specifier is ignored except when used as part of the register variable extension.

34.6 Preprocessing directives

· The behavior on each recognized non-STDC #pragma directive (6.10.6).

This is documented in §8.

34.7 Library functions

· Any library facilities available to a freestanding program, other than the minimal set
required by clause 4 (5.1.2.1).

A hosted environment is provided.

REV 13.0.0

xTIMEcomposer User Guide 202/295

· The format of the diagnostic printed by the assert macro (7.2.1.1).

The assert macro uses the format “Assertion failed: expression, file filename, line line number,
function: function.” where expression is the text of the argument, filename is the value of
__FILE__, line number is the value of __LINE__ and function is the name of the current function.
If the name of the current function cannot be determined, this part of the message is omitted.

· The representation of the floating-point status flags stored by the fegetexceptflag func-
tion (7.6.2.2).

The function fegetexceptflag is not supported.

· Whether the feraiseexcept function raises the “inexact” floating-point exception in addi-
tion to the “overflow” and “underflow” floating-point exception (7.6.2.3).

The function feraiseexcept is not supported.

· Strings other than "C" and "" that may be passed as the second argument to the setlocale
function (7.11.1.1).

No other strings may be passed as the second argument to the setlocale function.

· The types defined for float_t and double_t when the value of the FLT_EVAL_METHOD macro
is less than 0 or greater than 2 (7.12).

No other values of the FLT_EVAL_METHOD macro are supported.

· Domain errors for the mathematics functions, other than those required by this Interna-
tional Standard (7.12.1).

This is intentionally left undocumented.

· The values returned by the mathematics functions on domain errors (7.12.1).

This is intentionally left undocumented.

· The values returned by the mathematics functions on underflow range errors,
whether errno is set to the value of the macro ERANGE when the integer expression
math_errhandling & MATH_ERRNO is nonzero, and whether the “underflow” floating-point
exception is raised when the integer expression math_errhandling & MATH_ERREXCEPT is
nonzero (7.12.1).

This is intentionally left undocumented.

· Whether a domain error occurs or zero is returned when an fmod function has a second
argument of zero (7.12.10.1).

A domain error occurs when an fmod function has a second argument of zero.

· The base-2 logarithm of the modulus used by the remquo functions in reducing the quo-
tient (7.12.10.3).

The quotient is reduced modulo 27.

· Whether the equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal
handler, and, if not, the blocking of signals that is performed (7.14.1.1).

The equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal handler.

REV 13.0.0

xTIMEcomposer User Guide 203/295

· The null pointer constant to which the macro NULL expands (7.17).

NULL is defined as ((void *)0).

· Whether the last line of a text stream requires a terminating new-line character (7.19.2).

This is determined by the execution environment.

· Whether space characters that are written out to a text stream immediately before a
newline character appear when read in (7.19.2).

This is determined by the execution environment.

· The number of null characters that may be appended to data written to a binary stream
(7.19.2).

This is determined by the execution environment.

· Whether the file position indicator of an append-mode stream is initially positioned at
the beginning or end of a file (7.19.3).

This is determined by the execution environment.

· Whether a write on a text stream causes the associated file to be truncated beyond that
point (7.19.3).

This is determined by the execution environment.

· The characteristics of file buffering (7.19.3).

A buffered output stream saves characters until the buffer is full and then writes the characters
as a block. A line buffered output stream saves characters until the line is complete or the
buffer is full and then writes the characters as a block. An unbuffered output stream writes
characters to the destination file immediately.

· Whether a zero-length file actually exists (7.19.3).

This is determined by the execution environment.

· The rules for composing valid file names (7.19.3).

This is determined by the execution environment.

· Whether the same file can be simultaneously opened multiple times (7.19.3).

This is determined by the execution environment.

· The nature and choice of encodings used for multibyte characters in files (7.19.3).

The execution character set must not contain multibyte characters.

· The effect of the remove function on an open file (7.19.4.1).

This is determined by the execution environment.

· The effect if a file with the new name exists prior to a call to the rename function (7.19.4.1).

This is determined by the execution environment.

REV 13.0.0

xTIMEcomposer User Guide 204/295

· Whether an open temporary file is removed upon abnormal program termination
(7.19.4.3).

Temporary files are not removed on abnormal program termination.

· Which changes of mode are permitted (if any), and under what circumstances (7.19.5.4).

The file cannot be given a more permissive access mode (for example, a mode of “w” will
fail on a read-only file descriptor), but can change status such as append or binary mode. If
modification is not possible, failure occurs.

· The style used to print an infinity or NaN, and the meaning of any n-char or n-wchar
sequence printed for a NaN (7.19.6.1, 7.24.2.1).

A double argument representing infinity is converted in the style [-]inf. A double argument
representing a NaN is converted in the style as nan.

· The output for %p conversion in the fprintf or fwprintf function (7.19.6.1, 7.24.2.1).

The value of the pointer is converted to unsigned hexadecimal notation in the style dddd; the
letters abcdef are used for the conversion. The precision specifies the minimum number of
digits to appear; if the value being converted can be represented in fewer digits, it is expanded
with leading zeros. The default precision is 1. The characters 0x are prepended to the output.

The fwprintf function is unsupported.

· The interpretation of a - character that is neither the first nor the last character, nor the
second where a ^ character is the first, in the scanlist for %[conversion in the fscanf or
fwscanf function (7.19.6.2, 7.24.2.1).

The - character is considered to define a range if the character following it is numerically greater
than the character before it. Otherwise the - character itself is added to the scanset.

The fwscanf function is unsupported.

· The set of sequences matched by a %p conversion and the interpretation of the corre-
sponding input item in the fscanf or fwscanf function (7.19.6.2, 7.24.2.2).

%p matches the same format as %x. The corresponding input item is converted to a pointer.

The fwscanf function is unsupported.

· The meaning of any n-char or n-wchar sequence in a string representing NaN that is
converted by the strtod, strtof, strtold, wcstod, wcstof or wcstold function (7.20.1.3,
7.24.4.1.1).

The functions wcstod, wcstof and wcstold are not supported. A n-char sequence in a string
representing NaN is scanned in hexadecimal form. Any characters which are not hexadecimal
digits are ignored.

· Whether or not the strtod, strtof, strtold, wcstod, wcstof or wcstold function sets errno
to ERANGE when underflow occurs (7.20.1.3, 7.24.4.1.1).

The functions wcstod, wcstof and wcstold are not supported. The functions strtod, strtof
and strtold do not set errno to ERANGE when and return 0 when underflow occurs.

REV 13.0.0

xTIMEcomposer User Guide 205/295

· Whether the calloc, malloc, and realloc functions return a null pointer or a pointer to an
allocated object when the size requested is zero (7.20.3).

The functions calloc, malloc and realloc functions all return a pointer to an allocated object
when the size requested is zero.

· Whether open streams with unwritten buffered data are flushed, open streams are closed,
or temporary files are removed when the abort or _Exit function is called (7.20.4.1,
7.20.4.3, 7.20.4.4).

When the abort function or _Exit function is called, temporary files are not removed, buffered
files are not flushed and open streams are left open.

· The termination status returned to the host environment by the abort, exit or _Exit
function (7.20.3).

The function abort causes a software exception to be raised. The termination status returned
to the host environment by the functions exit and _Exit is determined by the execution
environment.

· The value returned by the system function when its argument is not a null pointer
(7.20.4.6).

This is determined by the execution environment.

· The range and precision of times representable in clock_t and time_t (7.23.1).

The precision of times representable in time_t is defined by the execution environment. time_t
designates an unsigned long. The actual range of times representable by time_t is defined by
the execution environment.

The macro CLOCKS_PER_SEC is defined as 1000. clock_t designates an unsigned long.

· The era for the clock function (7.23.2.1).

The clock function always returns the value (clock_t)(-1) to indicate that the processor time
used is not available.

· The replacement string for the %Z specifier to the strftime and wcsftime functions in the
"C" locale (7.23.3.5, 7.24.5.1).

The %Z specifier is replaced with the string “GMT”.

34.8 Locale-Specific Behavior

· Additional members of the source and execution character sets beyond the basic charac-
ter set (5.2.1).

Both the source and execution character sets include all members of the ASCII character set.

· The presence, meaning, and representation of additional multibyte characters in the exe-
cution character set beyond the basic character set (5.2.1.2).

The execution character set does not contain multibyte characters.

· The shift states used for the encoding of multibyte characters (5.2.1.2).

The source and execution character sets does not contain multibyte characters.

REV 13.0.0

xTIMEcomposer User Guide 206/295

· The direction of writing of successive printing characters (5.2.2).

Characters are printed from left to right.

· The decimal-point character (7.1.1).

The decimal-point character is ‘.’.

· The set of printing characters (7.4, 7.25.2).

This is determined by the ASCII character set.

· The set of control characters (7.4, 7.25.2).

This is determined by the ASCII character set.

· The set of characters tested for by the isalpha, isblank, islower, ispunct, isspace, isupper,
iswalpha, iswblank, iswlower, iswpunct, iswspace, or iswupper functions (7.4.1.2, 7.4.1.3,
7.4.1.7, 7.4.1.9, 7.4.1.10, 7.4.1.11, 7.25.2.1.2, 7.25.2.1.3, 7.25.2.1.7, 7.25.2.1.9, 7.25.2.1.10,
7.25.2.1.11).

The functions isblank, iswalpha, iswblank, iswlower, iswpunct, iswspace and iswupper are
not supported.

islower tests for the characters ‘a to ‘z’. isupper tests for the characters ‘A’ to ‘Z’. isspace
tests for the characters ‘ ‘, ‘\f’, ‘\n’, ‘\r’, ‘\t’ and ‘\v’. isalpha tests for upper and lower case
characters. ispunct tests for all printable characters except space and alphanumeric characters.

· The native environment (7.11.1.1).

The native environment is the same as the minimal environment for C translation.

· Additional subject sequences accepted by the numerical conversion functions (7.20.1,
7.24.4.1).

No additional subject sequences are accepted by the numerical conversion functions.

· The collation sequence of the execution character set (7.21.4.3, 7.24.4.4.2).

The comparison carried out by the function strcoll is identical to the comparison carried out
by the function strcmp.

· The contents of the error message strings set up by the strerror function (7.21.4.3,
7.24.4.4.2).

The contents of the error message strings are given in Figure 67.

· Character classifications that are supported by the iswctype function (7.25.1).

The character classifications supported by iswctype are given in Figure 68.

REV 13.0.0

xTIMEcomposer User Guide 207/295

Figure 67: Error message strings

Value String

EPERM Not owner

ENOENT No such file or directory

EINTR Interrupted system call

EIO I/O error

ENXIO No such device or address

EBADF Bad file number

EAGAIN No more processes

ENOMEM Not enough space

EACCES Permission denied

EFAULT Bad address

EBUSY Device or resource busy

EEXIST File exists

EXDEV Cross-device link

ENODEV No such device

ENOTDIR Not a directory

EISDIR Is a directory

EINVAL Invalid argument

ENFILE Too many open files in system

EMFILE Too many open files

ETXTBSY Text file busy

EFBIG File too large

ENOSPC No space left on device

ESPIPE Illegal seek

EROFS Read-only file system

EMLINK Too many links

EPIPE Broken pipe

EDOM Math argument

ERANGE Result too large

ENAMETOOLONG File or path name too long

ENOSYS Function not implemented

ENOTEMPTY Directory not empty

ELOOP Too many symbolic links

Figure 68: Wide character mappings

Value Description

WCT_TOLOWER Convert to lower case

WCT_TOUPPER Convert to upper case

REV 13.0.0

35C and C++ Language Reference

IN THIS CHAPTER

· Standards

· Books

· Online

XMOS does not produce documentation for C and C++ standard language features as high quality
documentation is readily available.

35.1 Standards

· ISO/IEC 9899:1989: Programming Languages — C. (C89). International Organization for
Standardization.

· ISO/IEC 9899:1999: Programming Languages — C. (C99). International Organization for
Standardization.

· ISO/IEC 14882:2011: Programming Languages — C++ (C++ Standard). International Organiza-
tion for Standardization.

35.2 Books

· The C Programming Language (second edition), by Brian W. Kernighan and Dennis M. Ritchie,
published by Prentice-Hall, Upper Saddle River, NJ, USA, 1988. ISBN-10: 0131103628

35.3 Online

· comp.lang.c Frequently Asked Questions: http://c-faq.com/

REV 13.0.0

http://c-faq.com/

Part M

Programming in Assembly

CONTENTS

· Inline Assembly

· Make assembly programs compatible with the XMOS XS1 ABI

· Using the XTA With Assembly

· Assembly Programming Manual

REV 13.0.0

36Inline Assembly

The asm statement can be used to embed code written in assembly inside a C or
XC function. For example, the add instruction can be written as follows:

asm("add %0, %1, %2" : "=r"(result) : "r"(a), "r"(b));

Colons separate the assembler template, the output operands and the input
operands. Commas separate operands within a group. Each operand is described
by an operand constraint string followed by an expression in parentheses. The
“r” in the operand constraint string indicates that the operand must be located in
a register. The “=” in the operand constraint string indicates that the operand is
written.

Each output operand expression must be an lvalue and must have “=” in its
constraint.

The location of an operand may be referred to in the assembler template using an
escape sequence of the form %num where num is the operand number. The escape
sequence “%=” can be used to emit a number that is unique to each expansion of
an asm statement. This can be useful for making local labels. To produce a literal
“%” you must write “%%”.

If code overwrites specific registers this can be described by using a third colon
after the input operands, followed by the names of the clobbered registers as a
comma-separated list of strings. For example:

asm ("get r11 , id\n\tmov %0, r11"
: "=r"(result)
: /* no inputs */
: "r11");

The compiler ensures none of input or output operands are placed in clobbered
registers.

If an asm statement has output operands, the compiler assumes the statement
has no side effects apart from writing to the output operands. The compiler may
remove the asm statement if the values written by the asm statement are unused.
To mark an asm statement as having side effects add the volatile keyword after
asm. For example:

asm volatile("in %0, res [%1]" : "=r"(result) : "r"(lock));

If the asm statement accesses memory, add “memory” to the list of clobber registers.
For example:

REV 13.0.0

xTIMEcomposer User Guide 211/295

asm volatile("stw %0, dp[0]"
: /* no outputs */
: "r"(value));

This prevents the compiler caching memory values in registers around the asm
statement.

The earlyclobber constraint modifier “&” can be used to specify that an output
operand is modified before all input operands are consumed. This prevents
the compiler from placing the operand in the same register as any of the input
operands. For example:

asm("or %0, %1, %2\n"
"or %0, %0, %3\n"
: "=&r"(result)
: "r"(a), "r"(b), "r"(c));

Jumps from one asm statement to another are not supported. asm statements must
not be used to modify the event enabled status of any resource.

REV 13.0.0

37Make assembly programs compatible with the XMOS XS1 ABI

IN THIS CHAPTER

· Symbols

· Alignment

· Sections

· Functions

· Elimination blocks

· Typestrings

· Example

The XMOS XS1 Application Binary Interface (ABI) defines the linking interface for
objects compiled from C/C++, XC and assembly code. This tutorial explains how
to write functions in assembly code that can be linked against objects generated
by the XMOS compiler.

37.1 Symbols

As the assembler parses an assembly file, it maintains a current address which it
increments every time it allocates storage.

Symbols are used to associate names to addresses. Symbols may be referenced
in directives and instructions, and the linker patches the corresponding address
onces its value is calculated.

The program below defines a symbol with name f that refers to the value of the
current address. It also makes the symbol globally visible from other files, which
can reference the symbol by its name.

Give the symbol f the value of the current address.
f:
Mark the symbol f as global.

.globl f

The symbol is defined by writing its name followed by a colon. The .globl directive
makes the symbol visible from outside of the file.

37.2 Alignment

The XS1 ABI specifies minimum alignment requirements for code and data. The
start of a function must be 2-byte aligned, and data must be word-aligned. An
address is aligned by placing the .align directive before the definition of a symbol.

REV 13.0.0

xTIMEcomposer User Guide 213/295

The program below defines a symbol f that is defined to be the next 2-byte aligned
address.

Force 2 byte alignment of the next address.
.align 2

f:

37.3 Sections

Each object file may contain multiple sections. When combined by the linker,
sections with the same name in each object file are placed together at consecutive
addresses. This allows different types of code or data to be grouped together in
the final executable.

The XS1 ABI requires functions to be placed in the .text section, read-only data
in the .cp.rodata section and writable data in the .dp.data section. The default
section is the .text section, and the current section can be changed using one of
the following directives.

Section Used For Directive

.text Executable code .text

.dp.data Writable data .section .dp.data, "awd", @progbits

.cp.data Read only data .section .cp.rodata, "ac", @progbits

Figure 69:

Sections
supported by

the XMOS
linker

37.3.1 Data

The example program below defines a 4-byte writeable object, initialized with the
value 5, and aligned on a 4-byte boundary.

.section .dp.data , "awd", @progbits

.align 4
x:

.word 5

You can use the following directives to emit different types of data.

Directive Description

.byte Emits a 1 byte value

.short Emits a 2 byte value

.word Emits a 4 byte value

.space Emits an n-byte array of zero-initialized storage, where n is the argument to
the directive

.asciiz Emits a null terminated ASCII string

.ascii Emits an ASCII string (no implicit terminating character)

Figure 70:

Directives for
emitting
different

types of data

REV 13.0.0

xTIMEcomposer User Guide 214/295

37.3.2 Arrays

The program below defines a global array that is 42 bytes in size.

.section .dp.data , "awd", @progbits

.globl a

.align 4
a:

.space 42

.globl a.globound

.set a.globound , 42

The XS1 ABI requires that for each global array f there is a corresponding global
symbol f.globound which is initialized with the number of elements of the first
dimension of the array. You can use the .set directive to perform the initialization.
Note that this value is used for array bounds checking if the variable is used by an
XC function.

37.4 Functions

The XS1 ABI specifies rules for passing parameters and return values between
functions. It also defines symbols for specifying the amount of hardware resources
required by the function.

37.4.1 Parameters and return values

Scalar values of up to 32 bits are passed as 32 bit values. The first four parameters
are passed in registers r0, r1, r2 and r3, and any additional parameters are passed
on the stack. Similarly, the first four return values are returned in the registers r0,
r1, r2 and r3, and any additional values are returned on the stack.

In the XC function prototype below, the parameters a and b are passed in registers
r0 and r1, as are the return values.

{int , int} swap(int a, int b);

An assembly implementation of this function is shown below.

.globl swap

.align 2
swap:

mov r2, r0
mov r0, r1
mov r1, r2
retsp 0

REV 13.0.0

xTIMEcomposer User Guide 215/295

37.4.2 Caller and callee save registers

The XS1 ABI specifices that the registers r0, r1, r2, r3 and r11 are caller-save, and
all other registers are callee-save.

Before a function is called, the contents of all caller-save registers whose values are
required after the call must be saved. Upon returning from a function, the contents
of all callee-save registers must be the same as on entry to the function.

The following example shows the prologue and epilogue for a function that uses
the callee-save registers r4, r5 and r6. The prologue copies the register values to
the stack, and the epilogue restores the values from the stack back to the registers.

Prologue
entsp 4
stw r4, sp[1]
stw r5, sp[2]
stw r6, sp[3]

Main body of function goes here
...

Epilogue
ldw r4, sp[1]
ldw r5, sp[2]
ldw r6, sp[3]
retsp 4

37.4.3 Resource usage

The linker attempts to calculate the amount of resources required by each function,
including its memory requirements, and the number of threads, channel ends and
timers it uses. This allows the linker to check that the resource usage of the final
executable does not exceed that available on the target device.

For a function f, the resource usage symbols defined by the XS1 ABI are as follows.

Symbol Description

f.nstackwords Stack size (in words)

f.maxthreads Maximum number of threads allocated, including the current thread

f.maxchanends Maximum number of channel ends allocated

f.maxtimers Maximum number of timer allocated

Figure 71:

Resource
usage

symbols
defined by

the XS1 ABI

You can define resource usage symbols using the .linkset directive. If a function
is global, you should also make the resource usage symbols global.

REV 13.0.0

xTIMEcomposer User Guide 216/295

The example program below defines resource usage symbols for a function f that
uses 4 words of stack, 2 threads, 0 timers and 2 channel ends.

.globl f

.globl f.nstackwords

.linkset f.nstackwords , 5

.globl f.maxthreads

.linkset f.maxthreads , 2

.globl f.maxtimers

.linkset f.maxtimers , 0

.globl f.maxchanends

.linkset f.maxchanends , 2

In more complex cases, you can use the maximum ($M) and addition (+) operators
to build expressions for the resource usage that are evaluated by the linker. If
two functions are called in sequence, you should compute the maximum for the
two functions, and if called in parallel you should compute the sum for the two
functions.

The example program below defines resource usage symbols for a function f that
extends the stack by 10 words, allocates two timers and calls functions g and h in
sequence before freeing the timer and returning.

.globl f

.globl f.nstackwords

.linkset f.nstackwords , 10 + (g.nstackwords $M h.nstackwords)

.globl f.maxthreads

.linkset f.maxthreads , 1 + ((g.maxthreads -1) $M (h.maxthreads -1))

.globl f.maxtimers

.linkset f.maxtimers , 2 + (g.maxtimers $M h.maxtimers)

.globl f.maxchanends

.linkset f.maxchanends , 0 + (g. maxchanends $M h.maxchanends)

You can omit the definition of a resource usage symbol if its value is unknown, for
example if the function makes an indirect call through a function pointer. If the
value of the symbol is required to satisfy a relocation in the program, however, the
program will fail to link.

37.4.4 Side effects

The XC language requires that functions used as boolean guards in select state-
ments have no side effects. It also specifies that functions called from within a
transaction statement do not declare channels. By default, a function f is assumed
to be side-effecting and to declare channels unless you explicitly set the following
symbols to zero.

REV 13.0.0

xTIMEcomposer User Guide 217/295

Symbol Description

f.locnoside Specifies whether the function is side effecting

f.locnochandec Specifies whether the function allocates a channel end

Figure 72:

Symbols for
denoting

side-effects

37.5 Elimination blocks

The linker can eliminate unused code and data. Code and data must be placed in
elimination blocks for it to be a candidate for elimination. At final link time, if all
of the symbols inside an elimination block are unreferenced, the block is removed
from the final image.

The example program below declares a symbol within an elimination block.

.cc_top f.function , f
f:

.cc_bottom f.function

The first argument to the .cc_top directive and the .cc_bottom directive is the
name of the elimination block. The .cc_top directive takes an additional argument,
which is a symbol on which the elimination of the block is predicated on. If the
symbol is referenced, the block is not eliminated.

Each elimination block must be given a name which is unique within the assembly
file.

37.6 Typestrings

A typestring is a string used to describe the type of a function or variable. The
encoding of type information into a typestring is specified by the XS1 ABI. The
following directives are used to associate a typestring with a symbol.

Binding Directive

Global .globl name, "typestring"
External .extern name, "typestring"
Local .locl name, "typestring"

Figure 73:

Typestring
directives

When a symbol from one object file is matched with a symbol with the same name
in another object, the linker checks whether the typestrings are compatible. If
the typestrings are compatible linking continues as normal. If the typestrings
are function types which differ only in the presence of array bound parameters
the linker generates a thunk and replaces uses of the symbol with this thunk to
account for the difference in arguments. The linker errors on all other typestring
mismatches. This ensures that programs that are compiled from multiple files are
as robust as those compiled from a single file.

REV 13.0.0

xTIMEcomposer User Guide 218/295

If you fail to emit a typestring for a symbol, comparisons against this symbol are
assumed to be compatible. If you are implementing a function which takes an
array of unknown size, you should emit a typestring to allow it to be called from
both C and XC. In other cases, typestrings can be omitted, but error checking is
not performed.

37.7 Example

The program below prints the words “Hello world” to standard output.

const char str[] = "Hello world";

int main() {
printf(str);
return 0;

}

The assembly implementation below complies with the XS1 ABI.

REV 13.0.0

xTIMEcomposer User Guide 219/295

.extern printf , "f{si}(p(c:uc),va)"

.section .cp.rodata , "ac", @progbits

.globl str , "a(12:c:uc)"

.cc_top str.data , str

.align 4
str :

.asciiz "Hello world"
.cc_bottom str.data

.globl str.globound

.set str.globound , 12

.text

.globl main , "f{si}(0)"
.cc_top main.function , main

.align 2
main:

entsp 1
ldaw r11 , cp[str]
mov r0, r11
bl printf
ldc r0, 0
retsp 0

.cc_bottom main.function
.globl main.nstackwords
.linkset main .nstackwords , 1 + printf.nstackwords
.globl main.maxthreads
.linkset main.maxthreads , printf.maxthreads
.globl main.maxtimers
.linkset main.maxtimers , 0 + printf.maxtimers
.globl main.maxchanends
.linkset main.maxchanends , 0 + printf.maxchanends
.linkset main.locnochandec , 1
.linkset main.locnoside , 1

By defining symbols for resource usage, the linker can check whether the program
fits on a target device. By providing typestrings, the linker can check type compati-
bilty when different object files are linked. The linker can eliminate unused code
and data since it is placed in elimination blocks.

REV 13.0.0

38Using the XTA With Assembly

IN THIS CHAPTER

· Assembly Directives

· Branch Table Example

· Core Start/Stop Example

When writing programs in assembly it is still possible to label code to make it
portable using assembler directives.

38.1 Assembly Directives

The XMOS Timing Analyzer directives add timing metadata to ELF sections.

· xtabranch specifies a comma-separated list of locations that may be branched
to from the current location.

· xtacall marks the current location as a function call with the specified label.

· xtaendpoint marks the current location as an endpoint with the specified label.

· xtalabel marks the current location using the specified label.

· xtacorestart specifies that a logical core may be initialized to start executing
at the current location.

· xtacorestop specifies that a logical core executing the instruction at the current
location will not execute any further instructions.

The xtacall, xtaendpoint, xtalabel directives are intended for use by the compiler
only. They are used to link lines of source code with assembly instructions. All
other XTA functionality provided by these directives (timing, exclusions) should be
possible through the use of labels in the assembly code.

Strings used by the XTA for xtacall, xtaendpoint and xtalabel must not contain
spaces.

38.2 Branch Table Example

If a branch table is written in assembly, branch target information must be added
for the XTA to be able to analyze the assembly properly . This information is given
in the form of a .xtabranch directive. For example, consider the code in Figure 74.

REV 13.0.0

xTIMEcomposer User Guide 221/295

. type f, @function

. globl f
f:

entsp 1
. xtabranch Ltarget1 , Ltarget2 , Ltarget3

bru r0
Ltarget1 :

bl taskA
retsp 1

Ltarget2 :
bl taskB
retsp 1

Ltarget3 :
bl taskC
retsp 1

Figure 74:

Setting
branch
targets

The XTA is not able to determine where the bru instruction will branch to because it
is branching off a register value which is an argument to main. With the directive the
XTA can consider the bru instruction to have the three targets (Ltarget1, Ltarget2,
Ltarget3) and the XTA can successfully time the function.

38.3 Core Start/Stop Example

By default the XTA, assumes that the initial logical core starts executing at the RAM
base. However, if developers add another core in assembly, they also need to add
.xtacorestart and .xtacorestop directives for the XTA to know that the code is
reachable. For example, consider the code in Figure 75.

. type main , @function

. globl main
main :

getr r1 , XS1 \ _RES \ _TYPE \ _CORE
ldap r11 , secondCore
init t[r1]:pc , r11
start t[r1]
ldc r1 , 0

loop :
bf r1 , loop
retsp 0

secondCore :
. xtacorestart

ldc r0 , 1
tsetmr r1 , r0

. xtacorestop
freet

Figure 75:

Setting core
start and

stop points.

REV 13.0.0

xTIMEcomposer User Guide 222/295

With the xtacorestart and xtacorestop directives the XTA knows that the code
after the label secondCore is reachable and hence can be analyzed.

REV 13.0.0

39Assembly Programming Manual

IN THIS CHAPTER

· Lexical Conventions

· Sections and Relocations

· Symbols

· Labels

· Expressions

· Directives

· Instructions

· Assembly Program

The XMOS assembly language supports the formation of objects in the Executable
and Linkable Format (ELF)7 with DWARF 38 debugging information. Extensions to
the ELF format are documented in the XMOS Application Binary Interface (see §44).

39.1 Lexical Conventions

There are six classes of tokens: symbol names, directives, constants, operators, in-
struction mnemonics and other separators. Blanks, tabs, formfeeds and comments
are ignored except as they separate tokens.

39.1.1 Comments

The character # introduces a comment, which terminates with a newline. Comments
do not occur within string literals.

39.1.2 Symbol Names

A symbol name begins with a letter or with one of the characters ‘.’, ‘_’ or ‘$’,
followed by an optional sequence of letters, digits, periods, underscores and dollar
signs. Upper and lower case letters are different.

39.1.3 Directives

A directive begins with ‘.’ followed by one or more letters. Directives instruct the
assembler to perform some action (see §39.6).

7http://www.xmos.com/references/elf
8http://www.xmos.com/references/dwarf3

REV 13.0.0

http://www.xmos.com/references/elf
http://www.xmos.com/references/dwarf3

xTIMEcomposer User Guide 224/295

39.1.4 Constants

A constant is either an integer number, a character constant or a string literal.

· A binary integer is 0b or 0B followed by zero or more of the digits 01.

· An octal integer is 0 followed by zero or more of the digits 01234567.

· A decimal integer is a non-zero digit followed by zero or more of the digits
0123456789.

· A hexadecimal integer is 0x or 0X followed by one or more of the digits and
letters 0123456789abcdefABCDEF.

· A character constant is a sequence of characters surrounded by single quotes.

· A string literal is a sequence of characters surrounded by double quotes.

The C escape sequences may be used to specify certain characters.

39.2 Sections and Relocations

Named ELF sections are specified using directives (see §39.6.12). In addition, there
is a unique unnamed “absolute” section and a unique unnamed “undefined” section.
The notation {secname X} refers to an “offset X into section secname.”

The values of symbols in the absolute section are unaffected by relocations. For
example, address {absolute 0} is “relocated” to run-time address 0. The values of
symbols in the undefined section are not set.

The assembler keeps track of the current section. Initially the current section
is set to the text section. Directives can be used to change the current section.
Assembly instructions and directives which allocate storage are emitted in the
current section. For each section, the assembler maintains a location counter which
holds the current offset in the section. The active location counter refers to the
location counter for the current section.

39.3 Symbols

Each symbol has exactly one name; each name in an assembly program refers to
exactly one symbol. A local symbol is any symbol beginning with the characters
“.L”. A local symbol may be discarded by the linker when no longer required for
linking.

39.3.1 Attributes

Each symbol has a value, an associated section and a binding. A symbol is assigned
a value using the set or linkset directives (see §39.6.14), or through its use in
a label (see §39.4). The default binding of symbols in the undefined section is
global; for all other symbols the default binding is local.

REV 13.0.0

xTIMEcomposer User Guide 225/295

39.4 Labels

A label is a symbol name immediately followed by a colon (:). The symbol’s value
is set to the current value of the active location counter. The symbol’s section is
set to the current section. A symbol name must not appear in more than one label.

39.5 Expressions

An expression specifies an address or value. The result of an expression must
be an absolute number or an offset into a particular section. An expression is a
constant expression if all of its symbols are defined and it evaluates to a constant.
An expression is a simple expression if it is one of a constant expression, a
symbol, or a symbol ± a constant. An expression may be encoded in the ELF-
extended expression section and its value evaluated by the linker (see §39.6.14);
the encoding scheme is determined by the ABI. The syntax of an expression is:

expression ::= unary-exp

| expression infix-op unary-exp

| unary-exp ? unary-exp $: unary-exp

| function-exp

unary-exp ::= argument

| prefix-op unary-exp

argument ::= symbol

| constant

| (expression)

function-exp ::= $overlay_region_ptr (symbol)
| $overlay_index (symbol)
| $overlay_physical_addr (symbol)
| $overlay_virtual_addr (symbol)
| $overlay_num_bytes (symbol)

infix-op ::= one of

+ - < > <= >= || << >> * $M $A & /

prefix-op ::= one of

- ~ $D

Symbols are evaluated to {section x} where section is one of a named section, the
absolute section or the undefined section, and x is a signed 2’s complement 32-bit
integer.

Infix operators have the same precedence and behavior as C, and operators with
equal precedence are performed left to right. In addition, the $M operator has
lowest precedence, and the $A operator has the highest precedence.

REV 13.0.0

xTIMEcomposer User Guide 226/295

For the + and - operators, the set of valid operations and results is given in
Figure 76. For the $D operator, the argument must be a symbol; the result is 1 if
the symbol is defined and 0 otherwise.

Op Left Operand Right Operand Result

+ {section x} {absolute y} {section x+y}

+ {absolute x} {section y} {section x+y}

+ {absolute x} {absolute y} {absolute x+y}

- {section x} {section y} {absolute x-y}

- {section x} {absolute y} {section x-y}

- {absolute x} {absolute y} {absolute x-y}

Figure 76:

Valid
operations
for + and -
operators

The ? operator is used to select between symbols: if the first operand is non-zero
then the result is the second operand, otherwise the result is the third operand.

The operators $overlay_region_ptr, $overlay_index, $overlay_physical_addr,
$overlay_virtual_addr and $overlay_num_bytes can be used to query properties
of the overlay containing the overlay roots with the specified overlay key symbol
(see §39.6.19). The set of results of these operators is given in Figure 77.

Operator Result

$overlay_region_ptr Virtual address of the overlay region containing the overlay.

$overlay_index Index of the overlay in the overlay region.

$overlay_physical_addr Physical address of the overlay.

$overlay_virtual_addr Virtual (runtime) address of the overlay.

$overlay_num_bytes Size of the overlay in bytes.

Figure 77:

Operators for
querying

properties of
overlays.

For all other operators, both arguments must be absolute and the result is absolute.
The $M operator returns the maximum of the two operands and the $A operator
returns the value of the first operand aligned to the second.

Wherever an absolute expression is required, if omitted then {absolute 0} is as-
sumed.

39.6 Directives

Directives instruct the assembler to perform some action. The supported directives
are given in this section.

39.6.1 add_to_set

The add_to_set directive adds an expression to a set of expressions associated
with a key symbol. Its syntax is:

add-to-set-directive ::= .add_to_set symbol , expression

| .add_to_set symbol , expression , symbol

REV 13.0.0

xTIMEcomposer User Guide 227/295

An optional predicate symbol may be specified as the 3rd argument. If this
argument is specified the expression will only be added to the set if the predicate
symbol is not eliminated from the linked object.

39.6.2 max_reduce, sum_reduce

The max_reduce directive computes the maximum of the values of the expres-
sions in a set. The sum_reduce directive computes the sum of the values of the
expressions in a set.

max-reduce-directive ::= .max_reduce symbol , symbol , expression

sum-reduce-directive ::= .sum_reduce symbol , symbol , expression

The first symbol is defined using the value computed by the directive. The second
symbol is the key symbol identifying the set of expressions (see §39.6.1). The
expression specifies the initial value for the reduction operation.

39.6.3 align

The align directive pads the active location counter section to the specified storage
boundary. Its syntax is:

align-directive ::= .align expression

The expression must be a constant expression; its value must be a power of 2.
This value specifies the alignment required in bytes.

39.6.4 ascii, asciiz

The ascii directive assembles each string into consecutive addresses. The asciiz
directive is the same, except that each string is followed by a null byte.

ascii-directive ::= .ascii string-list

| .asciiz string-list

string-list ::= string-list , string

| .asciiz string

REV 13.0.0

xTIMEcomposer User Guide 228/295

39.6.5 byte, short, int, long, word

These directives emit, for each expression, a number that at run-time is the value
of that expression. The byte order is determined by the endianness of the target
architecture. The size of numbers emitted with the word directive is determined by
the size of the natural word on the target architecture. The size of the numbers
emitted using the other directives are determined by the sizes of corresponding
types in the ABI.

value-directive ::= value-size exp-list

value-size ::= .byte
| .short
| .int
| .long
| .word

exp-list ::= exp-list , expression

| expression

39.6.6 file

The file directive has two forms.

file-directive ::= .file string

| .file constant string

When used with one argument, the file directive creates an ELF symbol table entry
with type STT_FILE and the specified string value. This entry is guaranteed to be
the first entry in the symbol table.

When used with two arguments the file directive adds an entry to the DWARF 3
.debug_line file names table. The first argument is a unique positive integer to
use as the index of the entry in the table. The second argument is the name of the
file.

39.6.7 loc

The .loc directive adds a row to the DWARF 3 .debug_line line number matrix.

loc-directive ::= constant constant constantopt

| constant constant constant 〈loc-option〉∗

loc-option ::= basic_block
| prologue_end
| epilogue_begin
| is_stmt constant

| isa constant

REV 13.0.0

xTIMEcomposer User Guide 229/295

The address register is set to active location counter. The first two arguments
set the file and line registers respectively. The optional third argument sets the
column register. Additional arguments set further registers in the .debug_line
state machine.

basic_block
Sets basic_block to true.

prologue_end
Sets prologue_end to true.

epilogue_begin
Sets epilogue_begin to true.

is_stmt
Sets is_stmt to the specified value, which must be 0 or 1.

isa
Sets isa to the specified value.

39.6.8 weak

The weak directive sets the weak attribute on the specified symbol.

weak-directive ::= .weak symbol

39.6.9 globl, global, extern, locl, local

The globl directive makes the specified symbols visible to other objects during
linking. The extern directive specifies that the symbol is defined in another object.
The locl directive specifies a symbol has local binding.

visibility ::= .globl
| .extern
| .locl
| .global
| .extern
| .local

vis-directive ::= visibility symbol

| visibility symbol , string

If the optional string is provided, an SHT_TYPEINFO entry is created in the ELF-
extended type section which contains the symbol and an index into the string table
whose entry contains the specified string. (If the string does not already exist in
the string table, it is inserted.) The meaning of this string is determined by the ABI.

The global and local directives are synonyms for the globl and locl directives.
They are provided for compatibility with other assemblers.

REV 13.0.0

xTIMEcomposer User Guide 230/295

39.6.10 typestring

The typestring adds an SHT_TYPEINFO entry in the ELF-extended type section which
contains the symbol and an index into the string table whose entry contains the
specified string. (If the string does not already exist in the string table, it is
inserted.) The meaning of this string is determined by the ABI.

typestring-directive ::= .typestring symbol , string

39.6.11 ident, core, corerev

Each of these directives creates an ELF note section named “.xmos_note.”

info-directive ::= .ident string

| .core string

| .corerev string

The contents of this section is a (name, type, value) triplet: the name is xmos; the
type is either IDENT, CORE or COREREV; and the value is the specified string.

39.6.12 section, pushsection, popsection

The section directives change the current ELF section (see §39.2).

section-directive ::= sec-or-push name

| sec-or-push name , flags sec-typeopt

| .popsection

sec-or-push ::= .section
| .pushsection

flags ::= string

sec-type ::= type

| type , flag-args

type ::= @progbits
| @nobits

flag-args ::= string

REV 13.0.0

xTIMEcomposer User Guide 231/295

The code following a section or pushsection directive is assembled and appended
to the named section. The optional flags may contain any combination of the
following characters.

a section is allocatable

c section is placed in the global constant pool

d section is placed in the global data region

w section is writable

x section is executable

M section is mergeable

S section contains zero terminated strings

The optional type argument progbits specifies that the section contains data;
nobits specifies that it does not.

If the M symbol is specified as a flag, a type argument must be specified and an
integer must be provided as a flag-specific argument. The flag-specific argument
represents the entity size of data entries in the section. For example:

.section .cp.const4, "M", @progbits, 4

Sections with the M flag but not S flag must contain fixed-size constants, each flag-
args bytes long. Sections with both the M and S flags must contain zero-terminated
strings, each character flag-args bytes long. The linker may remove duplicates
within sections with the same name, entity size and flags.

Each section with the same name must have the same type and flags. The section
directive replaces the current section with the named section. The pushsection
directive pushes the current section onto the top of a section stack and then
replaces the current section with the named section. The popsection directive
replaces the current section with the section on top of the section stack and then
pops this section from the stack.

39.6.13 text

The text directive changes the current ELF section to the .text section. The section
type and attributes are determined by the ABI.

text-directive ::= .text

39.6.14 set, linkset

A symbol is assigned a value using the set or linkset directive.

set-directive ::= set-type symbol , expression

set-type ::= .set
| .linkset

REV 13.0.0

xTIMEcomposer User Guide 232/295

The set directive defines the named symbol with the value of the expression. The
expression must be either a constant or a symbol: if the expression is a constant,
the symbol is defined in the absolute section; if the expression is a symbol, the
defined symbol inherits its section information and other attributes from this
symbol.

The linkset directive is the same, except that the expression is not evaluated;
instead one or more SHT_EXPR entries are created in the ELF-extended expression
section which together form a tree representation of the expression.

Any symbol used in the assembly code may be a target of an SHT_EXPR entry, in
which case its value is computed by the linker by evaluating the expression once
values for all other symbols in the expression are known. This may happen at any
incremental link stage; once the value is known, it is assigned to the symbol as
with set and the expression entry is eliminated from the linked object.

39.6.15 cc_top, cc_bottom

The cc_top and cc_bottom directives are used to mark the beginning and end of
elimination blocks.

cc-top-directive ::= .cc_top name , predicate

| .cc_top name

cc-directive ::= cc-top-directive

| .cc_bottom name

name ::= symbol

predicate ::= symbol

cc_top and cc_bottom directives with the same name refer to the same elimination
block. An elimination block must have precisely one cc_top directive and one
cc_bottom directive. The top and bottom of an elimination block must be in the
same section. The elimination block consists of the data and labels in this section
between the cc_top and cc_bottom directives. Elimination blocks must be disjoint;
it is illegal for elimination blocks to overlap.

An elimination block is retained in final executable if one of the following is true:

· A label inside the elimination block is referenced from a location outside an
elimination block.

· A label inside the elimination block is referenced from an elimination block
which is not eliminated

· The predicate symbol is defined outside an elimination block or is contained in
an elimination block which is not eliminated.

If none of these conditions are true the elimination block is removed from the final
executable.

REV 13.0.0

xTIMEcomposer User Guide 233/295

39.6.16 scheduling

The scheduling directive enables or disables instruction scheduling. When schedul-
ing is enabled, the assembler may reorder instructions to minimize the number of
FNOPs. The default scheduling mode is determined by the command-line option
-fschedule (see §9.4).

scheduling-directive ::= .scheduling

scheduling-mode ::= on
| off
| default

39.6.17 syntax

The syntax directive changes the current syntax mode. See §39.7 for details of
how assembly instructions are specified in each mode.

syntax-directive ::= .syntax syntax

syntax ::= default
| architectural

39.6.18 assert

assert-directive ::= .assert constant , symbol , string

The assert directive requires an assertion to be tested prior to generating an
executable object: the assertion fails if the symbol has a non-zero value. If the
constant is 0, a failure should be reported as a warning; if the constant is 1, a
failure should be reported as an error. The string is a message for an assembler or
linker to emit on failure.

39.6.19 Overlay Directives

The overlay directives control how code and data is partitioned into overlays that
are loaded on demand at runtime.

overlay-directive ::= .overlay_reference symbol , symbol

| .overlay_root symbol , symbol

| .overlay_root symbol

| .overlay_subgraph_conflict sym-list

sym-list ::= sym-list , symbol

| symbol

· The overlay_root directive specifies that the first symbol should be treated as
an overlay root. The optional second symbols specifies a overlay key symbol.
If no overlay key symbol is explictly specified the overlay root symbol is used

REV 13.0.0

xTIMEcomposer User Guide 234/295

as the key symbol. Specifying the same overlay key symbol for multiple overlay
roots forces the overlay roots into the same overlay.

· The overlay_reference directive specifies that linker should assume that there
is a reference from the first symbol to the second symbol when it partitions the
program into overlays.

· The overlay_subgraph_conflict directive specifies that linker should not place
any code or data reachable from one the symbols into an overlay that is mapped
an overlay region that contains another overlay containing code or data reachable
from one of the other symbols.

39.6.20 Language Directives

The language directives create entries in the ELF-extended expression section; the
encoding is determined by the ABI.

xc-directive ::= globdir symbol , string

| globdir symbol , symbol , range-args , string

| .globpassesref symbol , symbol , string

| .call symbol , symbol

| .par symbol , symbol , string

range-args ::= expression , expression

globdir ::= .globread
| .globwrite
| .parwrite
| .globpassesref

For each directive, the string is an error message for the assembler or linker to
display on encountering an error attributed to the directive.

call
Both symbols must have function type. This directive sets the property that
the first function may make a call to the second function.

par
Both symbols must have function type. This directive sets the property that
the first function is invoked in parallel with the second function.

globread
The first symbol must have function type and the second directive must have
object type. This directive sets the property that the function may read the
object. When a range is specified, the first expression is the offset from the
start of the variable in bytes of the address which is read and the second
expression is the size of the read in bytes.

globwrite
The first symbol must have function type and the second directive must have
object type. This directive sets the property that the function may write the

REV 13.0.0

xTIMEcomposer User Guide 235/295

object. When a range is specified, the first expression is the offset from the
start of the variable in bytes of the address which is written and the second
expression is the size of the write in bytes.

parwrite
The first symbol must have function type and the second directive must have
object type. This directive set the property that the function is called in an
expression which writes to the object where the order of evalulation of the
write and the function call is undefined. When a range is specified, the first
expression is the offset from the start of the variable in bytes of the address
which is written and the second expression is the size of the write in bytes.

globpassesref
The first symbol must have function type and the second directive must have
object type. This directive sets the property that the object may be passed by
reference to the function.

REV 13.0.0

xTIMEcomposer User Guide 236/295

39.6.21 XMOS Timing Analyzer Directives

The XMOS Timing Analyzer directives add timing metadata to ELF sections.

xta-directive ::= .xtabranch exp-listopt

| .xtaendpoint string , source-location

| .xtacall string , source-location

| .xtalabel string , source-location

| .xtathreadstart
| .xtathreadstop
| .xtaloop constant

| .xtacommand string , source-location

source-location ::= string , string , constant

The first string of a source location is the compilation directory. The second string
is the path to the file. The path may be specified as either a relative path from
the compilation directory or as an absolute path. The third argument is the line
number.

· xtabranch specifies a comma-separated list of locations that may be branched
to from the current location.

· xtaendpoint marks the current location as an endpoint with the specified label.

· xtacall marks the current location as a function call with the specified label.

· xtalabel marks the current location using the specified label.

· xtathreadstart apecifies that a thread may be initialized to start executing at
the current location.

· xtathreadstop specifies that a thread executing the instruction at the current
location will not execute any further instructions.

· xtaloop specifies that the innermost loop containing the current location exe-
cutes the specified number of times.

· xtacommand specifies an XTA command to be executed when analyzing the
executable.

39.6.22 uleb128, sleb128

The following directives emit, for each expression in the comma-separated list of
expressions, a value that encodes either an unsigned or signed DWARF little-endian
base 128 number.

leb-directive ::= .uleb128 exp-list

| .sleb128 exp-list

REV 13.0.0

xTIMEcomposer User Guide 237/295

39.6.23 space, skip

The space directive emits a sequence of bytes, specified by the first expression,
each with the fill value specified by the second expression. Both expressions must
be constant expressions.

space-or-skip ::= .space
| .skip

space-directive ::= space-or-skip expression

| space-or-skip expression , expression

The skip directive is a synonym for the space directive. It is provided for compati-
bility with other assemblers.

39.6.24 type

The type directive specifies the type of a symbol to be either a function symbol or
an object symbol.

type-directive ::= .type symbol , symbol-type

symbol-type ::= @function
| @object

39.6.25 size

The size directive specifies the size associated with a symbol.

size-directive ::= .size symbol , expression

39.6.26 jmptable, jmptable32

The jmptable and jmptable32 directives generate a table of unconditional branch
instructions. The target of each branch instruction is the next label in the list. The
size of the each branch instruction is 16 bits for the jmptable directive and 32 bits
for the jmptable32 directive.

jmptable-directive ::= .jmptable jmptable-listopt

| .jmptable32 jmptable-listopt

jmptable-list ::= symbol

| jmptable-list symbol

Each symbol must be a label. A maximum of 32 labels maybe specified. If the
unconditional branch distance does not fit into a 16-bit branch instruction, a
branch is made to a trampoline at the end of the table, which performs the branch
to the target label.

REV 13.0.0

xTIMEcomposer User Guide 238/295

39.7 Instructions

Assembly instructions are normally inserted into an ELF text section. The syntax of
an instruction is:

instruction ::= mnemonic instruction-argsopt

instruction-args ::= instruction-args , instruction-arg

| instruction-arg

instruction-arg ::= symbol [expression]
| symbol [expression] : symbol

| expression

The assembly instructions are summarized below, with references to the XS1
architecture manual (see X7879). In this manual, an “architectural” assembly
format is documented. The syntax directive is used to switch to this mode of
encoding.

The following notation is used:

bitp one of: 1, 2, 3, 4, 5, 6, 7, 8, 16, 24 and 32
b register used as a base address

c register used as a conditional operand

d, e register used as a destination operand

i register used as a index operand

r register used as a resource identifier

s register used as a source operand

t register used as a thread identifier

us small unsigned constant in the range 0...11
ux unsigned constant in the range 0...(2x-1)

v, w, x, y registers used for two or more source operands

A register is one of: r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, sp, dp, cp and lr.
The instruction determines which of these registers are permitted.

Where there is choice of instruction formats, the assembler chooses the format
with the smallest size. To force a specific format, specify a mnemonic of the form
INSTRUCTION_format where the instruction and format names are as described in
the architecture manual. For example the LDWCP_ru6 mnemonic specifies the ru6
format of the LDWCP instruction.

The following tables refer to a page number of the instruction in the XS1 Architec-
ture Manual (see X7879).

REV 13.0.0

http://www.xmos.com/docnum/X7879
http://www.xmos.com/docnum/X7879

xTIMEcomposer User Guide 239/295

39.7.1 Data Access

Mnemonic Operands Size Meaning Page

ld16s d, b[i] 16 Load signed 16 bits 121

ld8u d, b[i] 16 Load unsigned 8 bits 122

lda16 d, b[i] 32 Add to 16-bit address 123

lda16 d, b[-i] 32 Subtract from 16-bit address 124

ldap r11, u20 16/32 Load pc-relative address 125

ldap r11, -u20 16/32 Load pc-relative address 126

ldaw d, b[i] 32 Add to a word address 131

ldaw d, b[-i] 32 Subtract from a word address 127

ldaw d, b[us] 32 Add to a word address immediate 132

ldaw d, b[-us] 32 Subtract from a word address im-
mediate

128

ldaw r11, cp[u16] 16/32 Load address of word in constant
pool

129

ldaw d, dp[u16] 16/32 Load address of word in data pool 130

ldaw d, sp[u16] 16/32 Load address of word on stack 133

ldw et, sp[4] 16 Load ET from the stack 135

ldw sed, sp[3] 16 Load SED from the stack 137

ldw spc, sp[1] 16 Load SPC from the stack 138

ldw ssr, sp[2] 16 Load SSR from the stack 139

ldw d, b[i] 16 Load word 140

ldw d, b[us] 16 Load word immediate 141

ldw d, cp[u16] 16/32 Load word from constant pool 142

ldw r11, cp[u20] 16/32 Load word from constant pool 143

ldw d, dp[u16] 16/32 Load word from data pool 144

ldw d, sp[u16] 16/32 Load word from stack 145

set cp, s 16 Set constant pool 175

set dp, s 16 Set data pointer 177

set sp, s 16 Set the stack pointer 185

st16 s, b[i] 32 16-bit store 196

st8 s, b[i] 32 8-bit store 197

stw sed, sp[3] 16 Store SED on the stack 199

stw et, sp[4] 16 Store ET on the stack 198

stw spc, sp[1] 16 Store SPC on the stack 200

stw ssr, sp[2] 16 Store SSR on the stack 201

stw s, b[i] 32 Store word 202

stw s, b[us] 16 Store word immediate 203

stw s, dp[u16] 16/32 Store word in data pool 204

stw s, sp[u16] 16/32 Store word on stack 205

REV 13.0.0

xTIMEcomposer User Guide 240/295

39.7.2 Branching, Jumping and Calling

Mnemonic Operands Size Meaning Page

bau s 16 Branch absolute unconditional 53

bf c, u16 16/32 Branch relative if false 63

bf c, -u16 16/32 Branch relative if false 60

bl u20 16/32 Branch and link relative 59

bl -u20 16/32 Branch and link relative 58

bla s 16 Branch and link absolute via reg-
ister

55

bla cp[u20] 16/32 Branch and link absolute via CP 56

blat u16 16/32 Branch and link absolute via table 57

bru s 16 Branch relative unconditional via
register

66

bt c, u16 16/32 Branch relative if true 64

bt c, -u16 16/32 Branch relative if true 61

bu u16 16/32 Branch relative unconditional 65

bu -u16 16/32 Branch relative unconditional 62

entsp u16 16/32 Adjust stack and save link register 90

extdp u16 16/32 Extend data pointer 93

extsp u16 16/32 Extend stack pointer 94

retsp u16 16/32 Return 169

39.7.3 Data Manipulation

Mnemonic Operands Size Meaning Page

add d, x, y 16 Add 47

add d, x, us 16 Add immediate 48

and d, x, y 16 Bitwise and 49

andnot d, s 16 And not 50

ashr d, x, y 32 Arithmetic shift right 51

ashr d, x, bitp 32 Arithmetic shift right immediate 52

bitrev d, s 32 Bit reverse 54

byterev d, s 32 Byte reverse 67

clz d, s 32 Count leading zeros 73

crc32 d, r, p 32 Word CRC 74

crc8 r, o, d, p 32 8-step CRC 75

divs d, x, y 32 Signed division 79

divu d, x, y 32 Unsigned division 80

eq c, x, y 16 Equal 91

eq c, x, us 16 Equal immediate 92

ladd e, d, x, y, v 32 Long unsigned add with carry 120

(continued)

REV 13.0.0

xTIMEcomposer User Guide 241/295

Mnemonic Operands Size Meaning Page

ldc d, u16 16/32 Load constant 134

ldivu d, e, v, x, y 32 Long unsigned divide 136

lmul d, e, x, y, v, w 32 Long multiply 146

lss c, x, y 16 Less than signed 147

lsu c, x, y 16 Less than unsigned 148

lsub e, d, x, y, v 32 Long unsigned subtract 149

maccs d, e, x, y 32 Mulitply and accumulate signed 150

maccu d, e, x, y 32 Multiply and accumulate un-
signed

151

mkmsk d, s 16 Make mask 153

mkmsk d, bitp 16 Make mask immediate 154

mul d, x, y 32 Multiply 156

neg d, s 16 Two’s complement negate 157

not d, s 16 Bitwise not 158

or d, x, y 16 Bitwise or 159

rems d, x, y 32 Signed remainder 167

remu d, x, y 32 Unsigned remainder 168

sext d, s 16 Sign extend 189

sext d, bitp 16 Sign extend immediate 190

shl d, x, y 16 Shift left 191

shl d, x, bitp 16 Shift left immediate 192

shr d, x, y 16 Shift right 193

shr d, x, bitp 16 Shift right immediate 194

sub d, x, y 16 Subtract 206

sub d, x, us 16 Subtract immediate 207

xor d, x, y 32 Bitwise exclusive or 223

zext d, s 16 Zero extend 224

zext s, bitp 16 Zero extend immediate 225

39.7.4 Concurrency and Thread Synchronization

Mnemonic Operands Size Meaning Page

freet 16 Free unsynchronized thread 96

get r11, id 16 Get thread ID 100

getst d, res[r] 16 Get synchronized thread 108

mjoin res[r] 16 Master synchronize and join 152

msync res[r] 16 Master synchronize 155

ssync 16 Slave synchronize 195

init t[r]:cp, s 16 Initialize thread’s CP 212

init t[r]:dp, s 16 Initialize thread’s DP 213

init t[r]:lr, s 32 Initialize thread’s LR 214

(continued)

REV 13.0.0

xTIMEcomposer User Guide 242/295

Mnemonic Operands Size Meaning Page

init t[r]:pc, s 16 Initialize thread’s PC 215

init t[r]:sp, s 16 Initialize thread’s SP 216

set t[r]:d, s 16 Set register in thread 218

start t[r] 16 Start thread 219

tsetmr d, s 16 Set register in master thread 217

39.7.5 Communication

Mnemonic Operands Size Meaning Page

chkct res[r], s 16 Test for control token 68

chkct res[r], us 16 Test for control token immediate 69

getn d, res[r] 32 Get network 103

in d, res[r] 16 Input data 110

inct d, res[r] 16 Input control token 111

int d, res[r] 16 Input token of data 114

out res[r], s 16 Output data 160

outct res[r], s 16 Output control token 161

outct res[r], us 16 Output control token immediate 162

outt res[r], s 16 Output token of data 165

setn res[r], s 32 Set network 180

testlcl d, res[r] 32 Test local 209

testct d, res[r] 16 Test for control token 210

testwct d, res[r] 16 Test for position of control token 211

39.7.6 Resource Operations

Mnemonic Operands Size Meaning Page

clrpt res[r] 16 Clear port time 71

endin d, res[r] 16 End a current input 89

freer res[r] 16 Free a resource 95

getd d, res[r] 32 Get resource data 97

getr d, us 16 Allocate resource 105

getts d, res[r] 16 Get port timestamp 109

in d, res[r] 16 Input data 110

inpw d, res[r], bitp 32 Input a part word 112

inshr d, res[r] 16 Input and shift right 113

out res[r], s 16 Output data 160

outpw res[r], s, bitp 32 Output a part word 163

outshr res[r], s 16 Output data and shift 164

(continued)

REV 13.0.0

xTIMEcomposer User Guide 243/295

Mnemonic Operands Size Meaning Page

peek d, res[r] 16 Peek at port data 166

setc res[r], s 32 Set resource control bits 172

setc res[r], u16 16/32 Set resource control bits immedi-
ate

170

setclk res[r], s 32 Set clock for a resource 174

setd res[r], s 16 Set data 176

setev res[r], r11 16 Set environment vector 178

setpsc res[r], s 16 Set the port shift count 182

setpt res[r], s 16 Set the port time 183

setrdy res[r], s 32 Set ready input for a port 184

settw res[r], s 32 Set transfer width for a port 187

setv res[r], r11 16 Set event vector 188

syncr res[r] 16 Synchronize a resource 208

39.7.7 Event Handling

Mnemonic Operands Size Meaning Page

clre 16 Clear all events 70

clrsr u16 16/32 Clear bits in SR 72

edu res[r] 16 Disable events 85

eef d, res[r] 16 Enable events if false 86

eet d, res[r] 16 Enable events if true 87

eeu res[r] 16 Enable events 88

getsr r11, u16 16/32 Get bits from SR 107

setsr u16 16/32 Set bits in SR 186

waitef c 16 Wait for event if false 220

waitet c 16 Wait for event if true 221

waiteu 16 Wait for event 222

39.7.8 Interrupts, Exceptions and Kernel Calls

Mnemonic Operands Size Meaning Page

clrsr u16 16/32 Clear bits in SR 72

ecallf c 16 Raise exception if false 83

ecallt c 16 Raise exception if true 84

get r11, ed 16 Get ED into r11 98

get r11, et 16 Get ET into r11 99

get r11, kep 16 Get the kernel entry point 101

get r11, ksp 16 Get the kernel stack pointer 102

getsr r11, u16 16/32 Get bits from SR 107

(continued)

REV 13.0.0

xTIMEcomposer User Guide 244/295

Mnemonic Operands Size Meaning Page

kcall s 16 Kernel call 115

kcall u16 16/32 Kernel call immediate 116

kentsp u16 16/32 Switch to kernel stack 117

krestsp u16 16/32 Restore stack pointer from kernel
stack

118

kret 16 Kernel return 119

set kep, r11 16 Set the kernel entry point 179

setsr u16 16/32 Set bits in SR 186

39.7.9 Debugging

Mnemonic Operands Size Meaning Page

dcall 16 Cause a debug interrupt 76

dentsp 16 Save and modify stack pointer for
debug

77

dgetreg s 16 Debug read of another thread’s
register

78

drestsp 16 Restore non debug stack pointer 81

dret 16 Return from debug interrupt 82

get d, ps[r] 32 Get processor state 104

set ps[r], s 32 Set processor state 181

39.7.10 Pseudo Instructions

In the default syntax mode, the assembler supports a small set of pseudo instruc-
tions. These instructions do not exist on the processor, but are translated by the
assembler into XS1 instructions.

Mnemonic Operands Definition

mov d, s add d, s, 0
nop r0, r0, 0

REV 13.0.0

xTIMEcomposer User Guide 245/295

39.8 Assembly Program

An assembly program consists of a sequence of statements.

program ::= 〈statement〉∗

statement ::= label-listopt dir-or-instopt separator

label-list ::= label

| label-list label

dir-or-inst ::= directive

| instruction

separator ::= newline

| ;

directive ::= align-directive

| ascii-directive

| value-directive

| file-directive

| loc-directive

| weak-directive

| vis-directive

| text-directive

| set-directive

| cc-directive

| scheduling-directive

| syntax-directive

| assert-directive

| xc-directive

| xta-directive

| space-directive

| type-directive

| size-directive

| jmptable-directive

REV 13.0.0

Part N

Programming for XS1 Devices

CONTENTS

· XCC Target-Dependent Behavior for XS1 Devices

· XS1 Data Types

· XS1 port-to-pin mapping

· XS1 Library

· xCORE 32-Bit Application Binary Interface

REV 13.0.0

40XCC Target-Dependent Behavior for XS1 Devices

IN THIS CHAPTER

· Support for Clock Blocks

· Support for Ports

· Channel Communication

This section describes behavior of the XMOS compiler collection that is specific to
the XS1 architecture.

40.1 Support for Clock Blocks

An XS1 device provides a single reference clock that ticks at a frequency derived
from an external oscillior. XC requires the system designer to ensure that the
reference clock ticks at 100MHz for correct operation of timers.

Each xCORE Tile provides a set of programmable clock blocks, which can be used
to produce clock signals for ports. A clock block can use either a 1-bit port or a
divided reference clock.

The <xs1.h> header file includes a clock type definition. A variable of type clock,
not declared extern, must be initialized with an expression representing a clock
block, for example:

clock c = XS1_CLKBLK_1;

The number of clock blocks available is given in the device datasheet. Their names
are as the above declaration, numbered sequentially from 1.

In XC, the clock type is a resource type, with the following additional rules:

· A structure may declare members of type clock. Variables of a structure with
type clock may be declared only as external declarations.

· A variable declaration prefixed with on may declare an object of type clock.

· Automatic variables may not be declared with type clock.

REV 13.0.0

xTIMEcomposer User Guide 248/295

40.2 Support for Ports

The XC port declaration

port p;

declares a raw port. On XS1 devices, all ports used for inputting and outputting
data are clocked by a 100MHz reference clock (see §40.1) and use a single-entry
buffer, even if their declarations are not qualified with the keyword buffered.

The table in Figure 78 can be used to determine which I/O operations are supported
on XS1 ports, depending on whether or not the corresponding XC declaration is
qualified with the keyword buffered.

Operation

Mode Serialization Strobing @ when

Unqualified 7 7 7

buffered 3 3 3

Figure 78:

I/O
operations

supported on
XS1 ports

The compiler detects and issues errors in the following cases:

· Serialization: A port not qualified with buffered is declared with a transfer width
different from the port width.

· Strobing: A port not qualified with buffered is configured to use a ready-in or
ready-out signal.

· An input uses both @ and when: Both of these operators are used in an input
statement with a port whose declaration is not qualified with buffered.

40.2.1 Serialization

Note that if serialization is used, the time specified by a timed input statement
records the time at which the last bits of data are sampled. This can result in
unexpected behaviour when serialization is used, since the construction

par {
p @ t <: x;
q @ t :> y;

}

causes the output on p to start at the same time as the input on q completes.
To input and output this data in parallel, the input time should be offset in the
software by an amount equal to the the transfer width divided by the port width.

40.2.2 Timestamping

The timestamp recorded by an input statement may come after the time when
the data was sampled. This is because the XS1 provides separate instructions for

REV 13.0.0

xTIMEcomposer User Guide 249/295

inputting data and inputting the timestamp, so the timestamp can be input after
the next data is sampled. This issue also affects output statements, but does not
affect inputs performed in the guards of a select statement. The compiler inputs
the timestamp immediately after executing an input or output instruction, so in
practice this behaviour is rarely seen.

40.2.3 Changing Direction of Buffered Ports

An attempt to change the direction of a port qualified with buffered results in
undefined behaviour.

40.3 Channel Communication

On some revisions of the XS1 architecture, it is not possible to input data of size
less than 32 bits from a streaming channel in the guard of a select statement.

· When compiling for the XS1-G architecture, the compiler disallows selecting on
a channel input of less than a word-length in an XC streaming channel. The
command line option -fsubword-select relaxes this restriction, but this can
lead to cases with these functions not being taken even if data is available on
the channel.

· When compiling for the XS1-G architecture, the inuchar_byref, inct_byref and
testct functions may not be used in an XC select statement. The command
line option -fsubword-select relaxes this restriction, but this can lead to cases
with these functions not being taken even if data is available on the channel.

REV 13.0.0

41XS1 Data Types

The size and alignment of C and XC’s data types are not specified by the language.
This allows the size of int to be set to the natural word size of the target device,
ensuring the fastest possible performance for many computations. It also allows
the alignment to be set wide enough to enable efficient memory loads and stores.
Figure 79 represents the size and alignment of the data types specified by the
xCORE Application Binary Interface (see §44), which provides a standard interface
for linking objects compiled from both C and XC.

Data Type Size Align Supported Meaning

(bits) (bits) XC C

char 8 8 3 3 Character type

short 16 16 3 3 Short integer

int 32 32 3 3 Native integer

long 32 32 3 3 Long integer

long long 64 32 7 3 Long long integer

float 32 32 7 3 32-bit IEEE float

double 64 32 7 3 64-bit IEEE float

long double 64 32 7 3 64-bit IEEE float

void * 32 32 7 3 Data pointer

port 32 32 3 7 Port

timer 32 32 3 7 Timer

chanend 32 32 3 7 Channel end

Figure 79:

Size and
alignment of

data types on
XS1 devices

In addition:

· The char type is by default unsigned.

· The types char, short and int may be specified in a bit-field’s declaration.

· A zero-width bit-field forces padding until the next bit-offset aligned with the
bit-field’s declared type.

· The notional transfer type of a port is unsigned int (32 bits).

· The notional counter type of a port is unsigned short (16 bits).

· The notional counter type of a timer is unsigned int (32 bits).

REV 13.0.0

42XS1 port-to-pin mapping

On XS1 devices, pins are used to interface with external components via ports and to construct
links to other devices over which channels are established. The ports are multiplexed, allowing
the pins to be configured for use by ports of different widths. Figure 80 gives the XS1 port-to-pin
mapping, which is interpreted as follows:

· The name of each pin is given in the format XnDpq where n is a valid xCORE Tile number for the
device and pq exists in the table. The physical position of the pin depends on the packaging
and is given in the device datasheet.

· Each link is identified by a letter A-D. The wires of a link are identified by means of a super-
scripted digit 0-4.

· Each port is identified by its width (the first number 1, 4, 8, 16 or 32) and a letter that
distinguishes multiple ports of the same width (A-P). These names correspond to port identifiers
in the header file <xs1.h> (for example port 1A corresponds to the identifier XS1_PORT_1A). The
individual bits of the port are identified by means of a superscripted digit 0-31.

· The table is divided into six rows (or banks). The first four banks provide a selection of 1, 4
and 8-bit ports, with the last two banks enabling the single 32-bit port. Different packaging
options may export different numbers of banks; the 16-bit and 32-bit ports are not available on
small devices.

The ports used by a program are determined by the set of XC port declarations. For example, the
declaration

on tile [0] : in port p = XS1_PORT_1A

uses the 1-bit port 1A on xCORE Tile 0, which is connected to pin X0D00.

Usually the designer should ensure that there is no overlap between the pins of the declared ports,
but the precedence has been designed so that, if required, portions of the wider ports can be used
when overlapping narrower ports are used. The ports to the left of the table have precedence
over ports to the right. If two ports are declared that share the same pin, the narrower port takes
priority. For example:

on tile[2] : out port p1 = XS1_PORT_32A;
on tile[2] : out port p2 = XS1_PORT_8B;
on tile[2] : out port p3 = XS1_PORT_4C;

In this example:

· I/O on port p1 uses pins X2D02 to X2D09 and X2D49 to X2D70.

· I/O on port p2 uses pins X2D16 to X2D19; inputting from p2 results in undefined values in bits
0, 1, 6 and 7.

· I/O on port p3 uses pins X2D14, X2D15, X2D20 and X2D21; inputting from p1 results in
undefined values in bits 28-31, and when outputting these bits are not driven.

REV 13.0.0

xTIMEcomposer User Guide 252/295

Figure 80: Available ports and links for each pin
⇐ highest Precedence lowest ⇒

Pin link 1-bit ports 4-bit ports 8-bit ports 16-bit ports 32-bit port

XnD00 1A
XnD01 A4 out 1B
XnD02 A3 out 4A0 8A0 16A0 32A20

XnD03 A2 out 4A1 8A1 16A1 32A21

XnD04 A1 out 4B0 8A2 16A2 32A22

XnD05 A0 out 4B1 8A3 16A3 32A23

XnD06 A0 in 4B2 8A4 16A4 32A24

XnD07 A1 in 4B3 8A5 16A5 32A25

XnD08 A2 in 4A2 8A6 16A6 32A26

XnD09 A3 in 4A3 8A7 16A7 32A27

XnD10 A4 in 1C
XnD11 1D
XnD12 1E
XnD13 B4 out 1F
XnD14 B3 out 4C0 8B0 16A8 32A28

XnD15 B2 out 4C1 8B1 16A9 32A29

XnD16 B1 out 4D0 8B2 16A10

XnD17 B0 out 4D1 8B3 16A11

XnD18 B0 in 4D2 8B4 16A12

XnD19 B1 in 4D3 8B5 16A13

XnD20 B2 in 4C2 8B6 16A14 32A30

XnD21 B3 in 4C3 8B7 16A15 32A31

XnD22 B4 in 1G
XnD23 1H
XnD24 1I
XnD25 1J
XnD26 4E0 8C0 16B0

XnD27 4E1 8C1 16B1

XnD28 4F0 8C2 16B2

XnD29 4F1 8C3 16B3

XnD30 4F2 8C4 16B4

XnD31 4F3 8C5 16B5

XnD32 4E2 8C6 16B6

XnD33 4E3 8C7 16B7

XnD34 1K
XnD35 1L
XnD36 1M 8D0 16B8

XnD37 1N 8D1 16B9

XnD38 1O 8D2 16B10

XnD39 1P 8D3 16B11

XnD40 8D4 16B12

XnD41 8D5 16B13

XnD42 8D6 16B14

XnD43 8D7 16B15

XnD49 C4 out 32A0

XnD50 C3 out 32A1

XnD51 C2 out 32A2

XnD52 C1 out 32A3

XnD53 C0 out 32A4

XnD54 C0 in 32A5

XnD55 C1 in 32A6

XnD56 C2 in 32A7

XnD57 C3 in 32A8

XnD58 C4 in 32A9

XnD61 D4 out 32A10

XnD62 D3 out 32A11

XnD63 D2 out 32A12

XnD64 D1 out 32A13

XnD65 D0 out 32A14

XnD66 D0 in 32A15

XnD67 D1 in 32A16

XnD68 D2 in 32A17

XnD69 D3 in 32A18

XnD70 D4 in 32A19

43XS1 Library

IN THIS CHAPTER

· Data types

· Port Configuration Functions

· Clock Configuration Functions

· Port Manipulation Functions

· Clock Manipulation Functions

· Logical Core/Tile Control Functions

· Channel Functions

· Predicate Functions

· XS1-S Functions

· Miscellaneous Functions

43.1 Data types

clock
Clock resource type.

Clocks are declared as global variables and are initialized with the resource identi-
fier of a clock block. When in a running state a clock provides rising and falling
edges to ports configured using that clock.

43.2 Port Configuration Functions

void configure_in_port_handshake(void port p,
in port readyin,
out port readyout,
clock clk)

Configures a buffered port to be a clocked input port in handshake mode.

If the ready-in or ready-out ports are not 1-bit ports, an exception is raised. The
ready-out port is asserted on the falling edge of the clock when the port’s buffer is
not full. The port samples its pins on its sampling edge when both the ready-in
and ready-out ports are asserted.

By default the port’s sampling edge is the rising edge of clock. This can be changed
by the function set_port_sample_delay().

This function has the following parameters:

REV 13.0.0

xTIMEcomposer User Guide 254/295

p The buffered port to configure.

readyin A 1-bit port to use for the ready-in signal.

readyout A 1-bit port to use for the ready-out signal.

clk The clock used to configure the port.

void configure_out_port_handshake(void port p,
in port readyin,
out port readyout,
clock clk,
unsigned initial)

Configures a buffered port to be a clocked output port in handshake mode.

If the ready-in or ready-out ports are not 1-bit ports an exception is raised. The
port drives the initial value on its pins until an output statement changes the
value driven. The ready-in port is read on the sampling edge of the buffered port.
Outputs are driven on the next falling edge of the clock where the previous value
read from the ready-in port was high. On the falling edge of the clock the ready-out
port is driven high if data is output on that edge, otherwise it is driven low. By
default the port’s sampling edge is the rising edge of clock. This can be changed
by the function set_port_sample_delay().

This function has the following parameters:

p The buffered port to configure.

readyin A 1-bit port to use for the ready-in signal.

readyout A 1-bit port to use for the ready-out signal.

clk The clock used to configure the port.

initial The initial value to output on the port.

void configure_in_port_strobed_master(void port p,
out port readyout,
const clock clk)

Configures a buffered port to be a clocked input port in strobed master mode.

If the ready-out port is not a 1-bit port, an exception is raised. The ready-out port
is asserted on the falling edge of the clock when the port’s buffer is not full. The
port samples its pins on its sampling edge after the ready-out port is asserted.

By default the port’s sampling edge is the rising edge of clock. This can be changed
by the function set_port_sample_delay().

REV 13.0.0

xTIMEcomposer User Guide 255/295

This function has the following parameters:

p The buffered port to configure.

readyout A 1-bit port to use for the ready-out signal.

clk The clock used to configure the port.

void configure_out_port_strobed_master(void port p,
out port readyout,
const clock clk,
unsigned initial)

Configures a buffered port to be a clocked output port in strobed master mode.

If the ready-out port is not a 1-bit port, an exception is raised. The port drives
the initial value on its pins until an output statement changes the value driven.
Outputs are driven on the next falling edge of the clock. On the falling edge of the
clock the ready-out port is driven high if data is output on that edge, otherwise it
is driven low.

This function has the following parameters:

p The buffered port to configure.

readyout A 1-bit port to use for the ready-out signal.

clk The clock used to configure the port.

initial The initial value to output on the port.

void configure_in_port_strobed_slave(void port p,
in port readyin,
clock clk)

Configures a buffered port to be a clocked input port in strobed slave mode.

If the ready-in port is not a 1-bit port, an exception is raised. The port samples its
pins on its sampling edge when the ready-in signal is high. By default the port’s
sampling edge is the rising edge of clock. This can be changed by the function
set_port_sample_delay().

This function has the following parameters:

p The buffered port to configure.

readyin A 1-bit port to use for the ready-in signal.

REV 13.0.0

xTIMEcomposer User Guide 256/295

clk The clock used to configure the port.

void configure_out_port_strobed_slave(void port p,
in port readyin,
clock clk,
unsigned initial)

Configures a buffered port to be a clocked output port in strobed slave mode.

If the ready-in port is not a 1-bit port, an exception is raised. The port drives the
initial value on its pins until an output statement changes the value driven. The
ready-in port is read on the buffered port’s sampling edge. Outputs are driven on
the next falling edge of the clock where the previous value read from the ready-in
port is high. By default the port’s sampling edge is the rising edge of clock. This
can be changed by the function set_port_sample_delay().

This function has the following parameters:

p The buffered port to configure.

readyin A 1-bit port to use for the ready-in signal.

clk The clock used to configure the port.

initial The initial value to output on the port.

void configure_in_port(void port p, const clock clk)
Configures a port to be a clocked input port with no ready signals.

This is the default mode of a port. The port samples its pins on its sampling edge.
If the port is unbuffered, its direction can be changed by performing an output.
This change occurs on the next falling edge of the clock. Afterwards, the port
behaves as an output port with no ready signals.

By default the port’s sampling edge is the rising edge of the clock. This can be
changed by the function set_port_sample_delay().

This function has the following parameters:

p The port to configure, which may be buffered or unbuffered.

clk The clock used to configure the port.

void configure_in_port_no_ready(void port p, const clock clk)
Alias for configure_in_port().

void configure_out_port(void port p, const clock clk, unsigned initial)
Configures a port to be a clocked output port with no ready signals.

The port drives the initial value on its pins until an input or output statement
changes the value driven. Outputs are driven on the next falling edge of the

REV 13.0.0

xTIMEcomposer User Guide 257/295

clock and every port-width bits of data are held for one clock cycle. If the port
is unbuffered, the direction of the port can be changed by performing an input.
This change occurs on the falling edge of the clock after any pending outputs have
been held for one clock period. Afterwards, the port behaves as an input port with
no ready signals.

This function has the following parameters:

p The port to configure, which may be buffered or unbuffered.

clk The clock used to configure the port.

initial The initial value to output on the port.

void configure_out_port_no_ready(void port p,
const clock clk,
unsigned initial)

Alias for configure_out_port().

void configure_port_clock_output(void port p, const clock clk)
Configures a 1-bit port to output a clock signal.

If the port is not a 1-bit port, an exception is raised. Performing inputs or outputs
on the port once it has been configured in this mode results in undefined behaviour.

This function has the following parameters:

p The 1-bit port to configure.

clk The clock to output.

void set_port_no_sample_delay(void port p)
Sets a port to no sample delay mode.

This causes the port to sample input data on the rising edge of its clock. This is
the default state of the port.

This function has the following parameters:

p The port to configure.

void set_port_sample_delay(void port p)
Sets a port to sample delay mode.

This causes the port to sample input data on the falling edge of its clock.

This function has the following parameters:

p The port to configure.

REV 13.0.0

xTIMEcomposer User Guide 258/295

void set_port_clock(void port p, const clock clk)
Attaches a clock to a port.

This corresponds to using the SETCLK instruction on a port. The edges of the clock
are used to sample and output data. Usually the use of the configure_*_port_*
functions is preferred since they ensure that all the port configuration changes
required for the desired mode are performed in the correct order.

This function has the following parameters:

p The port to configure.

clk The clock to attach.

void set_port_ready_src(void port p, void port ready)
Sets a 1-bit port as the ready-out for another port.

This corresponds with using the SETRDY instruction on a port. If the ready-out port
is not a 1-bit port then an exception is raised. The ready-out port is used to indicate
that the port is ready to transfer data. Usually the use of the configure_*_port_*
functions is preferred since they ensure that all the port configuration changes
required for the desired mode are performed in the correct order.

This function has the following parameters:

p The port to configure.

ready The 1-bit port to use for the ready-out signal.

void set_port_use_on(void port p)
Turns on a port.

The port state is initialised to the default state for a port of its type. If the port is
already turned on its state is reset to its default state.

This function has the following parameters:

p The port to turn on.

void set_port_use_off(void port p)
Turns off a port.

No action is performed if the port is already turned off. Any attempt to use the
port while off will result in an exception being raised.

This function has the following parameters:

p The port to turn off.

void set_port_mode_data(void port p)
Configures a port to be a data port.

REV 13.0.0

xTIMEcomposer User Guide 259/295

This is the default state of a port. Output operations on the port are use to control
its output signal.

This function has the following parameters:

p The port to configure.

void set_port_mode_clock(void port p)
Configures a 1-bit port to be a clock output port.

The port will output the clock connected to it. If the port is not a 1-bit port, an
exception is raised. The function set_port_mode_data() can be used to set the port
back to its default state.

This function has the following parameters:

p The port to configure.

void set_port_mode_ready(void port p)
Configures a 1-bit port to be a ready signal output port.

The port will output the ready-out of a port connected with set_port_ready_src().
If the port is not a 1-bit port, an exception is raised. The function
set_port_mode_data() can be used to set the port back to its default state. Usually
the use of the configure_*_port_* functions is prefered since they ensure that all
the port configuration changes required for the desired mode are performed in the
correct order.

This function has the following parameters:

p The port to configure.

void set_port_drive(void port p)
Configures a port in drive mode.

Values output to the port are driven on the pins. This is the default drive state of a
port. Calling set_port_drive() has the side effect disabling the port’s pull up or pull
down resistor.

This function has the following parameters:

p The port to configure.

void set_port_drive_low(void port p)
Configures a port in drive low mode.

For 1-bit ports when 0 is output its pin is driven low and when 1 is output no
value is driven. If the port is not a 1-bit port, the result of an output to the
port is undefined. On XS1-G devices calling set_port_drive_low() has the side
effect of enabling the port’s internal pull-up resistor. On XS1-L devices calling
set_port_drive_low() has the side effect of enabling the port’s internal pull-down
resistor.

REV 13.0.0

xTIMEcomposer User Guide 260/295

This function has the following parameters:

p The port to configure.

void set_port_pull_up(void port p)
Enables a port’s internal pull-up resistor.

When nothing is driving a pin the pull-up resistor ensures that the value sampled
by the port is 1. The pull-up is not strong enough to guarantee a defined external
value. On XS1-G devices calling set_port_pull_up() has the side effect of configuring
the port in drive low mode. On XS1-L devices no pull-up resistors are available and
an exception will be raised if set_port_pull_up() is called.

This function has the following parameters:

p The port to configure.

void set_port_pull_down(void port p)
Enables a port’s internal pull-down resistor.

When nothing is driving a pin the pull-down resistor ensures that the value sampled
by the port is 0. The pull-down is not strong enough to guarantee a defined
external value. On XS1-G devices no pull-down resistors are available and an
exception will be raised if set_port_pull_down() is called. On XS1-L devices calling
set_port_pull_down() has the side effect of configuring the port in drive low mode.

This function has the following parameters:

p The port to configure.

void set_port_pull_none(void port p)
Disables the port’s pull-up or pull-down resistor.

This has the side effect of configuring the port in drive mode.

This function has the following parameters:

p The port to configure.

void set_port_master(void port p)
Sets a port to master mode.

This corresponds to using the SETC instruction on the port with the
value XS1_SETC_MS_MASTER. Usually the use of the functions config-
ure_in_port_strobed_master() and configure_out_port_strobed_master() is pre-
ferred since they ensure that all the port configuration changes required for
the desired mode are performed in the correct order.

This function has the following parameters:

p The port to configure.

REV 13.0.0

xTIMEcomposer User Guide 261/295

void set_port_slave(void port p)
Sets a port to slave mode.

This corresponds to using the SETC instruction on the port with
the value XS1_SETC_MS_SLAVE. Usually the use of the functions config-
ure_in_port_strobed_slave() and configure_out_port_strobed_slave() is preferred
since they ensure that all the port configuration changes required for the desired
mode are performed in the correct order.

This function has the following parameters:

p The port to configure.

void set_port_no_ready(void port p)
Configures a port to not use ready signals.

This corresponds to using the SETC instruction on the port with the value
XS1_SETC_RDY_NOREADY. Usually the use of the functions configure_in_port()
and configure_out_port() is preferred since they ensure that all the port configura-
tion changes required for the desired mode are performed in the correct order.

This function has the following parameters:

p The port to configure.

void set_port_strobed(void port p)
Sets a port to strobed mode.

This corresponds to using the SETC instruction on the port with the value
XS1_SETC_RDY_STROBED. Usually the use of the configure_*_port_strobed_* func-
tions is preferred since they ensure that all the port configuration changes required
for the desired mode are performed in the correct order.

This function has the following parameters:

p The port to configure.

void set_port_handshake(void port p)
Sets a port to handshake mode.

This corresponds to using the SETC instruction on the port with the value
XS1_SETC_RDY_HANDSHAKE. Usually the use of the configure_*_port_handshake
functions is preferred since they ensure that all the port configuration changes
required for the desired mode are performed in the correct order.

This function has the following parameters:

p The port to configure.

void set_port_no_inv(void port p)
Configures a port to not invert data that is sampled and driven on its pins.

This is the default state of a port.

REV 13.0.0

xTIMEcomposer User Guide 262/295

This function has the following parameters:

p The port to configure.

void set_port_inv(void port p)
Configures a 1-bit port to invert data which is sampled and driven on its pin.

If the port is not a 1-bit port, an exception is raised. If the port is used as the
source for a clock then setting this mode has the effect of the swapping the rising
and falling edges of the clock.

This function has the following parameters:

p The 1-bit port to configure.

void set_port_shift_count(void port p, unsigned n)
Sets the shift count for a port.

This corresponds with the SETPSC instruction. The new shift count must be less
than the transfer width of the port, greater than zero and a multiple of the port
width otherwise an exception is raised. For a port used for input this function
will cause the next input to be ready when the specified amount of data has been
shifted in. The next input will return transfer-width bits of data with the captured
data in the most significant bits. For a port used for output this will cause the
next output to shift out this number of bits. Usually the use of the functions
partin() and partout() is preferred over setpsc() as they perform both the required
configuration and the input or output together.

This function has the following parameters:

p The buffered port to configure.

n The new shift count.

void set_pad_delay(void port p, unsigned n)
Sets the delay on the pins connected to the port.

The input signals sampled on the port’s pins are delayed by this number of
processor-clock cycles before they they are seen on the port. The default delay on
the pins is 0. The delay must be set to values in the range 0 to 5 inclusive. If there
are multiple enabled ports connected to the same pin then the delay on that pin is
set by the highest priority port.

This function has the following parameters:

p The port to configure.

n The number of processor-clock cycles by which to delay the input
signal.

REV 13.0.0

xTIMEcomposer User Guide 263/295

43.3 Clock Configuration Functions

void configure_clock_src(clock clk, void port p)
Configures a clock to use a 1-bit port as its source.

This allows I/O operations on ports to be synchronised to an external clock signal.
If the port is not a 1-bit port, an exception is raised.

This function has the following parameters:

clk The clock to configure.

p The 1-bit port to use as the clock source.

void configure_clock_ref(clock clk, unsigned char divide)
Configures a clock to use the reference clock as it source.

If the divide is set to zero the reference clock frequency is used, otherwise the
reference clock frequency divided by 2 * divide is used. By default the reference
clock is configured to run at 100 MHz.

This function has the following parameters:

clk The clock to configure.

divide The clock divide.

void configure_clock_rate(clock clk, unsigned a, unsigned b)
Configures a clock to run at a rate of (a/b) MHz.

If the specified rate is not supported by the hardware, an exception is raised. The
hardware supports rates of MHz and rates of the form (MHz where is the reference
clock frequency and is a number in the range 1 to 255 inclusive.

This function has the following parameters:

clk The clock to configure.

a The dividend of the desired rate.

b The divisor of the desired rate.

void configure_clock_rate_at_least(clock clk, unsigned a, unsigned b)
Configures a clock to run the slowest rate supported by the hardware that is equal
to or exceeds (a/b) MHz.

An exception is raised if no rate satisfies this criterion.

This function has the following parameters:

clk The clock to configure.

REV 13.0.0

xTIMEcomposer User Guide 264/295

a The dividend of the desired rate.

b The divisor of the desired rate.

void configure_clock_rate_at_most(clock clk, unsigned a, unsigned b)
Configures a clock to run at the fastest non-zero rate supported by the hardware
that is less than or equal to (a/b) MHz.

An exception is raised if no rate satisfies this criterion.

This function has the following parameters:

clk The clock to configure.

a The dividend of the desired rate.

b The divisor of the desired rate.

void set_clock_src(clock clk, void port p)
Sets the source for a clock to a 1-bit port.

This corresponds with using the SETCLK instruction on a clock. If the port is
not a 1-bit port, an exception is raised. In addition if the clock was previously
configured with a non-zero divide then an exception is raised. Usually the use of
configure_clock_src() which does not suffer from this problem is recommended.

This function has the following parameters:

clk The clock to configure.

p The 1-bit port to use as the clock source.

void set_clock_ref(clock clk)
Sets the source for a clock to the reference clock.

This corresponds with the using SETCLK instruction on a clock. The clock divide is
left unchanged.

This function has the following parameters:

clk The clock to configure.

void set_clock_div(clock clk, unsigned char div)
Sets the divide for a clock.

This corresponds with the SETD instruction. The clock source must be set to the
reference clock, otherwise an exception is raised. If the divide is set to zero the
source frequency is left unchanged, otherwise the source frequency is divided by 2
* divide.

This function has the following parameters:

clk The clock to configure.

REV 13.0.0

xTIMEcomposer User Guide 265/295

div The divide to use.

void set_clock_rise_delay(clock clk, unsigned n)
Sets the delay for the rising edge of a clock.

Each rising edge of the clock by n processor-clock cycles before it is seen by any
port connected to the clock. The default rising edge delay is 0 and the delay
must be set to values in the range 0 to 512 inclusive. If the clock edge is delayed
by more than the clock period then no rising clock edges are seen by the ports
connected to the clock.

This function has the following parameters:

clk The clock to configure.

n The number of processor-clock cycles by which to delay the rising
edge of the clock.

void set_clock_fall_delay(clock clk, unsigned n)
Sets the delay for the falling edge of a clock.

Each falling edge of the clock is delayed by n processor-clock cycles before it is
seen by any port connected to the clock. The default falling edge delay is 0. The
delay can be set to values in the range 0 to 512 inclusive. If the clock edge is
delayed by more than the clock period then no falling clock edges are seen by the
ports connected to the clock.

This function has the following parameters:

clk The clock to configure.

n The number of processor-clock cycles by which to delay the falling
edge of the clock.

void set_clock_ready_src(clock clk, void port ready)
Sets a clock to use a 1-bit port for the ready-in signal.

This corresponds with using the SETRDY instruction on a clock. If the port is not
a 1-bit port then an exception is raised. The ready-in port controls when data
is sampled from the pins. Usually the use of the configure_*_port_* functions is
preferred since they ensure that all the port configuration changes required for the
desired mode are performed in the correct order.

This function has the following parameters:

clk The clock to configure.

ready The 1-bit port to use for the ready-in signal.

void set_clock_on(clock clk)
Turns on a clock.

REV 13.0.0

xTIMEcomposer User Guide 266/295

The clock state is initialised to the default state for a clock. If the clock is already
turned on then its state is reset to its default state.

This function has the following parameters:

clk The clock to turn on.

void set_clock_off(clock clk)
Turns off a clock.

No action is performed if the clock is already turned off. Any attempt to use the
clock while it is turned off will result in an exception being raised.

This function has the following parameters:

clk The clock to turn off.

43.4 Port Manipulation Functions

void start_port(void port p)
Activates a port.

The buffer used by the port is cleared.

This function has the following parameters:

p The port to activate.

void stop_port(void port p)
Deactivates a port.

The port is reset to being a no ready port.

This function has the following parameters:

p The port to deactivate.

unsigned peek(void port p)
Instructs the port to sample the current value on its pins.

The port provides the sampled port-width bits of data to the processor immediately,
regardless of its transfer width, clock, ready signals and buffering. The input has
no effect on subsequent I/O performed on the port.

This function has the following parameters:

p The port to peek at.

This function returns:

The value sampled on the pins.

REV 13.0.0

xTIMEcomposer User Guide 267/295

void clearbuf(void port p)
Clears the buffer used by a port.

Any data sampled by the port which has not been input by the processor is
discarded. Any data output by the processor which has not been driven by the
port is discarded. If the port is in the process of serialising output, it is interrupted
immediately. If a pending output would have caused a change in direction of the
port then that change of direction does not take place. If the port is driving a value
on its pins when clearbuf() is called then it continues to drive the value until an
output statement changes the value driven.

This function has the following parameters:

p The port whose buffer is to be cleared.

void sync(void port p)
Waits until a port has completed any pending outputs.

Waits output all until a port has completed any pending outputs and the last
port-width bits of data has been held on the pins for one clock period.

This function has the following parameters:

p The port to wait on.

unsigned endin(void port p)
Ends the current input on a buffered port.

The number of bits sampled by the port but not yet input by the processor is
returned. This count includes both data in the transfer register and data in the shift
register used for deserialisation. Subsequent inputs on the port return transfer-
width bits of data until there is less than one transfer-width bits of data remaining.
Any remaining data can be read with one further input, which returns transfer-width
bits of data with the remaining buffered data in the most significant bits of this
value.

This function has the following parameters:

p The port to end the current input on.

This function returns:

The number of bits of data remaining.

unsigned partin(void port p, unsigned n)
Performs an input of the specified width on a buffered port.

The width must be less than the transfer width of the port, greater than zero and a
multiple of the port width, otherwise an exception is raised. The value returned is
undefined if the number of bits in the port’s shift register is greater than or equal
to the specified width.

This function has the following parameters:

REV 13.0.0

xTIMEcomposer User Guide 268/295

p The buffered port to input on.

n The number of bits to input.

This function returns:

The inputted value.

void partout(void port p, unsigned n, unsigned val)
Performs an output of the specified width on a buffered port.

The width must be less than the transfer width of the port, greater than zero and a
multiple of the port width, otherwise an exception is raised. The n least significant
bits of val are output.

This function has the following parameters:

p The buffered port to output on.

n The number of bits to output.

val The value to output.

unsigned partout_timed(void port p, unsigned n, unsigned val, unsigned t)
Performs a output of the specified width on a buffered port when the port counter
equals the specified time.

The width must be less than the transfer width of the port, greater than zero and a
multiple of the port width, otherwise an exception is raised. The n least significant
bits of val are output.

This function has the following parameters:

p The buffered port to output on.

n The number of bits to output.

val The value to output.

t The port counter value to output at.

{unsigned /* value */, unsigned /* timestamp */} p partin_timestamped(void port p,
unsigned n)

Performs an input of the specified width on a buffered port and timestamps the
input.

The width must be less than the transfer width of the port, greater than zero and a
multiple of the port width, otherwise an exception is raised. The value returned is
undefined if the number of bits in the port’s shift register is greater than or equal
to the specified width.

REV 13.0.0

xTIMEcomposer User Guide 269/295

This function has the following parameters:

p The buffered port to input on.

n The number of bits to input.

This function returns:

The inputted value and the timestamp.

unsigned partout_timestamped(void port p, unsigned n, unsigned val)
Performs an output of the specified width on a buffered port and timestamps the
output.

The width must be less than the transfer width of the port, greater than zero and a
multiple of the port width, otherwise an exception is raised. The n least significant
bits of val are output.

This function has the following parameters:

p The buffered port to output on.

n The number of bits to output.

val The value to output.

This function returns:

The timestamp of the output.

43.5 Clock Manipulation Functions

void start_clock(clock clk)
Puts a clock into a running state.

A clock generates edges only after it has been put into this state. The port counters
of all ports attached to the clock are reset to 0.

This function has the following parameters:

clk The clock to put into a running state.

void stop_clock(clock clk)
Waits until a clock is low and then puts the clock into a stopped state.

In a stopped state a clock does not generate edges.

This function has the following parameters:

clk The clock to put into a stopped state.

REV 13.0.0

xTIMEcomposer User Guide 270/295

43.6 Logical Core/Tile Control Functions

void set_core_fast_mode_on(void)
Sets the current logical core to run in fast mode.

The scheduler always reserves a slot for a logical core in fast mode regardless
of whether core is waiting for an input or a select to complete. This reduces the
worst case latency from a change in state happening to a paused input or select
completing as a result of that change. However, putting a core in fast mode means
that other logical cores are unable to use the extra slot which would otherwise be
available while the core is waiting. In addition setting logical cores to run in fast
mode may also increase the power consumption.

void set_core_fast_mode_off(void)
Sets the current logical core to run in normal execution mode.

If a core has previously been put into fast mode using set_core_fast_mode_on()
this function resets the execution mode it to its default state.

unsigned getps(unsigned reg)
Gets the value of a processor state register.

This corresponds with the GETPS instruction. An exception is raised if the argument
is not a legal processor state register.

This function has the following parameters:

reg The processor state register to read.

This function returns:

The value of the processor state register.

void setps(unsigned reg, unsigned value)
Sets the value of a processor state register.

Corresponds with the SETPS instruction. An exception is raised if the argument is
not a legal processor state register.

This function has the following parameters:

reg The processor state register to write.

value The value to set the processor state register to.

int read_pswitch_reg(unsigned tileid, unsigned reg, unsigned &data)
Reads the value of a processor switch register.

The read is of the processor switch which is local to the specified tile id. On
success 1 is returned and the value of the register is assigned to data. If an error
acknowledgement is received or if the register number or tile identifier is too large
to fit in the read packet then 0 is returned.

REV 13.0.0

xTIMEcomposer User Guide 271/295

This function has the following parameters:

tileid The tile identifier.

reg The number of the register.

data The value read from the register.

This function returns:

Whether the read was successful.

int write_pswitch_reg(unsigned tileid, unsigned reg, unsigned data)
Writes a value to a processor switch register.

The write is of the processor switch which is local to the specified tile id. If a
successful acknowledgement is received then 1 is returned. If an error acknowl-
edgement is received or if the register number or tile identifier is too large to fit in
the write packet then 0 is returned.

This function has the following parameters:

tileid The tile identifier.

reg The number of the register.

data The value to write to the register.

This function returns:

Whether the write was successful.

int write_pswitch_reg_no_ack(unsigned tileid, unsigned reg, unsigned data)
Writes a value to a processor switch register without acknowledgement.

The write is of the processor switch which is local to the specified tile id. Unlike
write_pswitch_reg() this function does not wait until the write has been performed.
If the register number or tile identifier is too large to fit in the write packet 0 is
returned, otherwise 1 is returned. Because no acknowledgement is requested the
return value does not reflect whether the write succeeded.

This function has the following parameters:

tileid The tile identifier.

reg The number of the register.

data The value to write to the register.

This function returns:

Whether the parameters are valid.

REV 13.0.0

xTIMEcomposer User Guide 272/295

int read_sswitch_reg(unsigned tileid, unsigned reg, unsigned &data)
Reads the value of a system switch register.

The read is of the system switch which is local to the specified tile id. On success
1 is returned and the value of the register is assigned to data. If an error acknowl-
edgement is received or if the register number or tile identifier is too large to fit in
the read packet then 0 is returned.

This function has the following parameters:

tileid The tile identifier.

reg The number of the register.

data The value read from the register.

This function returns:

Whether the read was successful.

int write_sswitch_reg(unsigned tileid, unsigned reg, unsigned data)
Writes a value to a system switch register.

The write is of the system switch which is local to the specified tile id. If a successful
acknowledgement is received then 1 is returned. If an error acknowledgement is
received or if the register number or tile identifier is too large to fit in the write
packet then 0 is returned.

This function has the following parameters:

tileid The tile identifier.

reg The number of the register.

data The value to write to the register.

This function returns:

Whether the write was successful.

int write_sswitch_reg_no_ack(unsigned tileid, unsigned reg, unsigned data)
Writes a value to a system switch register without acknowledgement.

The write is of the system switch which is local to the specified tile id. Unlike
write_sswitch_reg() this function does not wait until the write has been performed.
If the register number or tile identifier is too large to fit in the write packet 0 is
returned, otherwise 1 is returned. Because no acknowledgement is requested the
return value does not reflect whether the write succeeded.

This function has the following parameters:

tileid The tile identifier.

REV 13.0.0

xTIMEcomposer User Guide 273/295

reg The number of the register.

data The value to write to the register.

This function returns:

Whether the parameters are valid.

int read_node_config_reg(tileref tile, unsigned reg, unsigned &data)
Reads the value of a node configuration register.

The read is of the node containing the specified tile. On success 1 is returned
and the value of the register is assigned to data. If an error acknowledgement is
received or if the register number is too large to fit in the read packet then 0 is
returned.

This function has the following parameters:

tile The tile.

reg The number of the register.

data The value read from the register.

This function returns:

Whether the read was successful.

int write_node_config_reg(tileref tile, unsigned reg, unsigned data)
Writes a value to a node configuration register.

The write is of the node containing the specified tile. If a successful acknowledge-
ment is received then 1 is returned. If an error acknowledgement is received or if
the register number is too large to fit in the write packet then 0 is returned.

This function has the following parameters:

tile The tile.

reg The number of the register.

data The value to write to the register.

This function returns:

Whether the write was successful.

int write_node_config_reg_no_ack(tileref tile, unsigned reg, unsigned data)
Writes a value to a node configuration register without acknowledgement.

The write is of the node containing the specified tile. Unlike write_node_config_reg()
this function does not wait until the write has been performed. If the register
number is too large to fit in the write packet 0 is returned, otherwise 1 is returned.

REV 13.0.0

xTIMEcomposer User Guide 274/295

Because no acknowledgement is requested the return value does not reflect whether
the write succeeded.

This function has the following parameters:

tile The tile.

reg The number of the register.

data The value to write to the register.

This function returns:

Whether the parameters are valid.

int read_periph_8(tileref tile,
unsigned peripheral,
unsigned base_address,
unsigned size,
unsigned char data[])

Reads size bytes from the specified peripheral starting at the specified base
address.

The peripheral must be a peripheral with a 8-bit interface. On success 1 is returned
and data is filled with the values that were read. Returns 0 on failure.

This function has the following parameters:

tile The tile.

peripheral The peripheral number.

base_address
The base address.

size The number of 8-bit values to read.

data The values read from the peripheral.

This function returns:

Whether the read was successful.

int write_periph_8(tileref tile,
unsigned peripheral,
unsigned base_address,
unsigned size,
const unsigned char data[])

REV 13.0.0

xTIMEcomposer User Guide 275/295

Writes size bytes to the specified peripheral starting at the specified base address.

The peripheral must be a peripheral with a 8-bit interface. On success 1 is returned.
Returns 0 on failure.

This function has the following parameters:

tile The tile.

peripheral The peripheral number.

base_address
The base address.

size The number of 8-bit values to write.

data The values to write to the peripheral.

This function returns:

Whether the write was successful.

int write_periph_8_no_ack(tileref tile,
unsigned peripheral,
unsigned base_address,
unsigned size,
const unsigned char data[])

Writes size bytes to the specified peripheral starting at the specified base address
without acknowledgement.

The peripheral must be a peripheral with a 8-bit interface. Unlike write_periph_8()
this function does not wait until the write has been performed. Because no
acknowledgement is requested the return value does not reflect whether the write
succeeded.

This function has the following parameters:

tile The tile.

peripheral The peripheral number.

base_address
The base address.

size The number of 8-bit values to write.

data The values to write to the peripheral.

This function returns:

REV 13.0.0

xTIMEcomposer User Guide 276/295

Whether the parameters are valid.

int read_periph_32(tileref tile,
unsigned peripheral,
unsigned base_address,
unsigned size,
unsigned data[])

Reads size 32-bit words from the specified peripheral starting at the specified
base address.

On success 1 is returned and data is filled with the values that were read. Returns
0 on failure. When reading a peripheral with an 8-bit interface the most significant
byte of each word returned is the byte at the lowest address (big endian byte
ordering).

This function has the following parameters:

tile The tile.

peripheral The peripheral number.

base_address
The base address.

size The number of 32-bit words to read.

data The values read from the peripheral.

This function returns:

Whether the read was successful.

int write_periph_32(tileref tile,
unsigned peripheral,
unsigned base_address,
unsigned size,
const unsigned data[])

Writes size 32-bit words to the specified peripheral starting at the specified base
address.

On success 1 is returned. Returns 0 on failure. When writing to a peripheral with
an 8-bit interface the most significant byte of each word passed to the function is
written to the byte at the lowest address (big endian byte ordering).

This function has the following parameters:

REV 13.0.0

xTIMEcomposer User Guide 277/295

tile The tile.

peripheral The peripheral number.

base_address
The base address.

size The number of 32-bit words to write.

data The values to write to the peripheral.

This function returns:

Whether the write was successful.

int write_periph_32_no_ack(tileref tile,
unsigned peripheral,
unsigned base_address,
unsigned size,
const unsigned data[])

Writes size 32-bit words to the specified peripheral starting at the specified base
address without acknowledgement.

Unlike write_periph_32() this function does not wait until the write has been
performed. Because no acknowledgement is requested the return value does not
reflect whether the write succeeded. When writing to a peripheral with an 8-bit
interface the most significant byte of each word passed to the function is written
to the byte at the lowest address (big endian byte ordering).

This function has the following parameters:

tile The tile.

peripheral The peripheral number.

base_address
The base address.

size The number of 32-bit words to write.

data The values to write to the peripheral.

This function returns:

Whether the parameters are valid.

unsigned get_local_tile_id(void)
Returns the identifier of the tile on which the caller is running.

The identifier uniquely identifies a tile on the network.

REV 13.0.0

xTIMEcomposer User Guide 278/295

This function returns:

The tile identifier.

unsigned get_tile_id(tileref t)
unsigned get_logical_core_id(void)

Returns the identifier of the logical core on which the caller is running.

The identifier uniquely identifies a logical core on the current tile.

This function returns:

The logical core identifier.

43.7 Channel Functions

void start_streaming_master(chanend c)
Start streaming communication on the channel.

A call to this function must be matched with a call to start_streaming_slave() on the
other end of the channel. A path between the two channel ends is opened which
can be used to perform unsynchronized communication using the streaming input
and output functions. This path is held open until it is closed using the function
stop_streaming_master(). Note that if the number of channels held open between
two points on the network is equal to the number of possible paths these two
points then no other channel communication can take place between these two
points, which may cause the program deadlock.

This function has the following parameters:

c The channel end to start streaming on

void stop_streaming_master(chanend c)
Stop streaming communication on the channel.

A call to this function must be matched with a call to a stop_streaming_slave()
on the other end of the channel. The the path previously opened using
start_streaming_master() is closed down, making it available for other channel
communications.

This function has the following parameters:

c The channel end to stop streaming on

void start_streaming_slave(chanend c)
Start streaming communication on the channel.

A call to this function must be matched with a call to start_streaming_master() on
the other end of the channel. A path between the two channel ends is opened
which can be used to perform unsynchronized communication using the stream-
ing input and output functions. This path is held open until it is closed using
the function stop_streaming_slave(). Note that if the number of channels held

REV 13.0.0

xTIMEcomposer User Guide 279/295

open between two points on the network is equal to the number of possible
paths these two points then no other channel communication can take place be-
tween these two points, which may cause the program deadlock. The function
start_streaming_slave() may be called in a case of a select, in which case it becomes
ready when start_streaming_master() is called on the other end of the channel.

This function has the following parameters:

c The channel end to start streaming on

void stop_streaming_slave(chanend c)
Stop streaming communication on the channel.

A call to this function must be matched with a call to stop_streaming_master()
on the other end of the channel. The the path previously opened using
start_streaming_slave() is closed down, making it available for other channel
communications.

This function has the following parameters:

c The channel end to stop streaming on

void outuchar(chanend c, unsigned char val)
Streams out a value as an unsigned char on a channel end.

The protocol used is incompatible with the protocol used by the input (:>) and
output (<:) operators.

This function has the following parameters:

c The channel end to stream data out on.

val The value to output.

void outuint(chanend c, unsigned val)
Streams out a value as an unsigned int on a channel end.

The protocol used is incompatible with the protocol used by the input (:>) and
output (<:) operators.

This function has the following parameters:

c The channel end to stream data out on.

val The value to output.

unsigned char inuchar(chanend c)
Streams in a unsigned char from a channel end.

If the next token in the channel is a control token then an exception is raised. The
protocol used is incompatible with the protocol used by the input (:>) and output
(<:) operators.

REV 13.0.0

xTIMEcomposer User Guide 280/295

This function has the following parameters:

c The channel end to stream data in on.

This function returns:

The value received.

unsigned inuint(chanend c)
Streams in a unsigned int from a channel end.

If the next word of data channel in the channel contains a control token then an
exception is raised. The protocol used is incompatible with the protocol used by
the input (:>) and output (<:) operators.

This function has the following parameters:

c The channel end to stream data in on.

This function returns:

The value received.

void inuchar_byref(chanend c, unsigned char &val)
Streams in a unsigned char from a channel end.

The inputted value is written to val. If the next token in channel is a control token
then an exception is raised. The protocol used is incompatible with the protocol
used by the input (:>) and output (<:) operators.

This function has the following parameters:

c The channel end to stream data in on.

val The variable to set to the received value.

void inuint_byref(chanend c, unsigned &val)
Streams in a unsigned int from a channel end.

The inputted value is written to val. This function may be called in a case of
a select, in which case it becomes ready as soon as there data available on the
channel. The protocol used is incompatible with the protocol used by the input (:>)
and output (<:) operators.

This function has the following parameters:

c The channel end to stream data in on.

val The variable to set to the received value.

void outct(chanend c, unsigned char val)
Streams out a control token on a channel end.

REV 13.0.0

xTIMEcomposer User Guide 281/295

Attempting to output a hardware control token causes an exception to be raised.

This function has the following parameters:

c The channel end to stream data out on.

val The value of the control token to output.

void chkct(chanend c, unsigned char val)
Checks for a control token of a given value.

If the next byte in the channel is a control token which matches the expected value
then it is input and discarded, otherwise an exception is raised.

This function has the following parameters:

c The channel end.

val The expected control token value.

unsigned char inct(chanend c)
Streams in a control token on a channel end.

If the next byte in the channel is not a control token then an exception is raised,
otherwise the value of the control token is returned.

This function has the following parameters:

c The channel end to stream data in on.

This function returns:

The received control token.

void inct_byref(chanend c, unsigned char &val)
Streams in a control token on a channel end.

The inputted value is written to val. If the next byte in the channel is not a control
token then an exception is raised.

This function has the following parameters:

c The channel end to stream data in on.

val The variable to set to the received value.

int testct(chanend c)
Tests whether the next byte on a channel end is a control token.

The token is not discarded from the channel and is still available for input.

This function has the following parameters:

REV 13.0.0

xTIMEcomposer User Guide 282/295

c The channel end to perform the test on.

This function returns:

1 if the next byte is a control token, 0 otherwise.

int testwct(chanend c)
Tests whether the next word on a channel end contains a control token.

If the word does contain a control token the position in the word is returned. No
data is discarded from the channel.

This function has the following parameters:

c The channel end to perform the test on.

This function returns:

The position of the first control token in the word (1-4) or 0 if the word contains
no control tokens.

void soutct(streaming chanend c, unsigned char val)
Outputs a control token on a streaming channel end.

Attempting to output a hardware control token causes an exception to be raised.
Attempting to output a CT_END or CT_PAUSE control token is invalid.

This function has the following parameters:

c The channel end to stream data out on.

val The value of the control token to output.

void schkct(streaming chanend c, unsigned char val)
Checks for a control token of a given value on a streaming channel end.

If the next byte in the channel is a control token which matches the expected value
then it is input and discarded, otherwise an exception is raised.

This function has the following parameters:

c The streaming channel end.

val The expected control token value.

unsigned char sinct(streaming chanend c)
Inputs a control token on a streaming channel end.

If the next byte in the channel is not a control token then an exception is raised,
otherwise the value of the control token is returned.

This function has the following parameters:

c The streaming channel end to stream data in on.

REV 13.0.0

xTIMEcomposer User Guide 283/295

This function returns:

The received control token.

void sinct_byref(streaming chanend c, unsigned char &val)
Inputs a control token on a streaming channel end.

The inputted value is written to val. If the next byte in the channel is not a control
token then an exception is raised.

This function has the following parameters:

c The streaming channel end to stream data in on.

val The variable to set to the received value.

int stestct(streaming chanend c)
Tests whether the next byte on a streaming channel end is a control token.

The token is not discarded from the channel and is still available for input.

This function has the following parameters:

c The channel end to perform the test on.

This function returns:

1 if the next byte is a control token, 0 otherwise.

int stestwct(streaming chanend c)
Tests whether the next word on a streaming channel end contains a control token.

If the word does contain a control token the position in the word is returned. No
data is discarded from the channel.

This function has the following parameters:

c The streaming channel end to perform the test on.

This function returns:

The position of the first control token in the word (1-4) or 0 if the word contains
no control tokens.

transaction out_char_array(chanend c, const char src[], unsigned size)
Output a block of data over a channel.

A total of size bytes of data are output on the channel end. The call to
out_char_array() must be matched with a call to in_char_array() on the other end of
the channel. The number of bytes output must match the number of bytes input.

This function has the following parameters:

REV 13.0.0

xTIMEcomposer User Guide 284/295

c The channel end to output on.

src The array of values to send.

size The number of bytes to output.

transaction in_char_array(chanend c, char src[], unsigned size)
Input a block of data from a channel.

A total of size bytes of data are input on the channel end and stored in an array.
The call to in_char_array() must be matched with a call to out_char_array() on the
other end of the channel. The number of bytes input must match the number of
bytes output.

This function has the following parameters:

c The channel end to input on.

src The array to store the values input from on the channel.

size The number of bytes to input.

43.8 Predicate Functions

void pinseq(unsigned val)
Wait until the value on the port’s pins equals the specified value.

This function must be called as the expression of an input on a port. It causes
the input to become ready when the value on the port’s pins is equal to the least
significant port-width bits of val.

This function has the following parameters:

val The value to compare against.

void pinsneq(unsigned val)
Wait until the value on the port’s pins does not equal the specified value.

This function must be called as the expression of an input on a port. It causes the
input to become ready when the value on the port’s pins is not equal to the least
significant port-width bits of val.

This function has the following parameters:

val The value to compare against.

void pinseq_at(unsigned val, unsigned time)
Wait until the value on the port’s pins equals the specified value and the port
counter equals the specified time.

This function must be called as the expression of an input on a unbuffered port. It
causes the input to become ready when the value on the port’s pins is equal to the
least significant port-width bits of val and the port counter equals time.

REV 13.0.0

xTIMEcomposer User Guide 285/295

This function has the following parameters:

val The value to compare against.

time The time at which to make the comparison.

void pinsneq_at(unsigned val, unsigned time)
Wait until the value on the port’s pins does not equal the specified value and the
port counter equals the specified time.

This function must be called as the expression of an input on a unbuffered port. It
causes the input to become ready when the value on the port’s pins is not equal to
the least significant port-width bits of val and the port counter equals time.

This function has the following parameters:

val The value to compare against.

time The time at which to make the comparison.

void timerafter(unsigned val)
Wait until the time of the timer equals the specified value.

This function must be called as the expression of an input on a timer. It causes
the input to become ready when timer’s counter is interpreted as coming after the
specified value timer is after the given value. A time A is considered to be after a
time B if the expression is true.

This function has the following parameters:

val The time to compare against.

43.9 XS1-S Functions

These functions to control the analogue-to-digital converter (ADC) on XS1-S devices.

void enable_xs1_su_adc_input(unsigned number, chanend c)
Enables the ADC input specified by number.

Samples are sent to chanend c.

This function has the following parameters:

number The ADC input number.

c The channel connected to the XS1-SU ADC.

void enable_xs1_su_adc_input_streaming(unsigned number,
streaming chanend c)

REV 13.0.0

xTIMEcomposer User Guide 286/295

Enables the ADC input specified by number.

Samples are sent to chanend c.

This function has the following parameters:

number The ADC input number.

c The channel connected to the XS1-SU ADC.

void disable_xs1_su_adc_input(unsigned number, chanend c)
Disables the ADC input specified by number.

This function has the following parameters:

number The ADC input number.

c The channel connected to the XS1-SU ADC.

void disable_xs1_su_adc_input_streaming(unsigned number,
streaming chanend c)

Disables the ADC input specified by number.

This function has the following parameters:

number The ADC input number.

c The channel connected to the XS1-SU ADC.

43.10 Miscellaneous Functions

void crc32(unsigned &checksum, unsigned data, unsigned poly)
Incorporate a word into a Cyclic Redundancy Checksum.

The calculation performed is

for (int i = 0; i < 32; i++) {
int xorBit = (crc & 1);

checksum = (checksum >> 1) | ((data & 1) << 31);
data = data >> 1;

if (xorBit)
checksum = checksum ^ poly;

}

This function has the following parameters:

checksum The initial value of the checksum, which is updated with the new
checksum.

REV 13.0.0

xTIMEcomposer User Guide 287/295

data The data to compute the CRC over.

poly The polynomial to use when computing the CRC.

unsigned crc8shr(unsigned &checksum, unsigned data, unsigned poly)
Incorporate 8-bits of a word into a Cyclic Redundancy Checksum.

The CRC is computed over the 8 least significant bits of the data and the data
shifted right by 8 is returned. The calculation performed is

for (int i = 0; i < 8; i++) {
int xorBit = (crc & 1);

checksum = (checksum >> 1) | ((data & 1) << 31);
data = data >> 1;

if (xorBit)
checksum = checksum ^ poly;

}

This function has the following parameters:

checksum The initial value of the checksum which is updated with the new
checksum.

data The data.

poly The polynomial to use when computing the CRC.

This function returns:

The data shifted right by 8.

{unsigned, unsigned} l lmul(unsigned a, unsigned b, unsigned c, unsigned d)
Multiplies two words to produce a double-word and adds two single words.

The high word and the low word of the result are returned. The multiplication is
unsigned and cannot overflow. The calculation performed is

(uint64_t)a * (uint64_t)b + (uint64_t)c + (uint64_t)d

This function returns:

The high and low halves of the calculation respectively.

{unsigned, unsigned} m mac(unsigned a, unsigned b, unsigned c, unsigned d)
Multiplies two unsigned words to produce a double-word and adds a double word.

The high word and the low word of the result are returned. The calculation
performed is:

REV 13.0.0

xTIMEcomposer User Guide 288/295

(uint64_t)a * (uint64_t)b + (uint64_t)c<<32 + (uint64_t)d

This function returns:

The high and low halves of the calculation respectively.

{signed, unsigned} m macs(signed a, signed b, signed c, unsigned d)
Multiplies two signed words and adds the double word result to a double word.

The high word and the low word of the result are returned. The calculation
performed is:

(int64_t)a * (int64_t)b + (int64_t)c<<32 + (int64_t)d

This function returns:

The high and low halves of the calculation respectively.

signed sext(unsigned a, unsigned b)
Sign extends an input.

The first argument is the value to sign extend. The second argument contains the
bit position. All bits at a position higher or equal are set to the value of the bit one
position lower. In effect, the lower b bits are interpreted as a signed integer. If b is
less than 1 or greater than 32 then result is identical to argument a.

This function returns:

The sign extended value.

unsigned zext(unsigned a, unsigned b)
Zero extends an input.

The first argument is the value to zero extend. The second argument contains the
bit position. All bits at a position higher or equal are set to the zero. In effect, the
lower b bits are interpreted as an unsigned integer. If b is less than 1 or greater
than 32 then result is identical to argument a.

This function returns:

The zero extended value.

REV 13.0.0

44xCORE 32-Bit Application Binary Interface

Information on the XS1 32-ABI, the XE file format and System Call Interface is
available in the Tools Development Guide9.

9http://www.xmos.com/docnum/X9114

REV 13.0.0

http://www.xmos.com/docnum/X9114

Part O

Platform Configuration

CONTENTS

· Describe a target platform

· XN Specification

REV 13.0.0

45Describe a target platform

IN THIS CHAPTER

· Supported network topologies

· A board with two packages

Hardware platforms are described using XN. An XN file provides information to
the XMOS compiler toolchain about the target hardware, including XMOS devices,
ports, flash memories and oscillators.

The XMOS tools use the XN data to generate a platform-specific header file
<platform.h>, and to compile, boot and debug multi-node programs.

45.1 Supported network topologies

To route messages across the xCONNECT Link network, the routing ID and routing
table of each node on the network must configured. The tools use the information
in the XN file to setup the routing for the network before running the application.

If the routing configuration is explicitly specified in the XN file, the tools use this
configuration. If the routing configuration is omitted from the XN file the tools
choose a suitable set routing IDs and routing tables based on the network topology.
The tools can automatically compute routing configurations for the the following
network topologies.

Network Topology Supported Configurations

Line Not supported on XS1-G devices

Hypercube Degree-2 (pair of nodes)

Degree-3 (ring of 4 nodes)

Degree-3 (cube of 8 nodes)

Degree-4 (canonical cube of 16 nodes)

Hypercube with lines attached Not supported on XS1-G devices

Figure 81:

Topologies
that can be

automatically
routed

45.2 A board with two packages

Figure 82 illustrates a board containing two XMOS L8-64 devices arranged in a line.
A suitable XN description is described below.

An XN file starts with an XML declaration.

<?xml version="1.0" encoding="UTF -8"?>

REV 13.0.0

xTIMEcomposer User Guide 292/295

20MHz
OSC

JTAG

LinksX0LD X0LB
XS1_PORT_1K

PORT_LED

LEDS

BUTTON

0 1

SPI
SPI_MISO

SPI_SS
SPI_CLK

SPI_MOSI
Master
tile[0]

Slave
tile[1]

Figure 82:

Example
hardware
platform

The following code provides the start of the network.

<Network xmlns="http :// www.xmos.com"
xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance"
xsi:schemaLocation="http :// www.xmos.com http ://www.xmos.com">

REV 13.0.0

xTIMEcomposer User Guide 293/295

The following code declares two xCORE Tiles. The declaration “tileref tile[2];”
is exported to the header file <platform.h>.

<Declarations >
<Declaration >tileref tile [2]</ Declaration >

</Declarations >

The following code declares a package named P1, which contains a single node
named Master.

<Packages >
<Package Id="P1" Type="XS1 -LnA -64-TQ128">

<Nodes >
<Node Id="Master" Type="XS1 -L8A -64" InPackageId="0"

Oscillator="20MHz" SystemFrequency="400MHz">
<Boot >

<Source Location="SPI:bootFlash"/>
<Bootee NodeId="Slave" Tile="0"/>

</Boot >
<Tile Number="0" Reference="tile [0]">

<Port Location="XS1_PORT_1A" Name="PORT_SPI_MISO"/>
<Port Location="XS1_PORT_1B" Name="PORT_SPI_SS"/>
<Port Location="XS1_PORT_1C" Name="PORT_SPI_CLK"/>
<Port Location="XS1_PORT_1D" Name="PORT_SPI_MOSI"/>
<Port Location="XS1_PORT_4A" Name="PORT_LED"/>

</Tile >
</Node >

</Nodes >
</Package >

The node Master is a 400MHz XS1-L8A-64 device in a TQ128 package, clocked by
a 20MHz oscillator. It is booted from an SPI device named “bootFlash” which has
the class “SPIFlash”.

The declaration of tile “0” is associated with tile[0] and the ports 1A, 1B, 1C, 1D
and 4A are given symbolic names. These declarations are exported to the header
file <platform.h>.

The following code declares a package named P2, which contains a single node
named Slave.

REV 13.0.0

xTIMEcomposer User Guide 294/295

<Package Id="P2" Type="XS1 -LnA -64-TQ128">
<Nodes >

<Node Id="Slave" Type="XS1 -L8A -64" InPackageId="0"
Oscillator="20Mhz" SystemFrequency="400MHz">

<Boot >
<Source Location="LINK"/>

</Boot >
<Tile Number="0" Reference="tile [1]">

<Port Location="XS1_PORT_1K" Name="PORT_BUTTON"/>
</Tile >

</Node >
</Nodes >

</Package >
</Packages >

The node Slave is a 400MHz XS1-L8A-64 device in a TQ128 package, clocked by a
20MHz oscillator. It is booted from node Master over an xCONNECT Link.

The following code defines a 2-wire xCONNECT Link with, which connects the node
Master on link X0LD to the node Slave on link X0LB.

<Links >
<Link Encoding="2wire" Delays="4,4">

<LinkEndpoint NodeId="Master" Link="X0LD"/>
<LinkEndpoint NodeId="Slave" Link="X0LB"/>

</Link >
</Links >

The links have intra-symbol and inter-symbol delays of 4 clock periods.

The following code specifies a list of components on the board that are connected
to XMOS devices.

<ExternalDevices >
<Device NodeId="Master" Tile="0" Name="bootFlash"

Class="SPIFlash" Type="AT25FS010">
<Attribute Name="PORT_SPI_MISO" Value="PORT_SPI_MISO"/>
<Attribute Name="PORT_SPI_SS" Value="PORT_SPI_SS"/>
<Attribute Name="PORT_SPI_CLK" Value="PORT_SPI_CLK"/>
<Attribute Name="PORT_SPI_MOSI" Value="PORT_SPI_MOSI"/>

</Device >
</ExternalDevices >

A device named bootFlash is connected to xCORE Tile 0 on Node Master, and is
given attributes that associate the four SPI pins on the device with ports. (The class
SPIFlash is recognized by XFLASH.)

The following code describes the JTAG scan chain.

REV 13.0.0

xTIMEcomposer User Guide 295/295

<JTAGChain >
<JTAGDevice NodeId="Master" Position="0"/>
<JTAGDevice NodeId="Slave" Position="1"/>

</JTAGChain >

</Network >

REV 13.0.0

46XN Specification

IN THIS CHAPTER

· Network Elements

· Declaration

· Package

· Node

· Link

· Device

· JTAGDevice

46.1 Network Elements

xTIMEcomposer supports a single XN file that contains a single network definition.
The network definition is specified as follows:

<?xml version="1.0" encoding="UTF -8"?>
<Network xmlns="http :// www.xmos.com"

xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance"
xsi:schemaLocation="http :// www.xmos.com http ://www.xmos.com">

The XN hierarchy of elements is given in Figure 83

46.2 Declaration

A Declaration element provides a symbolic name for one or more xCORE Tiles. A
single name or an array of names is supported with the form:

tileref identifier

tileref identifier [constant-expression]

An equivalent declaration is exported to the header file <platform.h> for use in
XC programs. A tileref declaration is associated with physical xCORE tiles by the
reference attribute of a Tile element (see §46.4.1).

Example

<Declaration >tileref master </ Declaration >
<Declaration >tileref tile [8]</ Declaration >

REV 13.0.0

xTIMEcomposer User Guide 297/295

Node Number Description Section

Network 1 An xCORE network

Declarations 0+

Declaration 1+ xCORE Tile declaration §??

Packages 1+

Package 1+ Device package §??

Nodes 1

Node 1+ Node declaration §??

Tile 1+ An xCORE Tile §??

Port 0+ An xCORE symbolic port name §??

Boot 0 or 1 Boot method §??

Source 1 Binary location §??

Bootee 0+ Nodes booted §??

RoutingTable 0 or 1

Bits 1

Bit 1+ Direction for bit §??

Links 1

Link 1+ Direction for link §??

Service 0+ Service declaration §??

Chanend 1+ Chanend parameter §??

Links 0 or 1

Link 1+ xCONNECT Link declaration §??

LinkEndpoint 2 xCONNECT Link endpoint §??

ExternalDevices 0 or 1

Device 1+ External device §??

Attribute 0+ A device attribute §??

JTAGChain 0 or 1

JTAGDevice 1+ A device in the JTAG chain §??

Figure 83:

XN hierarchy
of elements

46.3 Package

A Package element refers to a package file that describes the mapping from xCORE
ports and links to the pins on the package.

Attribute Required Type Description

Id Yes String A name for the package. All package names in the
network must be unique.

Type Yes String The name of the XML package. The tools search for
the file type.pkg in the path specified by
XCC_DEVICE_PATH.

Figure 84:

XN Package
element

REV 13.0.0

xTIMEcomposer User Guide 298/295

Example

<Package id="L2" Type="XS1 -L2A -QF124">

The package named L2 is described in the file XS1-L2A-QF124.xml.

46.4 Node

A Node element defines a set of xCORE Tiles in a network, all of which are connected
to a single switch. XMOS devices such as the G4 or L1 are both examples of nodes.

Attribute Required Type Description

Id No String A name for the node. All node names
in the network must be unique.

Type Yes String If type is periph:XS1-SU the node is a
XS1-SU peripheral node. Otherwise the
type specifies the name of an XML file
that describes the node. The tools
search for the file config_type.xml in
the path specified by
XCC_DEVICE_PATH.

Reference Yes String Associates the node with a xCORE Tile
indentifer specified in a Declaration.
This attribute is only valid on nodes
with type periph:XS1-SU.

RoutingId No Integer The routing identifier on the
xCONNECT Link network.

InPackageId Yes String Maps the node to an element in the
package file.

Oscillator No String The PLL oscillator input frequency,
specified as a number followed by
either MHz, KHz or Hz.

OscillatorSrc No String The name of the node which supplies
the PLL oscillator input.

SystemFrequency No String The system frequency, specified as a
number followed by either MHz, KHz or
Hz. Defaults to 400MHz if unset.

PllFeedbackDivMin No Integer The minimum allowable PLL feedback
divider. Defaults to 1 if unset.

ReferenceFrequency No String A reference clock frequency, specified
as a number followed by either MHz,
KHz or Hz. Defaults to 100MHz if unset.

PllDividerStageOneReg No Integer The PLL divider stage 1 register value.

PllMultiplierStageReg No Integer The PLL multiplier stage register value.

PllDividerStageTwoReg No Integer The PLL divider stage 2 register value.

RefDiv No Integer SystemFrequency / RefDiv =
ReferenceFrequency

Figure 85:

XN Node
element

REV 13.0.0

xTIMEcomposer User Guide 299/295

The PLL registers can be configured automatically using the attributes System-
Frequency, PllFeedbackDivMin and ReferenceFrequency, or can be configured
manually using the attributes PllDividerStageOneReg, PllMultiplierStageReg,
PllDividerStageTwoReg and RefDiv. If any of the first three attributes are provided,
none of the last four attributes may be provided, and vice versa.

The PLL oscillator input frequency may be specifed using the Oscillator or
OscillatorSrc attribute. If the Oscillator attribute is provided the OscillatorSrc
attribute must not be provided, and vice versa.

If manual configuration is used, the attributes PllDividerStageOneReg,
PllMultiplierStageReg, PllDividerStageTwoReg and RefDiv must be provided
and the PLL oscillator input frequency must be specifed. The tools use these
values to set the PLL registers and reference clock divider. Information on the PLL
dividers can be found in xCORE frequency control documents for XS1-G processors
(see X3221) and XS1-L processors (see X1433).

If the oscillator frequency is specifed and none of the manual PLL attributes are
provided, automatic configuration is used. The tools attempt to program the
PLL registers such that the target system frequency is achieved, the PLL feedback
divider is greater than or equal to the minimum value and the target reference
clock frequency is achieved. If any of these constraints cannot be met, the tools
issue a warning and report the actual values used.

If the oscillator frequency is not specified, the tools do not attempt to configure
the PLL. The PLL registers remain at their initial values as determined by the mode
pins.

A network may contain either XS1-L devices or XS1-G devices, but not both.

Example

<Node Id="MyL1" Type="XS1 -L1A" Oscillator="20Mhz"
SystemFrequency="410MHz" ReferenceFrequency="98.5 Mhz">

The node named MyL1 is an L1 device, as described in the file config_XS1-L1A.xml.

46.4.1 Tile

A Tile element describes the properties of a single xCORE Tile.

Attribute Required Type Description

Number Yes Integer A unique number for the tile in the node. Must be a
value between 0 and n-1 where n is the number of
tils as defined in the node’s XML file.

Reference No String Associates the tile with an identifier with the form
tile[n] in a Declaration. A tile may be associated
with at most one identifier.

Figure 86:

XN Tileref
element

Example

REV 13.0.0

http://www.xmos.com/docnum/X3221
http://www.xmos.com/docnum/X1433

xTIMEcomposer User Guide 300/295

<Tile Number="0" Reference="tile [0]">

46.4.2 Port

A Port element provides a symbolic name for a port.

Attribute Required Type Description

Location Yes String A port identifier defined in the standard header file
<xs1.h>. The ports are described in the XC manual
(see X1009).

Name Yes String A valid C preprocessor identifier. All port names
declared in the network must be unique.

Figure 87:

XN Port
element

Example

<Port Location="XS1_PORT_1I" Name="PORT_UART_TX"/>
<Port Location="XS1_PORT_1J" Name="PORT_UART_RX"/>

46.4.3 Boot

A Boot element defines the how the node is booted. It contains one Source element
(see §46.4.4) and zero or more Bootee elements (see §46.4.5) that are booted over
xCONNECT Links. If the source specifies an xCONNECT Link, no Bootee elements
may be specified. In a line of XS1-L devices, bootees must be contiguous to the
device booting from SPI.

The XMOS tools require a Boot element to be able to boot programs from flash
memory (see §25.1).

46.4.4 Source

A Source element specifies the location from which the node boots. It has the
following attributes.

Attribute Required Type Description

Location Yes String Has the form SPI: or LINK. The device-name must be
declared in the set of Device elements.

Figure 88:

XN Source
element

Only XMOS XS1-L devices can be configured to boot over xCONNECT Links.

Example

<Source Location="SPI:bootFlash"/>

REV 13.0.0

http://www.xmos.com/docnum/X1009

xTIMEcomposer User Guide 301/295

46.4.5 Bootee

A Bootee element specifies another node in the system that this node boots via
an xCONNECT Link. If more than one xCONNECT Link is configured between this
node and one of its bootees (see §46.5 and §46.5.1), the tools pick one to use for
booting.

Attribute Required Type Description

NodeId Yes String A valid identifier for another node.

Figure 89:

XN Bootee
element

Example

<Bootee NodeId="Slave">

46.4.6 Bit

A Bit element specifies the direction for messages whose first mismatching bit
matches the specified bit number.

Attribute Required Type Description

number Yes Integer The bit number, numbered from the least significant
bit.

direction Yes Integer The direction to route messages.

Figure 90:

XN Bit
element

Example

<Bit number="1" direction="0"/>

46.4.7 Link

When it appears within a RoutingTable element, a Link element specifies the
direction of an xCONNECT Link.

Attribute Required Type Description

name Yes String A link identifier in the form XnLm where n denotes a
tile number and m the link letter. See the
corresponding package datasheet for available link
pinouts.

direction Yes Integer The direction of the link.

Figure 91:

XN Link
element

Example

<Link number="XLA" direction="2"/>

REV 13.0.0

xTIMEcomposer User Guide 302/295

46.4.8 Service

A Service element specifies an XC service function provided by a node.

Attribute Required Type Description

Proto Yes String The prototype for the service function, excluding the
service keyword. This prototype is exported to the
header file <platform.h> for use in XC programs.

Figure 92:

XN Service
element

Example

<Service Proto="service_function(chanend c1, chanend c2)">

46.4.9 Chanend

A Chanend element describes a channel end parameter to an XC service function.

Attribute Required Type Description

Indentifier Yes String The identifier for the chanend argument in the
service function prototype.

end Yes Integer The number of the channel end on the current
node.

remote Yes Integer The number of the remote channel end that is
connected to the channel end on the current node.

Figure 93:

XN Service
element

Example

<Chanend Identifier="c" end="23" remote="5"/>

REV 13.0.0

xTIMEcomposer User Guide 303/295

46.5 Link

xCONNECT Links are described in the system specification documents (XS1-G:
X7507, XS1-L: X1151) and link performance documents (XS1-G: X7561, XS1-L:
X2999).

A Link element describes the characteristics of an xCONNECT Link. It must contain
exactly two LinkEndpoint children (see §46.5.1).

Attribute Required Type Description

Encoding Yes String Must be either 2wire or 5wire.

Delays Yes String Of the form x,y where x specifies the inter delay
value for the endpoint, and y specifies the intra delay
value for the endpoint. If a value for y is omitted, x,1
is used. If both values are omitted, 1,1 is used.

Flags No String Specifies additional properties of the link. Use the
value XSCOPE to specify a link used to send XScope
trace information.

Figure 94:

XN Link
element

Example

<Link Encoding="2wire" Delays="4,4">

46.5.1 LinkEndpoint

A LinkEndpoint describes one end of an xCONNECT Link, the details of which can
be found in the system specification documents (XS1-G: X7507, XS1-L: X1151).
Each endpoint associates a node identifier to a physical xCONNECT Link.

Attribute Required Type Description

NodeID No String A valid node identifier.

Link No String A link identifier in the form XnLm where n denotes a
tile number and m the link letter. See the
corresponding package datasheet for available link
pinouts.

RoutingId No Integer The routing identifier on the xCONNECT Link
network.

Chanend No Integer A channel end.

Figure 95:

XN
LinkEndpoint

element

An endpoint is usually described as a combination of a node identifier and link
identifier. For a streaming debug link, one of the endpoints must be described as
a combination of a routing identifier and a channel end.

Example

<LinkEndpoint NodeId="0" Link="X0LD"/>
<LinkEndpoint RoutingId="0x8000" Chanend="1">

REV 13.0.0

http://www.xmos.com/docnum/X7507
http://www.xmos.com/docnum/X1151
http://www.xmos.com/docnum/X7561
http://www.xmos.com/docnum/X2999
http://www.xmos.com/docnum/X7507
http://www.xmos.com/docnum/X1151

xTIMEcomposer User Guide 304/295

46.6 Device

A Device element describes a device attached to an xCORE Tile that is not connected
directly to an xCONNECT Link.

Attribute Required Type Description

Name Yes String An identifier that names the device.

NodeId Yes String The identifier for the node that the device is
connected to.

Tile Yes Integer The tile in the node that the device is connected to.

Class Yes String The class of the device.

Type No String The type of the device (class dependent).

Figure 96:

XN Device
element

xTIMEcomposer recognizes the Class SPIFlash and use the Type attribute to identify
the model of the flash device.

46.6.1 Attribute

An Attribute element describes one aspect of a Device (see §46.6).

Attribute Required Type Description

Name Yes String Specifies an attribute of the device.

Value Yes String Specifies a value associated with the attribute.

Figure 97:

XN Attribute
element

xTIMEcomposer supports the following attribute names for the device class
SPIFlash:

PORT_SPI_MISO
SPI Master In Slave Out signal.

PORT_SPI_SS
SPI Slave Select signal.

PORT_SPI_CLK
SPI Clock signal.

PORT_SPI_MOSI
SPI Master Out Slave In signal.

Example

<Attribute Name="PORT_SPI_MISO" Value="PORT_SPI_MISO"/>

REV 13.0.0

xTIMEcomposer User Guide 305/295

46.7 JTAGDevice

xTIMEcomposer loads and debugs programs on target hardware using JTAG. The
JTAGChain element describes a device in the JTAG chain. The order of these
elements defines their order in the JTAG chain.

Attribute Required Type Description

NodeID Yes String A valid node identifier.

Figure 98:

XN
JTAGDevice

element

Example

<!-- N1 comes before N2 in the JTAG chain -->
<JTAGDevice NodeId="N1">
<JTAGDevice NodeId="N2">

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS and the XMOS logo are registered trademarks of Xmos Ltd. in the United Kingdom and other countries,
and may not be used without written permission. All other trademarks are property of their respective owners.
Where those designations appear in this book, and XMOS was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

REV 13.0.0

	Installation
	System requirements for running the xTIMEcomposer
	Installation Instructions
	Install the tools
	Install the USB drivers

	Quick Start
	Get started with xTIMEcomposer
	Start xTIMEcomposer Studio
	Register xTIMEcomposer

	Start the command-line tools
	Welcome window
	Developer Column

	Frequently used commands
	XCC
	XRUN
	XGDB
	XSIM

	Developing in the XDE
	Sharing projects and code in xTIMEcomposer
	Import an xSOFTip component
	Import a HowTo example
	Import a Community project
	Import an xTIMEcomposer project
	Export an xTIMEcomposer project

	Developing applications using xSOFTip
	The xSOFTip Explorer Perspective
	Adding xSOFTip to your project

	System Information
	Identifying suitable xCORE devices

	Configuring xSOFTip components
	Generating a project from your application

	Compilation
	Use xTIMEcomposer Studio to build a project
	XCC Pragma Directives
	XCC command-line options
	Overall Options
	Warning Options
	Debugging Options
	Optimization Options
	Preprocessor Options
	Linker And Mapper Options
	Directory Options
	Environment Variables Affecting XCC
	Board Support Provided by <platform.h>

	Using XMOS Makefiles
	Projects, Applications and Modules
	Example Structure

	The Application Makefile
	The Project Makefile
	The module_build_info file

	Using XMOS Makefiles to create binary libraries
	The module_build_info file
	The module Makefile
	Using the module

	Timing
	Use xTIMEcomposer to time a program
	Launch the timing analyzer
	Time a section of code
	Visualize a route
	The Visualizations view

	Specify timing requirements
	Add program execution information
	Refine the worst-case analysis

	Validate timing requirements during compilation

	Use the XTA from the command line
	Frequently used commands
	Loading a binary
	Routes
	Endpoints
	Adding endpoints to source
	Timing between endpoints
	Timing functions
	Timing loops
	Setting timing requirements

	Viewing results
	Route IDs
	Node IDs
	Summary
	Structure
	Source code annotation
	Instruction traces
	Fetch no-ops
	Scaling Results
	Unknowns

	Refining timing results
	Exclusions
	Loop Iterations
	Loop path iterations
	Loop scope
	Instruction times
	Function times
	Path times
	Active tiles
	Node frequency
	Number Of logical cores

	Program structure
	Compiling for the XTA
	Structural nodes
	Identifying nodes: code references
	Reference Classes
	Back trails
	Scope of references

	Automating the process
	Writing a script
	Running a script
	Embedding commands into source

	Scripting XTA via the Jython interface

	XTA command-line manual
	Commands
	add
	analyze
	config
	clear
	debug
	echo
	exit
	help
	history
	load
	list
	print
	pwd
	remove
	scripter
	set
	source
	status
	version

	Pragmas
	Timing Modes
	Loop Scopes
	Reference Classes
	FUNCTION
	BRANCH
	INSTRUCTION
	ENDPOINT
	ANY
	FUNCTION_WITH_EVERYTHING
	BRANCH_WITH_EVERYTHING
	INSTRUCTION_WITH_EVERYTHING
	ENDPOINT_WITH_EVERYTHING
	ANY_WITH_EVERYTHING

	XTA Jython interface
	Load methods
	Route creation/deletion methods
	Add/remove methods
	Set methods
	Get methods
	Config methods

	Code reference grammar

	Run on Hardware
	Use xTIMEcomposer to run a program
	Create a Run Configuration
	Re-run a program

	XRUN Command-Line Manual
	Overall Options
	Target Options
	Debugging Options
	xSCOPE Options

	Application Instrumentation and Tuning
	Use xTIMEcomposer and xSCOPE to trace data in real-time
	XN File Configuration
	Instrument a program
	Configure and run a program with tracing enabled
	Analyze data offline
	Analyze data in real-time
	Capture control
	Signal Control
	Trigger Control
	Timebase Control
	Screen Control

	Trace using the UART interface

	xSCOPE performance figures
	Transfer rates between the xCORE Tile and XTAG-2
	Transfer rates between the XTAG-2 and Host PC

	xSCOPE Library API
	Functions
	Enumerations

	Simulation
	Use xTIMEcomposer to simulate a program
	Configure the simulator
	Trace a signal
	Enable signal tracing
	View a trace file
	View a signal

	Set up a loopback
	Configure a simulator plugin

	xSIM command-line manual
	Overall Options
	Warning Options
	Tracing Options
	Loopback Plugin Options
	xSCOPE Options

	XSIM Testbench and Plugin Interfaces
	Implementing a Plugin
	Plugin Notifications
	Implementing a testbench
	Plugin API
	Interfacing with the Simulator

	Testbench API
	Interfacing with a Simulator

	Debugging
	Use xTIMEcomposer to debug a program
	Launch the debugger
	Control program execution
	Examine a suspended program
	Set a breakpoint
	View disassembled code

	Debug with printf in real-time
	Redirect stdout and stderr to the xTAG
	Run a program with xTAG output enabled
	Output using the UART interface

	Flash Programming
	Design and manufacture systems with flash memory
	Boot a program from flash memory
	Generate a flash image for manufacture
	Perform an in-field upgrade
	Write a program that upgrades itself
	Build and deploy the upgrader

	Customize the flash loader
	Build the loader
	Add additional images

	libflash API
	General Operations
	Boot Partition Functions
	Data Partition Functions
	Page-Level Functions
	Sector-Level Functions

	List of devices natively supported by libflash
	Add support for a new flash device
	Libflash Device ID
	Page Size and Number of Pages
	Address Size
	Clock Rate
	Read Device ID
	Sector Erase
	Write Enable/Disable
	Memory Protection
	Programming Command
	Read Data
	Sector Information
	Status Register Bits
	Add Support to xTimeComposer
	Select a Flash Device

	XFLASH Command-Line Manual
	Overall Options
	Target Options
	Security Options
	Programming Options

	Security and OTP Programming
	Safeguard IP and device authenticity
	The xCORE AES module
	Develop with the AES module enabled
	Production flash programming flow
	Production OTP programming flow

	XBURN Command-Line Manual
	Overall Options
	Security Register Options
	Target Options
	Programming Options

	Programming in C/XC
	Calling between C/C++ and XC
	Passing arguments from XC to C/C++
	Passing arguments from C/C++ to XC

	XC Implementation-Defined Behavior
	C Implementation-Defined Behavior
	Environment
	Identifiers
	Characters
	Floating point
	Hints
	Preprocessing directives
	Library functions
	Locale-Specific Behavior

	C and C++ Language Reference
	Standards
	Books
	Online

	Programming in Assembly
	Inline Assembly
	Make assembly programs compatible with the XMOS XS1 ABI
	Symbols
	Alignment
	Sections
	Data
	Arrays

	Functions
	Parameters and return values
	Caller and callee save registers
	Resource usage
	Side effects

	Elimination blocks
	Typestrings
	Example

	Using the XTA With Assembly
	Assembly Directives
	Branch Table Example
	Core Start/Stop Example

	Assembly Programming Manual
	Lexical Conventions
	Comments
	Symbol Names
	Directives
	Constants

	Sections and Relocations
	Symbols
	Attributes

	Labels
	Expressions
	Directives
	add_to_set
	max_reduce, sum_reduce
	align
	ascii, asciiz
	byte, short, int, long, word
	file
	loc
	weak
	globl, global, extern, locl, local
	typestring
	ident, core, corerev
	section, pushsection, popsection
	text
	set, linkset
	cc_top, cc_bottom
	scheduling
	syntax
	assert
	Overlay Directives
	Language Directives
	XMOS Timing Analyzer Directives
	uleb128, sleb128
	space, skip
	type
	size
	jmptable, jmptable32

	Instructions
	Data Access
	Branching, Jumping and Calling
	Data Manipulation
	Concurrency and Thread Synchronization
	Communication
	Resource Operations
	Event Handling
	Interrupts, Exceptions and Kernel Calls
	Debugging
	Pseudo Instructions

	Assembly Program

	Programming for XS1 Devices
	XCC Target-Dependent Behavior for XS1 Devices
	Support for Clock Blocks
	Support for Ports
	Serialization
	Timestamping
	Changing Direction of Buffered Ports

	Channel Communication

	XS1 Data Types
	XS1 port-to-pin mapping
	XS1 Library
	Data types
	Port Configuration Functions
	Clock Configuration Functions
	Port Manipulation Functions
	Clock Manipulation Functions
	Logical Core/Tile Control Functions
	Channel Functions
	Predicate Functions
	XS1-S Functions
	Miscellaneous Functions

	xCORE 32-Bit Application Binary Interface

	Platform Configuration
	Describe a target platform
	Supported network topologies
	A board with two packages

	XN Specification
	Network Elements
	Declaration
	Package
	Node
	Tile
	Port
	Boot
	Source
	Bootee
	Bit
	Link
	Service
	Chanend

	Link
	LinkEndpoint

	Device
	Attribute

	JTAGDevice

