
XS1 System Specification

(VERSION 1.3)

2009/1/27

Authors:

DAVID MAY
ALI DIXON
AYEWIN OUNG
HENK MULLER

Copyright © 2009, XMOS Ltd.
All Rights Reserved



XMOS 1/26

1 Introduction

This document specifies the XS1 boot protocol, the XMOS link specification, the
security module comprising a one-time-programmable memory, and a descrip-
tion of all configuration registers.

2 Booting the XS1-G4

The normal boot procedure is to first boot Core 0 from an external ROM or Flash
memory that is connected via an SPI interface. Each of the other cores is then
booted over the core’s channel-end 0 from core 0. This boot mode, called SPI-
boot, is enabled by setting pin SS XC0 BS0 to 0 (ground).

Alternatively, the XS1-G4 can be booted via the JTAG interface. This is useful
during program development, and can be enabled by setting pin SS XC0 BS0
to logical 1 (IO VDD).

A further option is to use secure boot for one or more of the cores. Each core
can be configured to boot from a program held in its security module. This is
enabled by setting a bit in the core’s security module and will cause the core to
always use secure boot.

2.1 Boot format

When a core is booting over the SPI interface, from a channel, or from the se-
curity module, the boot monitor built-in to the XS1-G4 reads in a program and
stores it in on-chip RAM starting at the lowest memory location. The program is
then started by transferring control to the lowest location in RAM.

The boot format used for the program to boot from an SPI interface, channel or
security module is represented as follows.

1. the program size s in words - a 32-bit value, least significant byte first.

2. program consisting of s × 4 bytes.

3. a 32-bit CRC, least significant byte first.

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 2/26

The CRC is calculated over the byte stream represented by the program size
and the program itself. The polynomial used is is 0xEDB88320 (IEEE 802.3);
the CRC register is initialised with 0xFFFFFFFF and the residue is inverted to
produce the CRC.

The CRC check can be disabled by setting the CRC to 0x0D15AB1E.

2.2 Boot from SPI interface

To boot from an SPI interface, an SPI slave device must be connected as follows.

port use

P1A0 MISO
P1B0 SS
P1C0 SCLK
P1D0 MOSI

A READ command is issued with a 24 bit address 0x000000. Based on the
100MHz reference clock of the Xcore, an SPI clock rate of 2.5 MHz is used. The
clock polarity / phase is of 0 / 0.

The Xcore expects each byte to be transferred with the least-significant bit first.
Many programmers will write bytes into an SPI interface using the most signif-
icant bit first, and hence you may have to reverse the bits in each byte of the
image stored in the SPI device.

If a large boot image is to be read in, it is faster to first load a small boot-loader
that will read the large image using a faster SPI clock, for example 50 MHz, or
as fast as the flash device supports.

If field-upgradeable firmware is required, a small boot-loader should be stored in
the first sector of flash memory, followed by two boot-images starting on sector
boundaries. The boot-loader should be written to first read the first image, and
on CRC failure boot from the second image. On upgrade, the first image is up-
graded first, followed by the second image. If the upgrade process is interrupted
at any point, there will always be a working boot image.

The SPI device will boot core 0 of the XS1-G4 only, the other cores must be
booted via channels.

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 3/26

2.3 Boot from channel-end 0

When boot from SPI is selected, the boot monitor on cores 1, 2, and 3 will
be waiting on communication via channel end 0. If required, those cores can
be booted by opening a channel to channel-end 0 of each of the cores, and
transferring the code to those cores.

In order to boot a core the following procedure must be followed:

• Allocate a channel-end and connect it to the channel end of the core you
want to boot (one of identifiers 0x00010002, 0x00020002, or 0x00030002),
using a SETD instruction. We call the allocated channel-end c.

• Output the 32-bit identifier c of the channel over c, this allows the other
side to open a back-channel.

• Send the sequence of bytes representing size, code, and CRC as specified
earlier.

• Send an END control token.

• Receive an END control token.

• Free c using FREER

2.4 Boot from Security Module

If a core is set to use secure boot, the program in boot format is taken from
address 0 of the OTP (one-time-programmable) memory in the core’s security
module. Each core has its own individual OTP memory, and hence some cores
can be booted from OTP while others are booted from SPI or the channel in-
terface. This enables an XS1-G4 to be partially programmed, dedicating one
or more cores to perform a particular function, leaving the other cores user-
programmable.

3 XMOS link specification

The interconnect provides communication between all tiles on the system. A
system can comprises one or more nodes, that may be physically separated. In

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 4/26

conjunction with simple programs, the interconnect can also be used to support
access to the memory on any tile from any other tile, and to allow any tile to
initiate programs on any other tile.

The interconnect allows streams of data to be communicated with low latency. A
stream comprises data tokens and control tokens, where data tokens contain 8
bits of data, and control tokens specify operations. Streams are circuit switched,
but they can be set-up and terminated at low cost. This enables the network to
be used as a packet switching network, where short packets are carried through
the interconnect in a pipelined manner.

Each tile has four links that connect the tile to an on-chip switch that provides
non-blocking communication between the tiles on a node. The on-chip switch
also provides a number off-chip links that can be connected to links of other
nodes. The structure and performance of the link connections can be varied to
meet the needs of applications. The topology of the interconnect is not fixed, a
topology appropriate to the application can be used.

The network supports partitioning. Partitioning provides separation between, for
example, data intensive streams and control streams. Partitioning provides real
time guarantees for parts of the network that need the guarantees.

As far as a program is concerned, communication always takes place between
two channel ends. A channel end is a physical resource that is allocated on the
Xcore. Channels-ends reside on a tile and are identified by means of an identifier
on the tile, a tile-identifier, and a node-identifier. Data is transmitted to a channel
end by using a sequence of OUT instructions, and OUTCT instructions; when a
communication is complete, an END token is transmitted by the program, which
will free up any resources allocated in the network. The architecture guarantees
that all data- and control-tokens sent over this stream are delivered in order.
Multiple streams can be set up, and no guarantee is given about the ordering of
data and control tokens between streams.

This document describes what stream (the transport layer), the switching method
(the packet layer), the point-to-point protocol (the link layer) and the physical
layer.

There are four groups of control tokens:

• Tokens 0x00-0x7f: (Application tokens). These are intended for use by
compilers or applications software to implement streamed, packetised and
synchronised communications, to encode data-structures and to provide

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 5/26

run-time type-checking of channel communications.

• Tokens 0x80-0xbf: (Special tokens) are architecturally defined and may
be interpreted by hardware or software. They are used to give standard
encodings of common data types and structures.

• Tokens 0xc0-0xdf: (Privileged tokens) are architecturally defined and may
be interpreted by hardware or privileged software. They are used to per-
form system functions including hardware resource sharing, control, mon-
itoring and debugging. An attempt to transfer one of these tokens to or
from unprivileged software will cause an exception.

• Tokens 0xe0-0xff: (Hardware tokens) are only used by hardware; they con-
trol the physical operation of the link. An attempt to transfer one of these
tokens using an output instruction will cause an exception.

The sections below define the protocol layers bottom up: physical layer (Sec-
tion 3.1), link layer (Section 3.2), switch layer (Section 3.3), physical layer (Sec-
tion 3.1), processor communication (Section 3.4), and channel communication
(Section 3.5).

3.1 Physical layer

External link communication uses a transition-based non return-to-zero signalling
scheme. Bits are sent at a rate derived from the XS1 clock; this rate can be pro-
grammed to meet applications requirements.

The links can be switched between between a slow serial mode that uses just
four wires, and a fast, wide mode that needs 10 wires. These two modes use
different encoding schemes.

3.1.1 Serial external link

The serial link uses two data wires, “0” and “1” in each direction (four wires in
total). A transition on wire “0” represents a zero bit and a transition on wire “1”
represents a one bit. Note that it is the transition that signals the bit; the level of
the wire is irrelevant.

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 6/26

For each token 10 transitions will be made, transmitting 10 bits. The first 8
bits are the token value. transmitted most significant bit first. The next bit sig-
nals whether the transmission is for a control or a data token. A 1-bit signals a
control-token, a zero-bit signals a data-token.The final bit is an even parity bit
is transmitted that will cause both wires to go back to low state. The two signal
wires are both at rest between tokens.

For example, in order to send control token 0x09 one would transmit the follow-
ing:

1. Set wire “0” to high (signals a zero in bit 7)

2. Set wire “0” to low (signals a zero in bit 6)

3. Set wire “0” to high (signals a zero in bit 5)

4. Set wire “0” to low (signals a zero in bit 4)

5. Set wire “1” to high (signals a one in bit 3)

6. Set wire “0” to high (signals a zero in bit 2)

7. Set wire “0” to low (signals a zero in bit 1)

8. Set wire “1” to low (signals a one in bit 0)

9. Set wire “1” to high (signals control token)

10. Set wire “1” to low (terminate transmission - both wires are in rest state)

3.1.2 Fast external link

The fast link uses five wires in each direction to transmit data; 10 wires in total.
Those wires are called “0”, “1”, “2”, “3”, and “4”. 1-of-5 codes are used to transmit
data;; changing the state of one of the five wires transmits a symbol. A transition
on each of the wires has the following meaning:

transition on symbol meaning
“0” v value 00
“1” v value 01
“2” v value 10
“3” v value 11
“4” e escape

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 7/26

A sequence of four symbols are used to encode the data and control tokens. If
all four symbols are data v symbols, a total of 8 bits of data are transferred (a
data-token). If one of the four symbols is an e symbol, and the other three are v
symbols, then a control-token is transmitted.

Transitions use
first second third fourth
v v v v 256 data tokens
e v v v 64 control tokens 192-255
v e v v 64 control tokens 128-191
v v e v 64 control tokens 64-127
v v v e 64 control tokens 0-63

The bits of data and control tokens are always transmitted starting with the two
most significant bits. In the case of control tokens, the first two bits of the control
token are determined by the position of the e symbol.

For example, in order to send control token 0x09 one would transmit the follow-
ing:

1. Set wire “0” to high (signals 00 bits in bits 5 and 4)

2. Set wire “2” to high (signals 10 bits in bits 3 and 2)

3. Set wire “1” to high (signals 01 bits in bits 1 and 0)

4. Set wire “4” to high (signals an escape, bits control token bits 6 and 7 are
0)

After transmitting one token, none, two, or four wires are high. Wires are re-
turned to zero only when a message is completed (when data is streamed wires
do not return to zero). In order to return to zero, a sequence of an END token
and an optional return-to-zero-NOP are transmitted. They are chosen so that
after them all wires are low.

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 8/26

Transitions use
first second third fourth
e e v v END tokens
e 0 e 0 CREDIT8 token
e 1 e 1 CREDIT64 token
e 2 e 2 RESET token
e 3 e 3 CREDIT32 token
v v e e PAUSE tokens
e v v e NOPD tokens
e 3 3 v NOPE tokens (control tokens 252...255)

There are sixteen possible sequences to transmit an END token on the 5-wire
link. All of them signal END; but by choosing the appropriate sequence, it can
be guaranteed that none, one, or two of wires “0” to “3” are left high. After the
END token, one of the NOP tokens may have to be transmitted in order to return
the final wires to zero.

• If wire “4” is high after the END token, then the NOPE token is transmitted,
and the final transition is chosen so to return the last high wire low (note
that if wire “4” is high exactly one of wires “0”... “3” must be high).

• If wire “4” is low after the END token, then the NOPD token is transmitted.
The NOPD token has two transitions on wire “4” and hence leaves wire “4”
low. The two v transitions are chosen so to return the final two wires to
low.

For example, in order to send an end-of-message after the control token sent
earlier (wires “0”, “1”, “2”, and “4” are high), one would transmit the following:

1. Set wire “4” to low (signals an escape)

2. Set wire “4” to high (signals a second escape, this is an END)

3. Set wire “0” to low

4. Set wire “1” to low. This ends the END token, now only wires “4” and “2”
are left high; hence, we need to transmit an NOPE token.

5. Set wire “4” to low (signals an escape)

6. Set wire “3” to high (transmits token value 11)

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 9/26

7. Set wire “3” to low (transmits token value 11)

8. Set wire “2” to low (transmits token value 10). This has transmitted token
254, which is a NOP token that will be ignored by the receiver. All wires
are now low.

A link can be paused by transmitting one of the PAUSE tokens, followed by a
NOP token in order to bring all five wires to a low state.

Note that the physical layer transmits tokens 0x1 and 0x2 using two escapes;
they are not transmitted using the conventional single escape for control tokens
less than 64. It is also the task of the physical layer to transmit a NOP after either
a PAUSE or END token. Finally, on reception of a double escape END or PAUSE
token, the physical layer must report this as a 0x1 or 0x2 control token, and the
physical layer shall discard any NOP tokens that are received.

The encoding of the four hardware tokens operated by the physical layer is:

Name Value Description
RTNZ1 0xfc NOP (return “0” to zero).
RTNZ2 0xfd NOP (return “1” to zero).
RTNZ3 0xfe NOP (return “2” to zero).
RTNZ4 0xff NOP (return “3” to zero).

The PAUSE and END tokens are application level control tokens, and their en-
codings for higher levels are discussed in Section 3.5.1.

3.1.3 XS1-G4 Physical layer configuration

Bits are transmitted at a speed that is set under software control. Both speed
and width are set by writing to the link’s speed register. Each of the speed reg-
isters specifies the width of the link, the gap between bits, and the gap between
tokens. The addresses and contents of the speed registers are summarised in
Section 3.6.2.

Normally the number of system clock cycles between tokens can be set to the
number of system clock cycles between bits; this bit spacing must be at least 2
clock cycles.

For a 400MHz system clock and bit spacing s ≥ 2, the data rate achievable
using 2 signal wires is (320/s) Mbits/second; the data rate using 5 signal wires

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 10/26

is (800/s) Mbits/second. The actual speed that can be achieved depends on the
electrical characteristics of the physical connection.

3.2 Link layer

The link layer protocol operates a point-to-point connection over a full-duplex
external link. The link layer governs when data is transmitted, and how links
start communicating. Three control tokens are used by the link layer: CREDIT8,
CREDIT64, and LRESET.

A link can be disabled or enabled. When disabled, no outside signals are coming
through to the link state machine. When enabled, signals come through and are
assembled into tokens. On enable, a LRESET is issued that clears both credit
ounters.

3.2.1 Credits

The normal mode of operation is that a switch can issue credits on a link - when
it does so, the switch allows the transmitter on the remote end of the link to
transmit data to this switch.

The switch specifies how much credit is issued (8 to 64 bytes) using the reserved
control tokens CREDIT8 and CREDIT64. The transmitter will not transmit more
tokens then there are credits. When multiple credit messages are issued, credits
are summed together at the transmitting side; a transmitter must have a credit
counter of at least 7 bits. Hence, it is illegal to send two subsequent CREDIT64
tokens, but legal to send a second CREDIT64 when one token has been re-
ceived.

An LRESET token can be sent. On reception of an LRESET the the credit
counter will be set to 0. The credit counter on the transmitting side is also set
to 0 when issuing an LRESET. On reception of an LRESET, the receiver must
issue credit.

A transmitter should issue credits to the receiver, if it knows that the receiver is
running low on credits, and if there is space in its input buffer. In order to save
bandwidth, the transmitter should try and issue the largest possible credit token.

All data tokens require and consume credits. Most control tokens require and

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 11/26

consume credits when transmitted, the exceptions are CREDITn, LRESET, and
RTNZn; these tokens can be transmitted when there are no credits present be-
cause the link layer will interpret them and not insert them into the buffer. The
application level tokens END and PAUSE consume credits as usual since they
do end up in the buffer.

3.2.2 Start-up

On start-up, the credit counters are always zero. When a link is enabled, it will
first issue a RESET and then issue initial credits immediately following the reset.
The other side of the link will perform the same operation, one of the resets will
arrive last, and will cause credits to be issued in both directions, setting up the
network.

3.2.3 Network numbers

A link can be assigned to be part of one of four “networks”. That is, this link will
only carry traffic belonging to that network. For this to work, both channel ends
must also be made part of this network. The intended use of this is to assign
specific links to, for example, carry small control messages.

When setting up networks, no traffic should flow over the target network; for
routing would be ambiguous. Network assignments are designed to be static,
but if a link needs to be reassigned to, for example, the default network, then the
link should be disabled before the assignment is changed.

3.2.4 Link Layer configuration

Before a link can be used it must be enabled. These actions are performed by
writing a ’1’ to the appropriate bit in the speed registers (the details are shown
in Section 3.6.2).

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 12/26

3.3 Switch layer

The switch layer forwards messages from one link to another. Before data is
transmitted on a stream, the switch sends a header to the destination tile. The
header establishes a route through the interconnect, and subsequent tokens will
follow the same route until the end-of-message (END) or pause (PAUSE) token
are encountered. The header contains the identifier of the destination processor
This is encoded using either an 8 bit node id, 8-bit core id, and 8-bit channel id
or a 1-bit node id and a 2-bit core-id, and 5-bit channel id.

The header mode can be set by software, by changing the lowest bit of configu-
ration register 0x4 (Section 3.6.2). By default 3-byte mode is used, if the 1-byte
header is used it should be used on all nodes in the system.

Each node has a switch with a configurable identifier and routing table. The
identifier is a bit pattern that (uniquely) identifies this node in the system. When
a stream enters the switch, the destination node identifier is compared bit-by-bit
with the switch-identifier. If all bits match then the message is destined for this
node, and the message is routed to one of the local tiles using the tile-identifier.

If the switch-identifier is not equal to the stream’s destination-node-identifier,
then the number of the first bit that differs specify the dimension (direction) in
which the message needs to be routed; this results in eight possible routing
dimensions. The routing table associates each outgoing link with exactly one
dimension, and the switch picks an available outgoing link for this dimension
before forwarding the stream. This mechanism enables system designers to
construct the routing tables so to build meshes, pipelines or hypercubes.

The node identifier of the G4 is initialised by writing its value in 7 ... 0 of the node
identifier register. The most significant 24 bits are ignored.

Each link can be associated with one of four logical networks by writing the
network number to bits 5 ... 4 of the link’s configuration register. These network
numbers correspond to the network numbers used when initialising channels
using the SETN instruction.

On the G4 the mismatching bit in the node address (a number between 0 and 7
inclusive) is used to lookup an outgoing link. Each link can be associated with
one of the mismatching bits by writing the direction to bits 10 ... 8 of the link’s
configuration register. Four bits are sufficient for up to 16 directions. On the G4
only 3 bits are used.

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 13/26

Figure 1 Example: configuring a pipeline of four G4s

Figure 2 Example: configuring a hypercube of dimension 2 (a square)

Three example topologies, a regular pipeline, a small hypercube and a big hy-
percube are shown in Figures 1, 2, and 3.

3.3.1 XS1-G4 Switch Layer configuration

Each core in the G4 is connected to the switch by four internal links (PA/P-
B/PC/PD), and the switch also allows connection to other chips via sixteen exter-
nal links. The switch fully connects its 32 links (16 internal links and 16 external
links) and can support 32 simultaneous message transfers.

The switch is configured by sending it configuration messages. These messages
request the switch to write data to or read data from a bank of 32-bit configu-
ration registers internal to the switch. These messages are used when booting
to set the node identifier of the switch, associate specific links with logical net-
works and set the speed and width of the links, and set the routing strategy.
Section 3.6.2 summarises the registers (and the fields within the registers) that
must be initialised in order to use the switch. The addresses used in the config-

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 14/26

Figure 3 Example: configuring a hypercube of dimension 4

uration messages are the register numbers of the 32-bit registers in the switch.

3.4 Processor communication

When processors communicate with each other, they transmit messages over
the switches that, in addition to the 16- or 3-bit switch header include an 8- or
5-bit channel-end identifier. When a message is transmitted to the switch, it has
a 24-bit (16 bits core-id + 8 bits channel-end) or 8-bit (3 bits core-id + 5 bits
channel-end) header. When a message is transmitted to the processor over
an internal link, the message always has an 8-bit header which indicates the

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 15/26

channel-end. If 1-byte switch headers is used, then the first three bits of this
byte will always be 0.

Processors can also communicate with switches. In this case the switch must
be set to 3-byte header mode. When a message is transmitted to the switch, it
contains a 2-byte header, and then a control token PSCTRL or SSCTRL. This
indicates that the message is destined for the processor-control or switch-control
associated with the processor addressed by the first two bytes. Messages that
are transmitted to the PSCTRL or SSCTRL follow the following format:

• Two byte header identifying the destination processor/switch

• PSCTRL or SSCTRL token.

• WRITEC control token

• Two bytes identifying core that reply should go to.

• One byte identifying Channel-end for reply.

• Two bytes identifying address within switch (address[15 ... 8], address[7 ... 0])

• Four bytes data to be written (data[31 ... 24], data[23 ... 16], data[15 ... 8],
data[7 ... 0])

• EOM control token (value (0x01)

This will result in the following reply message.

• three bytes header (two bytes core identifier, one byte channel)

• ACK control token

• EOM control token

A read message is sent as follows:

• Two byte header identifying the destination processor/switch

• PSCTRL or SSCTRL token.

• READC control token

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 16/26

• Two bytes identifying core that reply should go to.

• One byte identifying Channel-end for reply.

• Two bytes identifying address within switch (address[15 ... 8], address[7 ... 0])

• EOM control token

This will result in the following reply message.

• three bytes header (two bytes core identifier, one byte channel)

• ACK control token

• Four bytes data read (data[31 ... 24], data[23 ... 16], data[15 ... 8], data[7 ... 0])

• EOM control token

The four privileged tokens used to control the switch are defined as follows:

Name Value Description
WRITEC 0xc0 Write control register.
READC 0xc1 Read control register.
PSCTRL 0xc2 PSwitch configuration message.
SSCTRL 0xc3 SSwitch configuration message.

3.5 Channel Communication

At application level, the basic communication entity is a stream of data. A stream
does not need to be limited in length, but it can be terminated after a short num-
ber of tokens has been transmitted, and can hence act as a ”packet” in a packet
switched network. A stream is circuit switched and needs to be set up and termi-
nated. If the destination channel end is local, data will be exchanged directly. If
the destination channel end is on a remote tile, then the switch will first transmit
a header to the other remote tile. This header sets up a circuit for the stream.
After the header is transmitted, the data- and control-tokens of the stream are
transmitted. When the END token is transmitted, the switches will free any re-
sources, folding up the the circuit that was used for streaming the data. The END
token will also return all communication wires to a low-power state. If a thread
wants to temporarily suspend a stream it may issue a PAUSE token at any time,

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 17/26

which will free up the circuit and return the communication wires to a low power
state. Unlike the END token the PAUSE token is invisible to the receiver, it is
discarded once the final switch has freed its resources (analogous to the final
switch discarding the header that was sent when the stream started).

Streams can be used to stream data such as audio or video just by opening the
stream and sending volumes of data. Complex data types can be transmitted
over a stream by opening a stream, and serialising the data, interspersed with
user defined control tokens. This allows software to be constructed defensively
by using control tokens to mark known synchronisation points in the data stream.
If, at any time, the receiver were to try and input data when a control token is
available or vice versa, the thread will be trapped, and the program can flag or
maybe recover from software errors.

By keeping streams short and synchronising often streams can also be used
to exchange packets of data. The cost of setting up a stream and terminating
a stream is small, and unlike traditional packet-oriented networks, the packet
is transmitted while it is being constructed; this overlaps packet creation and
packet reception, reducing latency.

3.5.1 Application Tokens

Application tokens are defined by the compiler or application program. Four
Application Control Tokens have been predefined, and these shall not be used
for any other purpose:

Name Value Description
END 0x01 End - free up interconnect and tell target.
PAUSE 0x02 Pause - free up interconnect but don’t tell target.
ACK 0x03 Acknowledge operation completed successfully.
NACK 0x04 Acknowledge that there was an error.

Note that these are the token values seen by the application software. When
transmitted over a 5-wire link the END and PAUSE tokens are represented by
special token values. All other token values can be used by the application
software in any way that it sees fit.

In addition to the application tokens, there is a block of tokens that are reserved
for specific operations. These tokens have predefined meanings, and any imple-
mentation should use those meanings. Below 11 of those tokens are defined,

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 18/26

all other 53 token values between 0x8b and 0xc0 are reserved for future use.

Name Value Description
READN 0x80 Read data.
READ1 0x81 Read one byte.
READ2 0x82 Read two bytes.
READ4 0x83 Read four bytes.
READ8 0x84 Read eight bytes.
WRITEN 0x85 Write data.
WRITE1 0x86 Write one byte.
WRITE2 0x87 Write two bytes.
WRITE4 0x88 Write four bytes.
WRITE8 0x89 Write eight bytes.
CALL 0x8a Call code at the specified address.

3.6 Sending configuration messages

The destination of a configuration message is specified by a a configuration
resource identifier; this must be used to initialise a channel end using a SETD
instruction in the normal way. The configuration resource identifier is a 32-bit
word consisting of the following bytes:

byte value

3 The Node Identifier of the switch to be configured
2 The SSCTRL control token (value 0xC3)
1 0
0 12

Note that the Node Identifier in a configuration message need not match the
Node Identifier in the destination switch, allowing a configuration message to be
used to initialise the switch Node Identifier.

The configuration messages can then be sent via the channel. A write configu-
ration message is constructed as follows.

• WRITEC control token (value 0xC0)

• Return channel end identifier (Node, Processor, Channel-end)

• Address within switch (address[15 ... 8], address[7 ... 0])

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 19/26

• Data to be written (data[31 ... 24], data[23 ... 16], data[15 ... 8], data[7 ... 0])

• EOM control token (value (0x01)

This will result in the following reply message.

• ACK control token (value 0x03)

• EOM control token (value 0x01)

3.6.1 Configuring channel ends

Channel ends are configured using the SETD instruction. The SETD instruction
takes a 32-bit resource-id. This resource-id must be either another channel
end (type 2) or a configuration channel (type 12). The least significant 8 bits
are the resource type, the following 8 bits the number of the channel-end (or in
the case of a configuration special values 0xc2 or 0xc3 to indicate whether to
control PSCTRL or SSCTRL), and the most significant 16 bits are the core and
processor identifier.

3.6.2 Initialising the switch

The switch is configured by sending it configuration messages. These messages
request the switch to write data to or read data from a bank of 32-bit configuration
registers internal to the switch. These messages are used when booting to set
the node identifier of the switch, associate specific links with logical networks
and set the speed and width of the links, and set the routing strategy. Table 1
shows the registers (and the fields within the registers) that must be initialised in
order to use the switch.

The addresses used in the configuration messages are the register numbers of
the 32-bit registers in the switch.

The node identifier of the XS1-G4 is initialised by writing its value in 7 ... 0 of the
node identifier register. The most significant 24 bits are ignored.

Each link can be associated with one of four logical networks by writing the
network number to bits 5 ... 4 of the link’s configuration register. These network

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 20/26

Purpose Core 0 Core 1 Core 2 Core 3
Node identifier 0x5
Link A configuration - direction & network 0x22 0x26 0x2A 0x2E
Link B configuration - direction & network 0x23 0x27 0x2B 0x2F
Link C configuration - direction & network 0x20 0x24 0x28 0x2C
Link D configuration - direction & network 0x21 0x25 0x29 0x2D
Link PA configuration - network 0x40 0x44 0x48 0x4C
Link PB configuration - network 0x41 0x45 0x49 0x4D
Link PC configuration - network 0x42 0x46 0x4A 0x4E
Link PD configuration - network 0x43 0x47 0x4B 0x4F
Link A speed - timing and width 0x82 0x86 0x8A 0x8E
Link B speed - timing and width 0x83 0x87 0x8B 0x8F
Link C speed - timing and width 0x80 0x84 0x88 0x8C
Link D speed - timing and width 0x81 0x85 0x89 0x8D

Table 1 Register numbers for configuration registers

numbers correspond to the network numbers used when initialising channels
using the SETN instruction.

Each external link can be associated with one of eight directions by writing the
direction to bits 10 ... 8 of the link’s configuration register. When comparing the
node address in an incoming message header with the XS1-G4 node address,
the number of the most-significant non-matching pair of bits selects the direction
to be used to forward the message. Note that the node address will is received
most significant bit first, so direction 7 will be selected if the first bit received
does not match bit 7 of the node address.

Before a link can be used, its speed and width must be set and it must be en-
abled. This is done by writing to the link’s speed register. Each of the speed
registers is arranged as follows:

bits use

3 ... 0 minimum number of system clock cycles between tokens
11 ... 8 minimum number of system clock cycles between bits
30 width - 0: 2 signal wires; 1: 5 signal wires
31 enable link

Normally the number of system clock cycles between tokens can be set to the

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 21/26

number of system clock cycles between bits; this bit spacing must be at least 2
clock cycles.

For a 400MHz system clock and bit spacing x ≥ 2, the data rate achievable
using 2 signal wires is (320/x) Mbits/second; the data rate using 5 signal wires
is (800/x) Mbits/second. The actual speed that can be achieved depends on
the electrical characteristics of the physical connection.

4 General configuration registers

The G4 has three types of control registers: registers in the processor itself
that are accessed using GETPS/SETPS instructions, registers in the processor
switch, and registers in the interconnect switch. The first set controls information
private to the processor, the second group controls information specific to a
processor that can also be accessed by other processors, the third one controls
information related to the interconnect and the logic shared between the four
processors.

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 22/26

4.1 Processor status registers

The following are processor status registers that are used using GETPS and
SETPS. The register number must be translated to a resource ID by shifting the
register number left 8 bits, and oring 0x0B in (the resource ID that identifies a
processor control register).

Address Contents
0x00 PS RAM BASE RW Address of RAM. Keep at 0x00010000.
0x01 PS VECTOR BASE RW Base of all resource vectors. Used for both

events and interrupts. Bits 31-16 should be set,
bits 15-0 should be kept 0.

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 23/26

4.2 Processor switch registers (per core)

The following registers are in the processor switch - they can be accessed over
JTAG or by sending a message to the processor switch. The message to be
sent is specified in Section 3.6. These registers are specific to a processor.

Address Contents
0x00 Device ID register

bits 7..0: Xcore version
bits 15..8: Xcore revision
bits 23..16: Node number (from SSwitch???)
bits 25..24: Core number

0x01 Number of resources - I
bits 7..0: Number of threads
bits 15..8: Number of Synchronisers
bits 23..16: Number of Locks
bits 31..24: Number of Channel Ends

0x02 Number of resources - II
bits 7..0: Number of Timers
bits 15..8: Number of Clock Blocks

0x04 Control PSwitch permissions to debug registers.
bit 0: Disable write access to processor registers.
bit 8: Disable remote access, can only be cleared locally.
bit 31: Disable further updates to any PSwitch register

0x05 Debug interrupts
bit 0: Writing a one will generate a debug interrupt.

0x06 Processor clock speed
bit 7: 0 indicates full speed; 1 indicates slow mode

0x07 Copy of the security configuration reg.
0x10-0x13 Link status PA/PB/PC/PD, see Section 3.6.2
0x20-0x27 Scratch register for debug software protocols 0-7
0x40-0x47 Copy of the PC of threads 0-7
0x60-0x67 Copy of the SR of threads 0-7
0x80-0x9F LLink status of LLINK 0-31, see Section 3.6.2

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 24/26

4.3 Interconnect registers (per node)

The following registers are in the interconnect - they can be accessed over JTAG
or by sending a message to the system switch. The message to be sent is
specified in Section 3.6. Changing these registers has a global effect on the
chip.

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 25/26

Address Contents
0x00 The device ID register 0.

bits 7..0: SSwitch version
bits 15..8: SSwitch revision
bits 23..16: Boot CTRL
bits 25..24: XCore Config

0x01 Number of resources - I
bits 7..0: Number of internal links per core (PA/PB/PC/PD)
bits 15..8: Number of Cores
bits 23..16: Number of external links

0x04 Node configuration.
bit 0: Short headers (use 1-byte headers if set)
bit 8: Disable PLL modifications.
bit 31: Disable further updates to any SSwitch control register.

0x05 Node ID, lower 8 bits only
0x06 PLL control register.

bit 4..0: INPUT DIVISOR. Oscillator input divider value range
from 1 (0x00) to 32 (0x1F). N value.

bit 15..8: FEEDBACK MUL. Feedback multiplication ratio,
range from 1 (0x0) to 255 (0xFE). M value.

bit 23..16: POST DIVISOR. Output divider value range from 1
(0x0) to 250 (0xF9). P value.

bit 24 VCO RANGE. VCO operating range, 0 (250MHz ≤ fre-
quency ≤ 500MHz), 1 (500MHz ≤ frequency ≤ 1GHz)
Fout = Fin

N+1
M+1
P+1

0x07 Lowest 8 bits set the switch clock frequency, clk = pll/(2n + 2).
Keep at 0 for 400 MHz.

0x08 Lowest 8 bits define the relation between the reference clock and
the PLL clock, ref = pll/(2n + 2). Keep at 2 for 100 MHz.

0x20-0x2F External Link 0-15 direction and network, see Section 3.6.2
0x40-0x4F Internal Link 0-15 network, see Section 3.6.2
0x80-0x8F External Link 0-15 speed, timing, and width, see Section 3.6.2

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27



XMOS 26/26

XMOS Ltd is the owner or licensee of this design, code, or Information (collec-
tively, the “Information”) and is providing it to you “AS IS” with no warranty of any
kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementa-
tion thereof, is or will be free from any claims of infringement and again, shall
have no liability in relation to any such claims.

(c) 2009 XMOS Limited - All Rights Reserved

XS1 SYSTEM SPECIFICATION (1.3) 2009/1/27


	Introduction
	Booting the XS1-G4
	Boot format
	Boot from SPI interface
	Boot from channel-end 0
	Boot from Security Module

	XMOS link specification
	Physical layer
	Serial external link
	Fast external link
	XS1-G4 Physical layer configuration

	Link layer
	Credits
	Start-up
	Network numbers
	Link Layer configuration

	Switch layer
	XS1-G4 Switch Layer configuration

	Processor communication
	Channel Communication
	Application Tokens

	Sending configuration messages
	Configuring channel ends
	Initialising the switch


	General configuration registers
	Processor status registers
	Processor switch registers (per core)
	Interconnect registers (per node)


