
xCONNECT Architecture

IN THIS DOCUMENT

· Channel Communication

· The Switch

· Link layer

· Physical layer: XMOS links

XMOS devices provide a scalable architecture, where multiple xCORE devices can
be connected together to form one system. Each xCORE device has an xCONNECT
interconnect that provides a communication infrastructure for all tasks that run on
the various xCORE tiles on the system.

The interconnect allows packets and streams of data to be communicated with
low latency. Both are circuit switched: a packet is sent by opening a circuit,
transmitting the data, and closing the circuit; a stream never closes the circuit. As
opening and closing the circuit are low-overhead operations that are fully pipelined,
sending packets is a low latency operation.

The interconnect relies on a collection of switches and XMOS links. Each xCORE
device has an on-chip switch that can set up circuits or route data. The switches are
connected by XMOS links. An XMOS link provides a physical connection between
two switches. The switch has a routing algorithm that supports many different
topologies, including lines, meshes, trees, and hypercubes.

Figure 1:

xCONNECT
architecture

At the programming level, communication always takes place between two channel-
ends. A channel-end is a resource on an xCORE tile, that is allocated by the

Publication Date: 2013/11/14 REV A

XMOS © 2013, All Rights Reserved



xCONNECT Architecture 2/14

program. Their identifier comprises a unique number and their tile identifier,
creating a system-wide unique identifier. Data is transmitted to a channel-end from
the program by means of a sequence of output-instructions; and the other side
will execute a series of input-instructions on the remote channel-end in order to
receive data. The xCONNECT architecture will automatically open a communication
circuit through the appropriate switches. The architecture guarantees that all data
output over this stream is delivered in order. If required, the programmer can
partition the network, supporting separation between, for example, data intensive
streams and control streams. Partitioning provides real-time guarantees for parts
of the network that need guarantees.

This document describes how streams and packets are communicated over chan-
nels (the transport layer), the switching fabric (the packet layer), the point-to-point
protocol (the link layer) and the physical layer in turn. This document refers to
configuration registers that are documented in the datasheet of the part that you
use (see the Tile configuration and Node configuration sections).

1 Channel Communication

Programs running on xCORE tiles communicate by sending data from one channel-
end to another channel-end. One channel-end is used to output data on, this
channel-end has its destination set to the other channel-end, that can be used to
input data from. The two channel-ends can be on the same tile, or they can be on
different tiles; it is transparent to the program. If the destination channel-end is
local, data is exchanged between programs running on two logical cores directly.
If the destination channel-end is on a remote xCORE tile, a circuit is opened to the
other tile that is used for data transmission.

1.1 Streams and tokens

The basic entity that can be output onto a channel-end is a token. The architecture
distinguishes data and control tokens. Data tokens are eight bits of data, there
are 256 control tokens that are used to send control information, such as “END
of message”. Of these 256 control-tokens, 124 can be used by the application
software in any way the programmer wishes.

The first token that is output will automatically set up a circuit to the remote
channel-end. Packets are terminated by an END control-token, which will fold up
the circuit between the two channel-ends. If no END token is sent, the circuit is
kept open. A program can temporarily suspend a stream by issuing a PAUSE token
at any time, which frees up the circuit and returns the communication wires to a
low power state. Unlike the END token, the PAUSE token is invisible to the receiver,
and is discarded once the final switch has freed its resources.

Since setting up and folding up of streams is a low-cost process, the network can
be used as a packet switching network, by rapidly opening and creating streams.
The shortest stream comprises just a single END control token, and can be used to,
for example, synchronize two tasks. Much of the transmission of data and control
tokens is overlapped, reducing latency.

REV A



xCONNECT Architecture 3/14

Circuit switched streams can be used to send data that is highly sensitive to jitter.
The number of streams that can be opened simultaneously is limited by the number
of physical links available between switches; each uni-directional stream occupies
one physical link in the direction of the stream. An XS1-L has four bi-directional
links between the tile and switch, so no more than four streams can be open in
one direction simultaneously. If switches are connected by fewer than four Links,
the number of simultaneous streams that can be used is limited to the number of
Links connecting the switches.

1.2 Channel-ends

Each channel-end has an input-side and an output-side. These can be used com-
pletely independently, but normally channel-ends are allocated in pairs and each
channel-end in the pair has its destination set to point to the other one. This
creates a pair of uni-directional channels that can be used for bi-directional commu-
nication and synchronization between two tasks. Indeed, channels in XC comprise
two channel-ends that point to each other.

Channel-ends can be allocated and freed dynamically, and their destination can
be set dynamically. However, once a channel is in use as a stream, its destination
cannot be changed until the stream has finished. Services can be implemented
using many-to-one channels, where multiple channel-ends all point to a single one.
Each of the channel-ends can transmit tokens to the shared channel-end, but if
two circuits are created simultaneously to a single channel-end, then one circuit
will take precedence and be connected, and the other one is blocked until the first
circuit is terminated by an END.

When setting the destination of a channel-end, the destination address comprises a
32-bit resource-id. The most significant 16 bits are the tile and processor identifier.
Bits 8 to 15 are the channel number on the tile, and the lowest 8 bits are the
resource type, which is 0x02 (meaning a channel-end). Channel-end 0xff on each
tile is a “/dev/null” channel and can be used as to sink data if required.

1.3 Control tokens

There are 256 control tokens separated into three classes: those that can be
used by application programs to transmit out-of-band data, those that are used to
communicate with the architecture, and those that are used by the architecture
internally.

Application control-tokens are defined by the compiler or application program,
these are control tokens in the range 0x00 - 0x7f. Application tokens 0x01 and
0x02 are architecturally defined and should not be used for any other purpose;
tokens 0x03 and 0x04 have a predefined conventional meaning but can be used
for other purposes too:

REV A



xCONNECT Architecture 4/14

Name Value Description

END 0x01 End - free up interconnect and inform target

PAUSE 0x02 Pause - free up interconnect but do not inform target

ACK 0x03 Acknowledge operation completed successfully

NACK 0x04 Acknowledge that there was an error

Token values 0x00 and 0x03-0x7F can be used by the application software in
any way that it sees fit. For example, an application control token can be used
in the middle of a message to ensure that the inputting and outputting side are
synchronized. If, at any time, the receiver were to try and input data when a control
token is available or vice versa, the task is trapped, and the program can flag or
maybe recover from software errors. Application control tokens can, for example,
also be used to identify alternatives of a complex data type

In addition to the application tokens, there is a block of tokens that are reserved
for specific operations. These tokens have predefined meanings, and any imple-
mentation should respect those meanings. Below 11 of those tokens are defined,
all other 53 token values between 0x8B and 0xBF are reserved for future use.

Name Value Description

READN 0x80 Read data

READ1 0x81 Read one byte

READ2 0x82 Read two bytes

READ4 0x83 Read four bytes

READ8 0x84 Read eight bytes

WRITEN 0x85 Write data

WRITE1 0x86 Write one byte

WRITE2 0x87 Write two bytes

WRITE4 0x88 Write four bytes

WRITE8 0x89 Write eight bytes

CALL 0x8a Call code at the specified address

Control tokens in the range 0xC0 to 0xFF are reserved for use by the architecture.
Tokens in the range 0xC0-0xDF are privileged tokens that are architecturally
defined and may be interpreted by hardware or privileged software. They are
used to perform system functions including hardware resource sharing, control,
monitoring and debugging. An attempt to transfer one of these tokens to or from
unprivileged software will cause an exception. Tokens in the range 0xE0-0xFF are
hardware tokens that control the physical operation of the link. An attempt to
transfer one of these tokens using an output instruction will cause an exception.

1.4 Virtual networks

By default, all communication happens over a single network. The network can be
partitioned into four virtual networks, each of which uses its own subset of links.

REV A



xCONNECT Architecture 5/14

The “SETN” instruction should be used to set the virtual network of a channel-end.
Any data output on this channel will only be routed over links that share the same
network number.

2 The Switch

The xCORE tile in the XS1-L is connected to the switch by four internal links, and
the switch also allows connection to other chips via up to eight bi-directional XMOS
links; not all of which may be available depending on the package. The switch
implements a full crossbar between these 12 links (four internal links and eight
external links) and can support 12 simultaneous circuits in each direction.

2.1 Headers

When a circuit is opened to a channel-end on a remote tile, the xCORE will create a
header and transmit this header to the switch prior to transmitting the first token.
The header comprises either a single byte or three bytes. The latter is the default
mode, the former is an optimized mode for small systems. In order to select 1-byte
mode, all nodes in the system should be set to generate and expect 1-byte headers
by writing to the Switch configuration register of the node on all nodes.

The 3-byte header comprises a 16-bit tile identifier followed by an 8-bit channel
identifier. The 1-byte header comprises a 3-bit tile identifier and a 5-bit channel
identifier. As such, 3-byte mode scales up to a system of 65536 tiles with 256
channel-ends per tile, whereas the 1-byte header scales up to a system of eight
tiles with 32 channel-ends per tile.

The most significant 16-n bits of a tile identifier specify the node on which the tile
resides. The least significant n bits of a tile identifier specify the tile number on
the node. Each node has its own value for n depending on the number of tiles
per node. For example, on an XS1-L node, n equals 0, and there is only one tile
per node, so all 16 bits are used for the node identifier. In 1-byte mode only the
lowest three bits of the node-identifier are matched. This will comprise 3-n bits of
the node-identifier, and n bits of the tile-identifier.

2.2 Routed links

When a header is received by the switch, it is used to build a circuit. Each bit in the
tile identifier is compared with the local node identifier to decide:

· whether the local node is the final destination of the circuit;

· and if not, in which direction to extend the circuit.

The routing algorithm is as follows:

1. Establish the index of the most significant mismatching bit between the tile-
identifier in the header and the local node-identifier, this is a number between
15 and 0; if the two are identical this number is defined to be -1.

REV A



xCONNECT Architecture 6/14

2. If this mismatching bit index is less than n (defined in the previous section),
then the header is destined to a tile on this node. If a link is available to the
local tile, then this link is opened as the final part of the circuit. If no link
is available, then the header is blocked until a link to the local tile becomes
available.

3. If the mismatching bit index is greater than or equal to n, then the direction
associated with this mismatching bit is looked up in the Direction lookup table.
This table is stored Direction registers of the node configuration. Each entry is
four bits; the first 32-bit register holds the lookup for mismatching bits 0..7,
the second 32-bit register holds the direction for mismatching bits 8..15.

4. Each link is associated with a direction, and when the mismatching bit has
been looked up, the switch finds an enabled link that has the correct direction
and that is not part of any active circuit. The header is forwarded to that link,
and the link is marked as being part of this circuit. If no enabled link has the
required direction, then the header and subsequent tokens are discarded until
the circuit is rolled up. Otherwise, if there are links with the required direction,
but they are all in use, then the header is blocked until a link becomes available.
This will block one of the input links.

5. If the header is blocked, then no more incoming traffic behind the header is
processed. This can deadlock the network in cases where large messages are
sent without knowing whether the inputting side is ready to accept the message.
To create a deadlock-free environment, sender and receiver should agree that
they are ready to exchange a large message by synchronizing using small,
empty, messages; these can always be buffered in the channel-ends concerned
and will hence not block the network. Channel ends can hold at least a word
and one token enabling, for example, an identifier and an end token to be
output unsolicited.

This routing algorithm enables the construction of meshes, hypercubes, trees,
embeddings of each of these inside each other (for example a mesh of trees), and
other networks.

To set up a network, each switch has to be configured by:

1. Setting the node identifier of the switch

2. Setting the direction table of the switch

3. Setting the direction for each enabled link

Two example topologies are shown below; a regular pipeline, and a mesh with
missing wires (or pipe of pipelines). Each node shows the node-identifier, the direc-
tion associated with each link, and the direction associated with each mismatching
bit in the tile identifier. Note that the direction numbers are only relevant within a
node, and we have chosen random numbers (2, 3, 1, 7) for the directions to reflect
this.

If required, up to four separate virtual networks can be created by setting the
network number of a set of links. A header that arrives on a link that belongs to
virtual network X will only be forwarded to a link that also belongs to network X ;

REV A



xCONNECT Architecture 7/14

0000 4000 8000 C000
1 26 75 2

15:5
14:5

15:6
14:2

15:7
14:1

15:2
14:2

A B A B A B

Tile identifier
LinkLink direction

Direction
lookup table

Figure 2:

Example:
Configuring a

pipeline of
four XS1-L8

1 11 1 1 1

11 1

0000 4000

1000 5000

8000 C000

9000 D000

2000 6000

3000 7000

A000 E000

B000 F000
1 1

0

1 1 11

0 0 0

0 0 0 0

0 0 0 0

2 3 2 3 2 3
12:0
13:0
14:2
15:2

12:1
13:0
14:1
15:1

12:0
13:1
14:1
15:1

12:1
13:1
14:1
15:1

12:0
13:0
14:3
15:2

12:1
13:0
14:1
15:1

12:1
13:1
14:1
15:1

12:0
13:0
14:2
15:3

12:1
13:0
14:1
15:1

12:1
13:1
14:1
15:1

12:0
13:0
14:3
15:3

12:1
13:0
14:1
15:1

12:1
13:1
14:1
15:1

12:0
13:1
14:1
15:1

12:0
13:1
14:1
15:1

12:0
13:1
14:1
15:1

Link

Direction
lookup table

Tile identifier

link direction

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B B BC C C

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

AFigure 3:

Example:
Configuring a

pipeline of
four pipelines

of four
XS1-L8s

otherwise it will be blocked or discarded. The channel-ends should also be set
to belong to network X. When setting up networks, no traffic should flow over
the target network, as routing would be ambiguous. Network assignments are
designed to be static, but if a link needs to be reassigned to, for example, the
default network, the link should be disabled before the assignment is changed.

REV A



xCONNECT Architecture 8/14

2.3 Non-routed links

Links can be set to deliver data to a statically determined channel-end instead of
using the routing table. In non-routed mode no header is sent, and the message is
sent to a specified tile and channel-end. One register for each link (the Static Link
Configuration) is used to enable the link, and set the tile/channel identifier.

When an xCORE wants to send data over a non-routed link it sets the channel-end
destination register to address an xCORE tile that differs in place x from the local
tile-id. Destination x is mapped in the lookup table to a direction that is associated
with the required link. The destination channel has no relevance and is set to zero.

REV A



xCONNECT Architecture 9/14

3 Link layer

The link layer protocol operates a point-to-point connection over a bi-directional
XMOS link. The link layer governs when data is transmitted, and how links start
communicating.

An XS1-L has eight bi-directional links, denoted Link A to H; typically the datasheet
abbreviates them as “X0LA” which means Link A of xCORE tile 0. Only a subset of
links is typically bonded out, and some links may be used inside the device. For
example, an XS1-L8A-64-TQ128 has four links bonded out: X0LA, X0LB, X0LC, and
X0LD; they are all connected to tile 0. An XS1-L16A-128-FB324 also has four links
bonded out: X0LA, X0LB, X1LA, and X1LB, two on each of the tiles; internally links
E, F, G, and H of tile 0 are connected to links H, G, F, and E of tile 1.

3.1 Credits

Each link has two counters associated with it: a credit-counter and a credits-issued-
counter. The credit-counter governs whether tokens can be transmitted over the
link: tokens can only be transmitted when the credit counter is not zero, and the
credit counter is decremented for every token that is transmitted. This guarantees
that each token can be stored on the receiving side. The receiving side will issue
credits when it has space available. The receiver uses its credits-issued-counter
and the available space in its input buffers to work out how many credits it can
issue. To save bandwidth, the transmitter issues the largest possible credit token.
The tokens used to issue credits are:

Name Value Description

CREDIT8 0xE0 Give additional 8 tokens of credit

CREDIT64 0xE1 Give additional 64 tokens of credit

CREDIT16 0xE4 Give additional 16 tokens of credit

HELLO 0xE6 Say hello and solicit credits (discussed later)

A transmitter must have a credit counter of at least 7 bits. Hence, it is illegal to
send two subsequent CREDIT64 tokens as this would overflow the credit counter.
It is legal to send a second CREDIT64 when one token has been received.

The only tokens that bypass the credit mechanism are the link-level tokens in the
range 0xE0..0xFF, since these are not stored in the buffers. These tokens can
be transmitted even if no credits are available, and they do not affect the credit
counters. This includes the HELLO and CREDIT tokens.

3.2 Initializing a link

Initially links are disabled. When disabled, no outside signals are coming in. When
a link is enabled, signals come through and are assembled into tokens. Links
should only be enabled when the input and output signals are all low, otherwise
spurious transitions will be observed. A link can be RESET which clears all state,
clearing out any tokens that may have been received.

REV A



xCONNECT Architecture 10/14

A link is initialized by triggering the transmission of a HELLO control token. This
operation clears the credit counter of the XMOS link, and transmits a HELLO control
token. On reception of a HELLO, the receiving XMOS link clears its credits-issued
counter, and issues credits by transmitting one or more CREDIT tokens, setting the
credits-issued counter. On reception of a CREDIT token, the receiving XMOS link
increases its credit-counter. At this stage, both transmitting and receiving sides
have an agreed number of credits, and data can be transmitted in one direction.

The HELLO token is triggered by a write to the control register of the link. This
write can be triggered locally, or by a remote node. In the latter case, the link has
to be enabled and have credits. So one way to set up a bi-directional link is for the
local node to first trigger a HELLO locally, and then send a message to the remote
switch forcing it to say HELLO back. This initializes the credit counters on both
transmitters and both receivers in order to establish a bi-directional link.

The above scheme assumes that the two nodes are reset simultaneously and that
one node is the master. Different schemes can be used for hot-plugging or for
master-slave relationships:

· If hot-plugging is required, links should be set to non-routed mode in software,
a software layer should first enable the link, then repeatedly issue HELLO until it
establishes a link by reading the “credits issued” bit. The software waits between
resetting the link by disabling and enabling it, and issuing HELLOs.

· In some designs there is a master-slave relationship between nodes; for example
a “master”-node that is always on controlling the power-supply of one or more
“slave”-nodes. In this particular case, the master has knowledge that the slave is
in a known state when booted. The master will hence wait for the slave to be
booted, and then the master will enable the link and issue a HELLO.

4 Physical layer: XMOS links

XMOS links use a transition-based non-return-to-zero signalling scheme, where the
signal transitions between ground and VDDIO. Bits are sent at a rate programmed
to meet applications requirements. XMOS links can be switched between a slow
serial mode that uses two wires in each direction (four wires in total), and a fast,
wide mode that needs five wires in each direction (10 wires in total).

4.1 Configuring link width and speed

Bits are transmitted at a speed and width that is set under software control by
writing to the Link Configuration register of the link. The mapping between the
register and the link is specified in the datasheet. The number of clock cycles
between transitions, the number of clock cycles between tokens and the width of
the link are programmed in these registers. On a system-reset the link is set to
a serial XMOS link using two pairs of wires with 400 clock cycles between tokens
and 400 clock cycles between symbols. This link is slow enough to support a wide
variety of devices on the receiving end.

The token spacing field is encoded with an offset of 2, i.e. 0x000 represents
2 cycles delay, 0x001 represents 3 cycles delay, up to 0x7ff representing 2049

REV A



xCONNECT Architecture 11/14

cycles delay. The symbol spacing field is encoded with an offset of 1, i.e. 0x000
represents a single cycle delay, 0x001 represents a two-cycle delay, etc and 0x7ff
represents a 2048 cycle delay. All clock cycles are relative to the switch clock,
which is normally the clock generated by the PLL, but it can be slowed down by
writing to the System Switch Clock Divider register of the node configuration.

The XS1-L cannot receive data if the transmitter does not space the symbols by
at least two clock cycles. So, when two XS1-Ls are running at the same clock,
they should set their symbol/token delay to at least 2. If one of the XS1-Ls has
a lower switch-clock-speed, the other one should adjust its token/symbol delay
accordingly. Assuming a 400 MHz switch clock, the link can be set as fast as 200
Mtransitions/sec, or as slow as 100 Ktransitions per second.

4.2 The serial XMOS link

The serial XMOS link uses two data wires in each direction labelled “0” and “1”. A
transition on wire “0” represents a zero bit and a transition on wire “1” represents
a one bit. It is the transition that signals the bit; the level of the wire is irrelevant.

For each token 10 transitions are made. The first eight transitions encode the 8
bits of the token value, transmitted most significant bit first. The ninth transition
signals whether this is a control or data token. A transition on “1” signals a
control-token, a transition on “0” signals a data-token. The final transition causes
both wires to go back to low state. The two signal wires are both at rest between
tokens.

For example, to send control token 0x09, the following transitions are made:

· Wire “0” to high (signals a zero in bit 7)

· Wire “0” to low (signals a zero in bit 6)

· Wire “0” to high (signals a zero in bit 5)

· Wire “0” to low (signals a zero in bit 4)

· Wire “1” to high (signals a one in bit 3)

· Wire “0” to high (signals a zero in bit 2)

· Wire “0” to low (signals a zero in bit 1)

· Wire “1” to low (signals a one in bit 0)

· Wire “1” to high (signals control token)

· Wire “1” to low (terminate transmission - both wires are in rest state)

4.3 The fast XMOS link

The fast XMOS link uses five wires in each direction to transmit data; 10 wires in
total. The wires are labelled “0”, “1”, “2”, “3”, and “4”. A transition on one of the
five wires transmits a symbol:

REV A



xCONNECT Architecture 12/14

Transition on Symbol Bit value

“0” value 00

“1” value 01

“2” value 10

“3” value 11

“4” escape

A sequence of four symbols is used to encode tokens. If all four are value symbols,
a total of eight bits of data are transferred (a data-token). A control token is
transmitted using one escape symbol, and three value symbols. The bits of data
and control tokens are always transmitted starting with the two most significant
bits. In the case of control tokens, the first two bits of the control token are
determined by the position of the escape symbol in the four transitions:

First Second Third Fourth Encodes

value value value value Data tokens 0x00 - 0xFF

escape value value value Control tokens 0xC0 - 0xFF

value escape value value Control tokens 0x80 - 0xCF

value value escape value Control tokens 0x40 - 0x7F

value value value escape Control tokens 0x00 - 0x3F

For example, to send control token 0x09, the following transitions are made:

· Wire “0” to high (signals 00 bits, bits 5 and 4)

· Wire “2” to high (signals 10 bits, bits 3 and 2)

· Wire “1” to high (signals 01 bits, bits 1 and 0)

· Wire “4” to high (escape, signals a control token in range 0x00-0x3F, hence bits
6 and 7 are 00: 00 00 10 01 = control token 0x09).

When a token has been transmitted, some wires may be left high (in the previous
example four wires were left high). Wires are only returned to zero when a circuit
is PAUSED or ENDED. For this purpose a sequence of an END or PAUSE token and
an optional return-to-zero token are transmitted. They are chosen so that after
them all wires are low.

This means that control tokens 1 (END) and 2 (PAUSE) are not transmitted using
the conventional single escape for control tokens less than 64. Instead there are
sixteen possible sequences to transmit an END or PAUSE token on the 5-wire XMOS
link:

First Second Third Fourth Encodes

escape escape value value 16 different END tokens

value value escape escape 16 different PAUSE tokens

REV A



xCONNECT Architecture 13/14

All of them signal END/PAUSE; but by choosing the appropriate sequence value
symbols, at least two data lines can be taken to zero. This guarantees that after an
END or PAUSE token either zero or two wires are left high.

· If wire “4” is still high, one of the RTNZ tokens is transmitted; chosen to return
both the “4” wire and the last data wire to zero. (note that if wire “4” is high,
exactly one of wires “0”... “3” must be high).

First Second Third Fourth Encodes

escape value11 value11 value00 RTNZ0 (control token 0xFC)

escape value11 value11 value01 RTNZ1 (control token 0xFD)

escape value11 value11 value10 RTNZ2 (control token 0xFE)

escape value11 value11 value11 RTNZ3 (control token 0xFF)

· If two of the wires “0”, “1”, “2” and “3” are still high, a NOPD token is transmitted.
The NOPD token has two transitions on wire “4” and hence leaves wire “4” low.
The two “v” transitions are chosen to return the final two wires to low:

First Second Third Fourth Encodes

escape value value escape 16 NOPD tokens

For example, to send an end-of-message after the control token sent earlier (wires
“0”, “1”, “2”, and “4” are high), transmit the following:

· Wire “4” to low (signals an escape).

· Wire “4” to high (signals a second escape, this is an END token).

· Wire “0” to low.

· Wire “1” to low. Sends the END token, and only wires “4” and “2” are left high;
hence, a RTNZ2 token must be transmitted.

· Wire “4” to low (signals an escape).

· Wire “3” to high (transmits token value 11).

· Wire “3” to low (transmits token value 11).

· Wire “2” to low (transmits token value 10). This has transmitted token 0xFE,
which is a RTNZ2 token that is ignored by the receiver. All wires are now low.

In 5-wire mode, the link-level tokens use special encodings that guarantee that the
wire state is not affected:

REV A



xCONNECT Architecture 14/14

First Second Third Fourth Encodes

escape value00 escape value00 CREDIT8

escape value01 escape value01 CREDIT64

escape value10 escape value10 HELLO

escape value11 escape value11 CREDIT16

4.4 Physical considerations

As the link protocol is transition based, care should be taken to avoid spurious
transitions. In particular, the links assume that they start low. If a noisy power
supply leaves a charge on the links then an external pull down should be placed
on the links.

Over short distances, links can be wired up directly. A small series resistor (33
ohm), can be inserted near the transmitter to terminate the signal for medium
length PCB traces. Over longer distances, the links may have to be transmitted as
LVDS pairs to guarantee correct operation.

4.5 Speed considerations

For a 400 MHz system clock and symbol/token spacing of 2 the transition rate
achievable is 200 Mtransitions/second. The actual speed that can be achieved
depends on the electrical characteristics of the physical connection.

On a two wire system eight bits are transmitted every 10 transitions, leading to
a speed of 160 Mbits/s. On a five wire system, eight bits are transmitted every
four transitions, leading to a speed of 400 Mbits/s. The actual data rate of the
connection is slightly lower since there is an overhead in transmitting credit tokens.

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV A


	Channel Communication
	The Switch
	Link layer
	Physical layer: XMOS links

