
XC-1A Development Board Tutorial

IN THIS DOCUMENT

· Introduction

· Illuminate an LED

· Flash an LED

· Interface with a host over a serial link

· Flash and cycle LEDs at different rates

· Run tasks concurrently

· Use a button to change the LED color

· What to read next

1 Introduction

The XC-1A is a low-cost development board based on the XMOS XS1-G4 device.
It includes a single G4 device, 4Mbits SPI FLASH memory, 16 user-configurable
LEDs, four push buttons, a speaker, JTAG and serial interfaces, four expansion
areas suitable for IDC headers and a through-hole prototyping area for connecting
external components..

This tutorial shows you how to write some simple XC programs that control and
respond to the XC-1A board components. In this tutorial you learn how to:

· illuminate an LED on the board

· ash an LED at a xed rate

· send the message‘‘Hello World‘‘ to your PC over a serial link

· create multiple concurrent threads that flash LEDs at different rates

· send a token between multiple threads, each flashing an LED in sequence

· add a button listener thread that changes the LED color

2 Illuminate an LED

This part of the tutorial shows you how to illuminate an LED on your XC-1A, using
an XC port and an output statement.

2.1 Create a project

2.2 Add the code

The program below illuminates an LED on an XC-1A.

Publication Date: 2012/11/8 Document Number: X3948A

XMOS © 2012, All Rights Reserved

XC-1A Development Board Tutorial 2/16

#include <xs1.h>

out port bled = XS1_PORT_4C;

int main () {
bled <: 0b0001;
while (1)

;
return 0;

}

Copy and paste the code into your project, and then choose File · Save () to save
your changes to file.

2.3 Examine the code

Take a look at the code in the editor. The declaration

out port bled = XS1_PORT_4C;

declares an output port named bled, which refers to the 4-bit port 4C. On the
XC-1A, the I/O pins of port 4C are connected to the LEDs positioned next to the four
press-buttons (collectively referred to as button-LEDs) that contain green diodes.

Show image of port map..

XS1-G4

A

D

C

BI

XIIVI

XI

V

VII

VIII
IX

III

X

IIII II

Button
D

Button
A

Button
B

Button
C

Ports must be declared as global variables. The optional out qualifier allows the
compiler to check for correct usage, thereby helping to reduce programming
errors.

XC input and output statements make it easy to express I/O operations on ports.
The statement

bled <: 0b0001;

causes the value specified to the right of <: to be output to the port specified to
its left (led). The port then drives LED next to button A high and the other LEDs
low, causing the LED to illuminate green and the other LEDs to remain off.

X3948A

XC-1A Development Board Tutorial 3/16

The empty while loop prevents the program from terminating, which ensures that
the LED remains illuminated.

2.4 Build and run your project

To build and run your project, follow these steps:

1. In the Project Explorer, click your project to select it, and then choose the

menu option Project · Build Project ().

The XDE displays its progress in the Console. When the build is complete, the
XDE adds the compiled binary file to the subfolder bin/Debug.

2. Choose Run · Run Configurations.

3. In the Run Configurations dialog, in the left panel, double-click XCore Appli-
cation.

4. In the right panel, in Name, enter the name illuminate.

5. In Project, ensure that your project is displayed. If not, click Browse to open
the Project Selection dialog, select your project, and then click OK.

6. In C/C++ Application, click Search Project to open the Program Selection
dialog, select your application binary, and then click OK.

7. In Device options, in Run on, select the option hardware, and in Target,
ensure that the option “XMOS XC-1A Board” is selected.

If your hardware is not displayed, ensure that your XC-1A is connected to your
PC, and then click Refresh list.

X3948A

XC-1A Development Board Tutorial 4/16

8. Click Run to save your configuration and run it.

The XDE loads the binary onto your XC-1A, displaying its progress in the
Console. When the binary is loaded, the Console is cleared.

9. On your XC-1A, verify that BUTTONLED A is illuminated green.

10. In the Console, click the Terminate button () to stop your application running.

2.5 Exercise

To complete this part of the tutorial, perform the following steps:

1. Modify your code so that it illuminates all four BUTTONLEDs.

You should change the value output to the port bled so that all four LEDs are
driven high.

#include <xs1.h>

out port led = XS1_PORT_4C;

int main () {
bled <: 0b1111;
while (1)

;
return 0;

}

2. Click the Run button () to reload your last Run Configuration.

The XDE determines that your source code has been updated and re-builds it,
displaying progress in the Console.

If your code contains errors, the XDE displays a dialog asking if you want
to continue launching the application. Click No, locate the first error in the
Console and double-click it to go to the offending line in the editor. When you
have fixed all errors, re-run your application.

3. On your XC-1A, verify that all four BUTTONLEDs are illuminated, and then click
the Terminate button () to stop your application running.

3 Flash an LED

This part of the tutorial shows you how to flash an LED at a fixed rate, using an XC
timer and an input statement.

3.1 Create a new project

3.2 Add the application code

The program below flashes a single LED on an XC-1A.

X3948A

XC-1A Development Board Tutorial 5/16

#include <xs1.h>

#define FLASH_PERIOD 20000000

out port bled = XS1_PORT_4C;

int main (void) {
timer tmr;
unsigned isOn = 1;
unsigned t;
tmr :> t;
while (1) {

bled <: isOn;
t += FLASH_PERIOD;
tmr when timerafter (t) :> void;
isOn = !isOn;

}
return 0;

}

Copy and paste the code into your project, and then choose File · Save () to save
your changes to file.

3.3 Examine the code

Take a look at the code in the editor. The declaration

timer tmr;

declares a variable named tmr, and allocates an available hardware timer. Each
core on the G4 device provides 10 timers, which can be used to determine when an
event happens, or to delay execution until a particular time. Each timer contains a
32-bit counter that is incremented at 100MHz and whose value can be input at any
time.

The statement

tmr :> t;

inputs the value of tmr‘s counter into the variable t. Having recorded the current
time, the statement

t += FLASH_PERIOD;

increments this value by the required delay, and the statement

tmr when timerafter(t) :> void;

delays inputting a value until the specified time is reached. The input value is not
needed, which is expressed as an input to void.

X3948A

XC-1A Development Board Tutorial 6/16

3.4 Build and run your application

To build and run your application, follow these steps:

1. In the Project Explorer, click your project to select it, and then choose the

menu option Project · Build Project ().

The XDE builds your project, displaying its progress in the Console. When
the build is complete, the XDE adds the compiled binary file to the application
subfolder bin/Debug.

2. Create a new Run Configuration for your project named flash, and run it.

Show reminder..

Follow these steps:

3. Choose Run · Run Configurations.

4. In the Run Configurations dialog, in the left panel, double-click XCore Appli-
cation.

5. In the right panel, in Name, enter the name flash.

6. In Project, ensure that your project is displayed. If not, click Browse to open
the Project Selection dialog, select your project, and then click OK.

7. In Device options, in Run on, select the option hardware, and in Target,
ensure that the option “XMOS XC-1A Board” is selected.

8. Click Run to save your configuration and run it.

The XDE loads the binary onto your XC-1A, displaying its progress in the
Console. When the binary is loaded, the Console is cleared.

9. On your XC-1A, verify that BUTTONLEDA is flashing on-off, and then click the
Terminate button () to stop your application running.

3.5 Switch between projects

The Run button () can be used to switch between projects. To complete this
part of the tutorial, follow these steps:

1. Click the arrow to the right of the Run button and select the Run Configuration
named illuminate.

2. On your XC-1A, verify that all four LEDs are illuminated.

3. Click the arrow to the right of the Run button and select the Run Configuration
named flash.

4. On your XC-1A, verify that BUTTONLEDA is flashing on-off.

X3948A

XC-1A Development Board Tutorial 7/16

5. Modify the source of the flashing LED application to change the value of
FLASH_PERIOD from 20000000 to 40000000.

6. To build and run, just click the Run button.

The XDE launches the Run Configuration you most recently selected.

7. On your XC-1A, verify that BUTTONLEDA is flashing on-off at half the rate it
was flashing previously, and then click the Terminate button () to stop your
application running.

3.6 Exercise

To complete this part of the tutorial, perform the following steps:

1. Modify your flashing LED application so that both BUTTONLEDA and BUTTON-
LEDB are flashed, with BUTTONLEDA flashed twice as fast as BUTTONLEDB.

Show a tip..

You should output the following pattern to the port bled: 0b0011, 0b0010,
0b0011, 0b0010, 0b0001, 0b0000, 0b0001 and 0b0000.

Explain the solution in more detail..

You can define an array of integers an initialize it with the values 0b0011,
0b0010, 0b0011, 0b0010, 0b0001, 0b0000, 0b0001 and 0b0000. Then use a
loop to output this sequence of values to the port 4C.

Show a sample answer..

#include <xs1.h>

#define FLASH_PERIOD 20000000

out port bled = XS1_PORT_4C;

int pattern [] = {0b0011 ,
0b0010 ,
0b0011 ,
0b0010 ,
0b0001 ,
0b0000 ,
0b0001 ,
0b0000};

int main (void) {
timer tmr;
unsigned t;
unsigned i = 0;
tmr :> t;
while (1) {

t += FLASH_PERIOD;
tmr when timerafter (t) :> void;
bled <: pattern[i];
i = (i+1) % 8;

X3948A

XC-1A Development Board Tutorial 8/16

}
return 0;

}

2. Run your application.

3. On your XC-1A, verify that the two LEDs are flashing at different speeds, and
then click the Terminate button () to stop your application running.

4 Interface with a host over a serial link

This part of the tutorial shows you how to implement a UART protocol that transmits
a message from the XS1-G4 to your PC over a serial link. The XC-1A has a chip
that performs a USB-to-serial conversion. When the board is connected to a PC
using a USB cable, this chip presents a virtual COM port that can be interfaced
using a terminal emulator. (Currently on MACs, the virtual COM port cannot be
supported at the same time as the JTAG interface, preventing you from completing
the following exercise.)

4.1 Create a project

The program below inputs from one of two timers in a loop.

#include <xs1.h>
#define BIT_RATE 115200
#define BIT_TIME XS1_TIMER_HZ / BIT_RATE
out port TXD = XS1_PORT_1H;

int main(){
return 0;

}

void txByte (out port TXD , int byte) {
unsigned time;
timer t;

/* input initial time */
t :> time;

/* output start bit */
TXD <: 0;
time += BIT_TIME;
t when timerafter (time) :> void;

/* output data bits */
for (int i=0; i <8; i++) {

TXD <: >> byte;
time += BIT_TIME;
t when timerafter (time) :> void;

}

/* output stop bit */

X3948A

XC-1A Development Board Tutorial 9/16

TXD <: 1;
time += BIT_TIME;
t when timerafter (time) :> void;

}

Before continuing to the next part of this tutorial, create a new project using this
code.

Show reminder..

Follow these steps:

1. Choose File · New · XDE Project ().

2. In the New Project dialog, in Project Name, enter a name for the project.

3. In Target Hardware, select the option XC-1A Development Board.

4. In Application Software, select the option Empty XC File.

5. Click Finish to create an empty source file.

6. Copy and paste the code in the window above into your new source file, and
save.

4.2 Examine the code

A UART translates data between parallel and serial forms for transmission over
a serial link. Each bit of data is driven for a fixed period, during which time the
receiver must sample the data. The diagram below shows the transmission of a
single byte of data at a rate of 115200 bits/s:

TXD
start
bit

stop
bit

8.68µs 8.68µs 8.68µs 8.68µs 8.68µs 8.68µs 8.68µs 8.68µs 8.68µs 8.68µs

B0 B1 B2 B3 B5 B6 B7B4

The quiescent state of the link is high. A byte is sent by first driving a start bit (0),
followed by the data bits and then a stop bit (1). A rate of 115200 bits/s means
that each bit is driven for 1/115200 = 8:68us.

The program serializes a byte of data and transmits its individual bits over a 1-bit
port using the UART transmission protocol.

The function txByte outputs a byte by first outputting a start bit, following by a
conditional input on a timer that waits for the bit time to elapse; the data bits and
stop bit are output in the same way.

The output statement in the for loop

X3948A

XC-1A Development Board Tutorial 10/16

TXD <: >> byte ;

includes the modifier >>, which right-shifts the value of byte by the port width
(1 bit) after outputting the least significant port-width bits. This operation is
performed in the same instruction as the output, making it more efficient than
shifting the value as a separate operation afterwards.

4.3 Exercise

To complete this part of the tutorial, perform the following steps:

1. Load a terminal emulator program on your PC and connect it to the virtual COM
port provided by the XC-1A. A simple terminal emulator is available from the
XMOS community website.

2. Complete the program by declaring a port for the UART and by writing a main
function that outputs the message Hello World! to this port.

You can find the relevant port in the XC-1A Hardware Manual1.

3. Run your application.

4. The terminal should receive and display the message.

5 Flash and cycle LEDs at different rates

This part of the tutorial shows you how to flash multiple CLOCKLEDs concurrently
on your XC-1A.

5.1 Create an application

The program below flashes a single CLOCKLED.

#include <platform.h>
#define PERIOD 20000000

out port cled0 = PORT_CLOCKLED_0;
out port cled1 = PORT_CLOCKLED_1;
out port cled2 = PORT_CLOCKLED_2;
out port cled3 = PORT_CLOCKLED_3;
out port cledG = PORT_CLOCKLED_SELG;
out port cledR = PORT_CLOCKLED_SELR;

void flashLED (out port led , int period);

int main (void) {
par {

on stdcore [0]: { cledG <: 1;
flashLED (cled0 , PERIOD);

}

1http:/www.xmos.com/published/xc1ahw

X3948A

http:/www.xmos.com/published/xc1ahw

XC-1A Development Board Tutorial 11/16

on stdcore [1]: flashLED (cled1 , PERIOD);
on stdcore [2]: flashLED (cled2 , PERIOD);
on stdcore [3]: flashLED (cled3 , PERIOD);

}
return 0;

}

void flashLED (out port led , int period){
}

Before continuing to the next part of this tutorial, create a new project using this
code.

5.2 Examine the application code

The schematic for the 12 clock-LEDs is shown below; the location of the ports are
shown in the XC-1A Hardware Manual2.

The LED anodes are connected to four 8-bit ports: PORT_CLOCKLED_0 on
XCore 0, PORT_CLOCKLED_1 on XCore 1, PORT_CLOCKLED_3 on XCore 3 and
PORT_CLOCKLED_4 on XCore 4. The LED cathodes are connected to two 1-bit
ports on XCore 0: PORT_CLOCKLED_SELG (green) and PORT_CLOCKLED_SELR (red).
This means that two pins must be driven to illuminate a clock-LED.

The par statement provides a simple way to create concurrent threads that run
independently of one another.

The on statement instructs the compiler on which processor each port is connected
and each thread is executed. An on statement may only be used with threads
created by main, in which case main may contain only channel declarations, a single
par statement and an optional return statement.

The program creates four concurrent threads, each running an instance of a
function flashLED.

2http:/www.xmos.com/published/xc1ahw

X3948A

http:/www.xmos.com/published/xc1ahw

XC-1A Development Board Tutorial 12/16

5.3 Exercise 1

To complete this part of the tutorial, perform the following tasks:

1. Implement the body of the function flashLED so that it flashes a single LED.
Note that the pins are connected to bits 4–6 on the 8-bit port.

2. Build your application, create a new Run Configuration, and run it.

3. On your XC-1A, verify that four LEDs on the clockface flash continually at a fixed
rate, and then click the Terminate button () to stop your application running.

5.4 Exercise 2

To complete this part of the tutorial, perform the following tasks:

1. Experiment with different period values for each of the threads so that the
threads can be seen to be operating independently of one another.

6 Run tasks concurrently

This part of the tutorial shows you how to use XC channels to flash eight of the
LEDs on your XC-1A in the round robin sequence..

6.1 Create an application

The program below flashes a single CLOCKLED.

#include <platform.h>
#define PERIOD 20000000

out port cled0 = PORT_CLOCKLED_0;
out port cled1 = PORT_CLOCKLED_1;
out port cled2 = PORT_CLOCKLED_2;
out port cled3 = PORT_CLOCKLED_3;
out port cledG = PORT_CLOCKLED_SELG;
out port cledR = PORT_CLOCKLED_SELR;

void tokenFlash (chanend left , chanend right , out port led , int delay , int
↩ isMaster) {
timer tmr;
unsigned t;

if (isMaster) /* master inserts token into ring */
right <: 1;

while (1) {
int token;
left :> token; /* input token from left neighbor */
led <: 1;
tmr :> t;
tmr when timerafter (t+ delay) :> void;
led <: 0;
right <: token; /* output token to right neighbor */

X3948A

XC-1A Development Board Tutorial 13/16

}
}

int main (void) {
chan c0, c1, c2, c3;
par {

on stdcore [0]: { cledG <: 1;
tokenFlash (c0, c1, cled0 , PERIOD , 1);

}
on stdcore [1]: tokenFlash (c1, c2, cled1 , PERIOD , 0);
// other cores

}
return 0;

}

Before continuing to the next part of this tutorial, create a new project using this
code.

6.2 Examine the code

An XC channel provides a synchronous, bidirectional link between two threads. It
consists of two channel ends, which two threads can use to interact on demand
using the XC input and output statements.

The function tokenFlash implements a component of the token ring illustrated
below, repeatedly inputting a token from its left neighbor, flashing an LED and
outputting the token to its right neighbor:

The first two function parameters are channel ends, the third an LED port and the
fourth a Boolean value indicating whether or not the thread executing the function
is the designated master. The master inserts a token into the ring.

The XC input and output statements are used to communicate the token between
threads. As channels are synchronous, each output operation blocks until a match-
ing input operation is ready, ensuring that precisely one thread has possession of
the token at any time.

X3948A

XC-1A Development Board Tutorial 14/16

The main function constructs the token ring. A channel is declared using the
keyword chan. The locations of its two channel ends are established through its
use in two statements of the par.

A total of four channels are required to complete this program, each of which must
be used in two threads: once as a left argument and once as a right argument to
the function tokenFlash.

6.3 Exercise 1

To complete this part of the tutorial, perform the following tasks:

1. Modify the function tokenFlash so that it flashes each of the three LEDs con-
nected to its port in sequence, add the required port declarations and complete
the definition of main.

2. Build your application, create a new Run Configuration, and run it.

3. On your XC-1A, verify that the 12 LEDs each flash in sequence as the token
cycles around the four threads, and then click the Terminate button () to stop
your application running.

7 Use a button to change the LED color

This part of the tutorial shows you how to detect a button press and respond to it
by changing the color of the LED cycling around the clockface, using the XC select
statement.

7.1 Examine the code

A select statement is used to respond to one of a set of inputs, depending on
which becomes ready first. If more than one input becomes ready at the same time,
only one is executed.

The function below waits for either a token to be received, in which case it passes
it on, or for a button to be pressed.

void buttonListener (chanend left ,
chanend right ,
in port button ,
out port g,
out port r) {

int token ;
int isGreen = 1;
g <: 1;
while (1)

select {
case left :> token :
/* pass token on */

right <: token ;
break ;

X3948A

XC-1A Development Board Tutorial 15/16

case button when pinsneq (0xf):> void :
/* change color *
...

break ;
}

}

The guarded input statement

case left :> token :

becomes ready when the token arrives, in which case it is input and passed to the
next thread. The guard

case button when pinsneq (0xf):> void :

becomes ready when the value on the pins connected to the port button is not
equal to the bit pattern 0xf. This signifies that the button was pressed.

7.2 Exercise 1

To finish this part of the tutorial, complete the following tasks which build on the
program from the previous section:

1. Add a declaration for the button port (see the XC-1A Hardware Manual3 for
details of the initializer).

2. Complete the function buttonListener and integrate it into the token ring.

Note that you cannot output to a port in two concurrent threads, nor can
you write the same variable in parallel. These restrictions prevent common
programming errors such as race conditions, and ensure that the two threads
can be run on any two cores, regardless of whether they share memory.

3. Run your application.

Press one of the buttons to change the colour of an LED as it circulates around
the clock.

4. On your XC-1A, verify that pressing a button changes the colour of an LED as
it circulates, and then click the Terminate button () to stop your application
running.

8 What to read next

This tutorial provides only a basic introduction the XC-1A hardware.

For more information on the board refer to the XC-1A Hardware Manual4.

3http:/www.xmos.com/published/xc1ahw
4http:/www.xmos.com/published/xc1ahw

X3948A

http:/www.xmos.com/published/xc1ahw
http:/www.xmos.com/published/xc1ahw

XC-1A Development Board Tutorial 16/16

For more information on programming in XC see Programming XC on XMOS
Devices5.

Copyright © 2012, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

5http:/www.xmos.com/published/xc_en

X3948A

http:/www.xmos.com/published/xc_en

	Introduction
	Illuminate an LED
	Flash an LED
	Interface with a host over a serial link
	Flash and cycle LEDs at different rates
	Run tasks concurrently
	Use a button to change the LED color
	What to read next

