
XC Specification

IN THIS DOCUMENT

· Lexical Conventions

· Syntax Notation

· Meaning of Identifiers

· Objects and Lvalues

· Conversions

· Expressions

· Declarations

· Statements

· External Declarations

· Scope and Linkage

· Channel Communication

· Invalid Operations

· Preprocessing

· Grammar

The specification given in this document describes version 1.0 of XC.

The layout of this manual and portions of its text are based upon the K&R definition of C (see X1805).
Commentary material highlighting differences between XC and C is indented and written in smaller type.

1 Lexical Conventions

A program consists of one or more translation units stored in files. It is translated in several
phases, which are described in §13. The first phases perform low-level lexical transformations,
carry out directives introduced by lines beginning with the # character, and perform macro
definition and expansion. When the preprocessing of §13 is complete, the program has been
reduced to a sequence of tokens.

1.1 Tokens

There are six classes of tokens: identifiers, keywords, constants, string literals, operators, and
other separators. Blank spaces, horizontal tabs, newlines, formfeeds, and comments as described
below, collectively referred to as white space, are ignored except as they separate tokens. Some
white space is required to separate otherwise adjacent identifiers, keywords and constants.

Publication Date: 2011/11/22 Document Number: X5965A

XMOS © 2011, All Rights Reserved

http://www.xmos.com/docnum/X1805#kandrc

XC Specification 2/48

1.2 Comments

Two styles of commenting are supported: the characters /* introduce a comment, which terminates
with the characters */, and the characters // introduce a comment, which terminates with a newline.
Comments may not be nested, and they may not occur within string or character literals.

1.3 Identifiers

An identifier is a sequence of letters, digits and underscore (_) characters of any length; the first
character must not be a digit. Upper and lower case letters are different.

1.4 Keywords

The following identifiers are reserved for use as keywords and may not be used otherwise:

auto else return union
break enum short unsigned
case extern signed void
char for sizeof volatile
const if static while
continue int struct
default long switch
do register typedef

The following identifiers are also reserved for use as keywords and may not be used otherwise:

buffered inline out slave
chan isnull par streaming
chanend master port timer
core null select transaction
in on service when

The construction port:n where n is a sequence of digits is also a valid identifier. The sequence of
digits is taken to be decimal and is interpreted as an integer constant. The following identifiers
are reserved for compatibility issues and for future use:

accept claim float restrict
asm double module

X5965A

XC Specification 3/48

1.5 Constants

There are several kinds of constants. Each has a data type; §3.2 discusses the basic types.

constant ::= integer-constant

| character-constant

| enumeration-constant

| null

Floating-point constants are unsupported.

1.5.1 Integer Constants

A sequence of digits is taken to be binary if preceded by 0b or 0B, octal if preceded by 0,
hexadecimal if preceded by 0x or 0X, and decimal otherwise. integer constant may be suffixed by
the letter u or U (unsigned), the letter l or L (long), or both (unsigned long).

The type of an integer constant depends on its form, value and suffix. (See §3 for a discussion of
types.) An unsuffixed decimal constant has the first of the following types in which its value can
be represented: int, long int, unsigned long int; an unsuffixed octal or hexadecimal constant
has the first possible of types: int, unsigned int, long int, unsigned long int. An unsigned
constant has the first possible of types: unsigned int, unsigned long int; a long constant has
the first possible of types: long int, unsigned long int.

1.5.2 Character Constants

A character constant is a sequence of one or more characters (excluding the single-quote and
newline characters) enclosed in single quotes. The value of a character constant with a single
character is the numeric value of the character in the machine’s character set at execution time.
The value of a multi-character constant is implementation-defined.

Wide character constants are unsupported.

The following escape sequences are supported.

newline NL \n backslash \ \\
horizontal tab HT \t question mark ? \?
vertical tab VT \v single quote ' \'
backspace BS \b double quote " \"
carriage return CR \r octal number ooo \ooo
formfeed FF \f hex number hh \xhh
audible alert BEL \a

The escape sequence \ooo requires one, two or three octal digits. The sequence \xhh requires one
or more hexadecimal digits; its behaviour is undefined if the resulting character value exceeds that
of the largest character. For either octal or hexadecimal escape characters, if the implementation

X5965A

XC Specification 4/48

treats the char type as signed, the value is sign-extended as if cast to char type. If any other
character follows the \ then the behaviour is undefined.

1.5.3 Enumeration Constants

Identifiers declared as enumerators (see §7.5) are constants of type int.

1.5.4 Null Constants

The null constant has type null.

1.6 String Literals

A string literal is a sequence of zero or more characters (excluding the double-quote and newline
characters) enclosed in double quotes. It has type “array of characters” and storage class static
(see §3.1) initialised with the given characters. Whether identical string literals are distinct is
implementation-defined, and the behaviour of a program that attempts to alter a string literal is
undefined.

Adjacent string literals are concatenated into a single string. After any concatenation, a null byte
\0 is appended to the string. All of the character escape sequences are supported.

2 Syntax Notation

In the syntax notation used in this manual, syntactic categories are indicated by sans serif type,
and literal words and characters by typewriter style. An optional terminal or nonterminal symbol
carries the subscripted suffix “opt,” so that, for example,

{ expressionopt }

means an optional expression, enclosed in braces. The terms “zero or more” and “one or more”
are represented using angled brackets along with the star (*) and plus (+) symbols respectively, so
that, for example,

〈declaration〉∗

means a sequence of zero or more declarations, and

〈declaration〉+

means a sequence of one or more declarations.

3 Meaning of Identifiers

Identifiers (or names) refer collectively to functions, tags of structures and unions, members
of structures or unions, and objects. An object (or variable) is a location in storage, and its
interpretation depends on its storage class and its type. The storage class determines the lifetime
of the storage associated with the identifier; the type determines the meaning of the values found

X5965A

XC Specification 5/48

in the identified object. A name also has scope, which is the region of the program in which it is
known, and a linkage, which determines whether the same name in another scope refers to the
same object or function. Scope and linkage are discussed in §10.

3.1 Storage Class

An object has either automatic or static storage. Automatic objects are local to a block (§8.4) and
are discarded on exit from the block. Declarations within a block create automatic objects if no
storage class is mentioned, or if the auto or register specifier is used.

Static objects may be local to a block or external to all blocks, but in either case retain their values
across exit from and reentry to functions and blocks. Within a block, static objects are declared
with the keyword static. The objects declared outside all blocks, at the same level as function
definitions, are always static. They may be made local to a particular translation unit by use of the
static keyword; this gives them file-scope (or internal linkage). They become global to an entire
program by omitting an explicit storage class, or by using the keyword extern; this gives them
program-scope (or external linkage).

A function may be declared with the keyword service. This specifier has no effect on the behaviour
of the function; the extent to which suggestions made by using this specifier are effective is
implementation-defined.

3.2 Basic Types

Objects declared as char are large enough to store any member of the execution character set. If a
genuine character from that set is stored in a char object, its value is equivalent to the integer code
for the character, and is non-negative. Other quantities may be stored into char variables, but the
available range of values, and especially whether the value is signed, is implementation-defined.

Objects declared unsigned char consume the same amount of space as plain characters, but
always appear non-negative; explicitly signed characters declared signed char likewise take the
same space as plain characters.

In addition to the char type, up to three sizes of integer are available, declared short int, int
and long int. Plain int objects have the natural size suggested by the host machine architecture.
Longer integers provide at least as much storage as shorter ones, but the implementation may
make plain integers equivalent to either short or long integers. The int types all represent signed
values unless specified otherwise.

Unsigned integers obey the laws of arithmetic modulo 2n where n is the number of bits in the
representation. The set of non-negative values that can be stored in a signed object is a subset of
the values that can be stored in the corresponding unsigned object, and the representation for
the overlapping values is the same.

All of the above types are collectively referred to as arithmetic types, because they can be
interpreted as numbers, and as integral types, because they represent integer values.

The void type specifies an empty set of values; it is used as the type returned by functions that
generate no value.

The C types long long int, float and double are unsupported.

X5965A

XC Specification 6/48

The chan type specifies a logical communication channel over which values can be communicated
between parallel statements (§8.8). The chanend type specifies one end of a communication
channel.

The locations of at most two implied ends of chan (themselves chanends) are defined through the
use of the channel in at most two parallel statements (§8.8).

Channel ends are used as operands of input and output statements (§ 8.3). Channels are
bidirectional and synchronised: an outputter waits for a matching inputter to become ready
before data is communicated. Whether a streaming channel is synchronised or unsynchronised is
implementation-defined.

The port type specifies a p-bit register, which interfaces to a collection of p pins used for
communicating with the environment where p is implementation-defined. The port:n type
specifies an n-bit register, which interfaces to a collection of p pins used for communicating with
the environment (where p need not equal n). A void port is a special type of port that may not be
used for input or output. A port also has a notional transfer type and counter type (see §8.3);
these types are implementation-defined.

Ports are used as operands of input and output statements (§8.3).

The timer type is a special type of input port that returns the current time when input from. A
void timer is a timer that may not be used for input. A timer also has a notional counter type
(see §8.3); this type is implementation-defined.

The core type specifies a processor core on which ports and parallel statements may be placed.
Objects of core type do not reserve storage.

Channel ends, ports, timers and cores are collectively referred to as having resource types. Except
for cores, which do not reserve storage, an object of resource type refers to a location in storage
in which an identifier for the resource is recorded.

chan, chanend, port, timer, core, buffered and streaming are new.

3.3 Derived Types

In addition to the basic types, the following derived types may be constructed in the following
ways:

· Arrays of objects of a given type.

· Functions returning objects of a given type.

· References to objects of a given type.

· Structures containing a sequence of objects of various types.

· Unions capable of containing any one of several objects of various types.

· Lists of objects containing a sequence of objects of various types.

In general these methods of constructing objects can be applied recursively.

Lists of types are used in multiple assignment statements (§8.2); pointers are replaced by references
(see §6.1; §6.3.2; §7.7.2).

X5965A

XC Specification 7/48

3.4 Type Qualifiers

An object’s type may be qualified const, which announces that its value will not be changed; its
range of values and arithmetic properties is unaffected.

A port may be qualified in or out, which announces that it will only be used for input or output
operators (§8.3).

Qualifiers are discussed in §6.3.2 and §7.2.

in and out are new.

4 Objects and Lvalues

An object is a named region of storage; an lvalue is a reference to an object. For example, if
str is an identifier of type “1-dimensional array of char” then str[0] is an lvalue referring to the
character object indexed by the first element of the array str.

A modifiable lvalue is an lvalue which is modifiable: it must not be an array, and must not have a
resource or incomplete type, or be a function. Also, its type must not be qualified with const; if it
is a structure or union, it must not have any member or, recursively, submember qualified with
const.

5 Conversions

Some operators, depending on their operands, cause conversion of the value of an operand from
one type to another. This section explains the results to be expected from such conversions. It
details the conversions demanded by most operators.

5.1 Integral Promotion

A character or a short integer, both either signed or not, may be used in an expression wherever
an integer may be used. If an int can represent all the values of the original type then the value is
converted to int, otherwise the value is converted to unsigned int.

5.2 Integral Conversions

Any integer is converted to a given unsigned type by finding the smallest non-negative value that
is congruent to that integer, modulo one more than the largest value that can be represented in
the unsigned type.

When any integer is converted to a signed type, its value is unchanged if it can be represented in
the new type, and implementation-defined otherwise.

5.3 Arithmetic Conversions

Many operators cause conversions which bring their operands into a common type, which is also
the type of the result. The rules for performing these usual arithmetic conversions are as follows:

· First, integral promotions are performed on both operands.

X5965A

XC Specification 8/48

· If either operand is unsigned long int then the other is converted to unsigned long int.

· Otherwise, if one operand is long int and the other is unsigned int then: if a long int
can represent all values of an unsigned int then the unsigned int operand is converted to
long int, otherwise both operands are converted to unsigned long int.

· Otherwise, if one operand is long int then the other is converted to long int.

· Otherwise, if either operand is unsigned int then the other is converted to unsigned int.

· Otherwise both operands have type int.

5.4 Void

The (nonexistent) value of a void object may not be used in any way, and neither explicit
nor implicit conversion to any non-void type may be applied. An object of type void port or
void timer may not be used for input or output.

6 Expressions

The precedence of expression operators is the same as the order of the major subsections of this
section, highest precedence first. Within each section, the operators have the same precedence.
Left- or right-associativity is specified in each subsection for the operators discussed therein.

The precedence and associativity of operators is fully specified. The order of evaluation of
expressions does not, with certain exceptions, affect the behaviour of the program, even if the
subexpressions involve side effects. In particular, a variable which is changed in one part of an
expression may not unless otherwise stated appear in any other part of the expression. This rule
applies recursively to all variables which are changed in functions called in the expression.

The handling of overflow, divide check, and other exceptions in expression evaluation is
implementation-defined.

6.1 Reference Generation

If the type of an expression is “array of T,” for some type T, then the value of the expression is a
reference to the array, and the type of the expression is altered to “reference to array of T.”

6.2 Primary Expressions

Primary expressions are variable references, function calls, constants, strings, or expressions in
parentheses:

primary-expression ::= variable-reference

| function-call

| constant

| string

| (expression)

X5965A

XC Specification 9/48

A variable reference is a primary expression, providing the identifier named (§6.3) has been
suitably declared as discussed below; the type of the identifier is specified by its declaration; the
type of the expression is that of the identifier.

A function call is a primary expression; the type of the expression depends on the return type of
the function (§6.3.2).

A constant is a primary expression; the type of the expression is that of the constant (which
depends on its form discussed in §1.5).

A string literal is a primary expression; the type of the expression is “array of char.”

A parenthesised expression is a primary expression whose type and value are identical to those of
the unadorned expression.

6.3 Postfix Expressions

The operators in postfix expressions group left to right.

postfix-expression ::= primary-expression

| variable-reference ++
| variable-reference --

variable-reference ::= identifier

| variable-reference [expression]
| variable-reference . identifier

| (variable-reference , type-name)

function-call ::= identifier (expression-listopt)

expression-list ::= expression

| expression , expression-list

6.3.1 Array References

A variable reference followed by an expression in square brackets is a subscripted array reference.
The variable reference must either have type “n-array of T ” or “reference to an n-array of T,” where
n is the number of dimensions and T is some type, and the expression must have integral type;
the type of the subscripted variable reference is T. If the value of the expression is less than zero
or greater than or equal to n then the expression is invalid. See §7.7.1 for further discussion.

6.3.2 Function Calls

A function call is an identifier followed by parentheses containing an optional list of comma-
separated expressions, which constitute the arguments to the function. If the identifier has
type “transaction function returning void” then the call must be within the scope of a transaction

X5965A

XC Specification 10/48

statement (§8.9). Otherwise, the identifier must have type “function returning T,” or “select
function returning T,” for some type T, in which case the value of the function call has type T.

Function declarations are limited to file-scope only (§9). Implicit function declarations (see K&R §A7.3.2)
are unsupported.

The term argument refers to an expression passed by a function call, and the term parameter
refers to an input object (or its identifier) received by a function definition, or described in a
function declaration.

If the type of a parameter is “reference to T,” for some T, then its argument is passed by reference,
otherwise the argument is passed by value. In preparing for the call to a function, a copy is made
of each argument that is passed by value. A function may change the values of these parameter
objects, which are copies of the argument expressions, but these changes cannot affect the values
of the arguments. For objects that are passed by reference, a function may change the values
that these objects dereference, thereby affecting the values of the arguments. For the purpose of
disjointness checking, passing an object by reference counts as a write to that object unless the
type of the parameter is qualified as const or an array of objects qualified as const.

For arguments passed by value, the argument and parameter are deemed to agree in type if the
promoted type of the argument is that of the parameter itself, without promotion. For arguments
passed by reference, the argument and parameter agree in type only if the types are equivalent
(see §7.11) ignoring all qualifiers and array sizes, and obey the following rules:

· An object or an array of objects declared with the qualifier const may only be used as an
argument to a function with parameter qualified const.

· An object declared with the qualifier in may only be used as an argument to a function with
parameter qualified in or void.

· An object declared with the qualifier out may only be used as an argument to a function with
parameter qualified out or void.

· An object declared with the specifier void may only be used as an argument to a function with
parameter specified void. An object not qualified in, out or void may be used as an argument
to a function with parameter qualified either in, out or void.

· An object declared with the qualifier buffered may only be used as an argument to a function
parameter qualified buffered. An object not declared with the qualifier buffered may only be
used as an argument to a function parameter not qualified buffered.

· An object declared with the qualifier streaming may only be used as an argument to a function
parameter qualified streaming. An object not declared with the qualifier streaming may only
be used as an argument to a function parameter not qualified streaming.

· An object declared with an array size of n may only be used as an argument to a function
parameter that is an array of unknown size or of size m where m <= n.

· An object passed to a parameter declared without the qualifier const must be an lvalue.

A variable which is changed in one argument may not appear in any other argument. This rule
applies recursively to all variables appearing in functions called by the arguments.

X5965A

XC Specification 11/48

The arguments passed by value are converted, as if by assignment, to the types of the correspond-
ing parameters of the function’s declaration (or prototype). The number of arguments must be the
same as the number of parameters, unless the declaration’s parameter list ends with the ellipsis
notation (, ...). In that case, the number of arguments must equal or exceed the number of
parameters; trailing integral arguments beyond the explicitly typed parameters undergo integral
promotion (§5.1).

The order of evaluation of arguments is unspecified, but the arguments are completely evaluated,
including all side effects, before the function is entered. Recursive calls to any function are
permitted.

The creation of more than one reference to the same object of basic type, a structure, a union or
an array is invalid. The creation of a reference to a structure, union or array, and to a member or
element recursively contained within is invalid. The creation of more than one reference to objects
contained within distinct members of a union is invalid.

6.3.3 Structure References

A variable reference followed by a dot followed by an identifier is a member reference. The
variable reference must be a structure or union, and the identifier must name a member of the
structure or union. The value is the named member of the structure or union, and its type is the
type of the member.

Structures and unions are discussed in §7.4.

6.3.4 Reinterpretation

A left parenthesis followed by a variable reference followed by a comma followed by a type name
(§7.9) followed by a right parenthesis is a reinterpretation cast.

The variable reference must not specify a resource type; its type must be complete or it must be
an incomplete array with the first dimension missing which, if provided, completes the type. The
variable type name must not be a resource type; it must be complete.

If the size of the type of the variable reference is unknown because it references an array parameter
with unknown size then the following two rules apply. First, if the size of the type name is a
compile-time constant T then at run-time if the size of the variable reference is less than T
then the reinterpret operation is invalid. Second, if the size of the type name is not known at
compile-time because it is an array in which the largest dimension is unspecified then at run-time
the reinterpret operation provides a value for the dimension d such that the size of the resulting
type is not larger than the size of the type of the variable reference, but with a value of d + 1 it
would be.

If the size of the type of the variable reference is a compile-time constant V then the following
two rules apply. First, if the size of the type name is a compile-time constant T then T must not
be greater than V. Second, if the size of the type name is unknown because it references an array
in which the largest dimension is unspecified then a value for this dimension d is completed at
compile-time such that the size of the resulting type is not larger than V, but with a value of d + 1
it would be.

X5965A

XC Specification 12/48

No arithmetic conversions are performed: the effect of the reinterpretation is to treat the variable
as if it had the specified type. An array of size zero is a valid reinterpretation; any attempted
index into the array is invalid.

The use of a reinterpreted object may be invalid if it is not suitably aligned in storage. It is
guaranteed only that an object may be reinterpreted to an object whose type requires less or
equally strict storage alignment; the notion of “alignment” is implementation-defined, but objects
of the char types have the least strict alignment requirements.

6.4 Unary Operators

Expressions with unary operators group right-to-left.

unary-expression ::= postfix-expression

| ++ variable-reference

| -- variable-reference

| unary-operator cast-expression

| sizeof unary-expression

| sizeof (type-name)
| isnull (unary-expression)

unary-operator ::= one of

+ - ~ !

6.4.1 Prefix Incrementation Operators

A unary expression preceded by a ++ or -- operator is a unary expression. The operand is
incremented (++) or decremented (--) by 1. The value of the expression is the value after the
incrementation (decrementation). The operand must be a modifiable lvalue; see the discussion of
additive operators (§6.7) and assignment (§6.17) for details of the operation. The result is not an
lvalue.

6.4.2 Unary Plus Operator

The operand of the unary + operator must have arithmetic type, and the result is the value of its
operand. An integral operand undergoes integral promotion; the type of the result is the type of
the promoted operand.

6.4.3 Unary Minus Operator

The operand of the unary - operator must have arithmetic type, and the result is the negative of
its operand. An integral operand undergoes integral promotion. The negative of an unsigned
quantity is computed by subtracting the promoted value from the largest value of the promoted
type and adding one; but negative zero is zero. The type of the result is the type of the promoted
operand.

X5965A

XC Specification 13/48

6.4.4 One’s (Bitwise) Complement Operator

The operand of the unary ~ operator must have integral type, and the result is the one’s comple-
ment of its operand. The integral promotions are performed. If the operand is unsigned, the result
is computed by subtracting the value from the largest value of the promoted type. If the operand
is signed, the result is computed by converting the promoted operand to the corresponding
unsigned type, applying ~, and converting back to the signed type. The type of the result is the
type of the promoted operand.

6.4.5 Logical Negation Operator

The operand of the ! operator must have arithmetic type, and the result is 1 if the value of its
operand compares equal to 0, and 0 otherwise. The type of the result is int.

6.4.6 Sizeof Operator

The sizeof operator yields the number of bytes required to store an object of the type of its
operand. The operand is either an expression, which is not evaluated, or a parenthesised type
name. When sizeof is applied to a char, the result is 1; when applied to an array, the result is the
total number of bytes in the array. When applied to a structure or union, the result is the number
of bytes in the object, including any padding required to make the object tile an array: the size of
an array of n elements is n times the size of one element. When applied to a reference, the result
is the number of bytes in the object referred to. The operator may not be applied to an operand
of function type, of resource type or of an incomplete type. The operator may not be applied to
an operand of reference type where the reference is to an array of unknown size. The value of the
result is implementation-defined. The result is an unsigned integral constant; the particular type
is implementation-defined.

6.4.7 Isnull Operator

The operand of the isnull operator must be an lvalue. The result is 1 if its operand has value
null, and 0 otherwise. The type of the result is int.

6.5 Casts

A unary expression preceded by the parenthesised name of a type causes conversion of the value
of the expression to the named type.

cast-expression ::= unary-expression

| (type-name) cast-expression

This construction is called a cast. The cast must not specify a structure, a union, an array, or a
resource type; neither must the expression. Type names are described in §7.9. The effects of
arithmetic conversions are described in §5.3. An expression with a cast is not an lvalue.

X5965A

XC Specification 14/48

6.6 Multiplicative Operators

The multiplicative operators *, / and % group left-to-right.

multiplicative-expression ::= cast-expression

| multiplicative-expression * cast-expression

| multiplicative-expression / cast-expression

| multiplicative-expression % cast-expression

The operands of * and / must have arithmetic type; the operands of % must have integral type.
The usual arithmetic conversions are performed on the operands, and determine the type of the
result.

The binary * operator denotes multiplication.

The binary / operator produces the quotient, and the % operator the remainder, of the division
of the first operand by the second; if the second operand is 0 then the result is implementation-
defined. Otherwise, it is always true that (a/b)*b + a%b is equal to a. If both operands are
non-negative, then the remainder is non-negative and smaller than the divisor; if not, it is
guaranteed only that the absolute value of the remainder is smaller than the absolute value of the
divisor.

6.7 Additive Operators

The additive operators + and - group left-to-right.

additive-expression ::= multiplicative-expression

| additive-expression + multiplicative-expression

| additive-expression - multiplicative-expression

For both operators, each operand must have arithmetic type. The usual arithmetic conversions
are performed on the operands, and determine the type of the result. The result of the + operator
is the sum of the operands, and the result of the - operator is the difference of the operands.

6.8 Shift Operators

The shift operators << and >> group left-to-right. For both operators, each operand must be
integral, and is subject to integral promotions. The type of the result is that of the promoted left
operand. The result is undefined if the right operand is negative, or greater than or equal to the
number of bits in the left expression’s type.

shift-expression ::= additive-expression

| shift-expression << additive-expression

| shift-expression >> additive-expression

The result of the << operator is the left operand left-shifted by the number of bits specified by the
right operand. The value of the >> operator is the left operand right-shifted by the number of bits
specified by the right operand.

X5965A

XC Specification 15/48

6.9 Relational Operators

The relational operators < (less), > (greater), <= (less or equal) and >= (greater or equal) group
left-to-right (but this fact is not useful).

relational-expression ::= shift-expression

| relational-expression < shift-expression

| relational-expression > shift-expression

| relational-expression <= shift-expression

| relational-expression >= shift-expression

For all of these operators, each operand must have arithmetic type. The usual arithmetic conver-
sions are performed; the type of the result is int.

All of these operators produce a result of 0 if the specified relation is false and 1 if it is true.

6.10 Equality Operators

equality-expression ::= relational-expression

| equality-expression == relational-expression

| equality-expression != relational-expression

The equality operators == (equal to) and != (not equal to) are analogous to the relational operators
except for their lower precedence.

6.11 Bitwise AND Operator

AND-expression ::= equality-expression

| AND-expression & equality-expression

The operands of the bitwise AND operator & must have integral type. The usual arithmetic
conversions are performed; the result is the bitwise AND function of the operands.

6.12 Bitwise Exclusive OR Operator

exclusive-OR-expression ::= AND-expression

| exclusive-OR-expression ^ AND-expression

The operands of the bitwise exclusive OR operator ^ must have integral type. The usual arithmetic
conversions are performed; the result is the bitwise exclusive OR function of its operands.

6.13 Bitwise Inclusive OR Operator

inclusive-OR-expression ::= exclusive-OR-expression

| inclusive-OR-expression | exclusive-OR-expression

The operands of the bitwise inclusive OR operator | must have integral type. The usual arithmetic
conversions are performed; the result is the bitwise inclusive OR function of its operands.

X5965A

XC Specification 16/48

6.14 Logical AND Operator

logical-AND-expression ::= inclusive-OR-expression

| logical-AND-expression && inclusive-OR-expression

The logical AND operator && groups left-to-right. It returns 1 if both its operands compare unequal
to zero, 0 otherwise. It guarantees left-to-right short-circuit evaluation: the right operand is
evaluated only if the left operand evaluates to 1. The operands must have arithmetic type, but
need not be the same type; the type of the result is int. A variable which is changed by one
operand may appear in the other operand.

6.15 Logical OR Operator

logical-OR-expression ::= logical-AND-expression

| logical-OR-expression || logical-AND-expression

The logical OR operator || groups left-to-right. It returns 1 if either of its operands compares
unequal to zero, 0 otherwise. It guarantees left-to-right short-circuit: the right operand is
evaluated only if the left operand evaluates to 0. The operands must have arithmetic type, but
need not be the same type; the type of the result is int. A variable which is changed by one
operand may appear in the other operand.

6.16 Conditional Operator

conditional-expression ::= logical-OR-expression

| logical-OR-expression ? expression : conditional-expression

If the neither the second and third operands have null type they must have equivalent types
(see §7.11) ignoring all qualifiers except for buffered and streaming, and any array sizes, or they
must both have arithmetic type.

The first expression is evaluated including all side effects; if it compares unequal to 0, the result
is the value of the second expression, otherwise the result is the value of the third expression. If
either the second or third operand has type null, the result has the type of the other operand.
Otherwise, if the second and third operands have equivalent types ignoring qualifiers and any
array sizes, the result type has the common type with qualifiers determined by the following rules:

· If either operand is qualified const, the result is qualified const.

· If either operand is specified with void, the result is specified with void.

· If one operand is qualified in and the other operand is qualified out, the result is specified with
void. Otherwise, if either operand is qualified in or out, the result is also qualified in or out
respectively. If the operands are arrays of different sizes, the result has type “array of unknown
size.”

If the second and third operands have arithmetic type but are not equivalent, the usual arithmetic
conversions are performed, and determine the type of the result.

The expression is a lvalue if no arithmetic conversions are performed and the second and third
operands both have type null or are lvalues.

X5965A

XC Specification 17/48

6.17 Assignment Expressions

There are several assignment operators; all group right-to-left.

assignment-expression ::= conditional-expression

| variable-reference assignment-operator assignment-expression

assignment-operator ::= one of

= *= /= %= += -= <<= >>= &= ^= |=

All require a modifiable lvalue as the left operand. The identifier named by the variable-reference
may appear in any other parts of the assignment, including recursively any functions called, as
long as the variables named by the identifiers in these parts are not changed. The type of an
assignment expression is that of its left operand, and the value is the value stored in the left
operand after the assignment has taken place.

In the simple assignment with =, the value of the expression replaces that of the object referred
to by the lvalue. One of the following must be true: both operands have arithmetic type, in which
case the right operand is converted to the type of the left by the assignment; or both operands
are structures or unions of the same type.

An expression of the form V op = E is equivalent to V = V op (E) except that V is evaluated only
once.

6.18 Comma Operator

A restricted form of the comma operator is supported in for loops (see §8.6).

6.19 Constant Expressions

Syntactically, a constant expression is an expression restricted to a subset of operators.

constant-expression ::= conditional-expression

Expressions that evaluate to a constant are required in several contexts: after case in labelled
statements, as array bounds, and in certain preprocessor expressions.

Constant expressions may not contain assignments, increment or decrement operators or function
calls, except in an operand of sizeof. If the constant expression is required to be integral, its
operands must consist of integer, enumeration and character constants; casts must specify an
integral type.

X5965A

XC Specification 18/48

7 Declarations

Declarations specify the interpretation given to each identifier. Declarations that reserve storage
are called definitions. The syntax of declarations is:

declaration ::= on-statementopt actual-declaration

actual-declaration ::= var-declaration

| fnc-declaration ;
| trn-declaration ;
| sel-declaration ;

on-statement ::= on variable-reference :

var-declaration ::= 〈dec-specifierier〉∗ init-var-declarator-listopt ;

fnc-declaration ::= 〈dec-specifierier〉∗ fnc-declarator

| { dec-specifier-list } fnc-declarator

trn-declaration ::= 〈dec-specifierier 〉∗ transaction fnc-declarator

sel-declaration ::= 〈dec-specifierier〉∗ select fnc-declarator

dec-specifier-list ::= 〈dec-specifier〉∗
| dec-specifier-list , 〈dec-specifierier〉∗

A variable declaration prefixed with on must declare an object of type port or port:n . The variable
following on must refer to an object of type core.

on does not change the meaning of the declaration it prefixes.

The var-declarators in the init-var-declarator-list and the fnc-declarator (see §7.6) contain the
identifiers being declared.

dec-specifier ::= storage-class-specifier

| type-specifier

| type-qualifier

| inline

init-var-declarator-list ::= init-var-declarator

| init-var-declarator , init-var-declarator-list

init-var-declarator ::= var-declarator 〈= initialiser 〉opt

Declarators are discussed later (§7.6); they contain the names being declared. A declaration must
have at least one declarator, or its type specifier must declare a structure tag or a union tag;
empty declarations are not permitted.

X5965A

XC Specification 19/48

7.1 Storage Class Specifiers

The storage class specifiers are:

storage-class-specifier ::= auto
| register
| static
| extern
| typedef
| service

The meanings of the storage classes were discussed in §3.

The auto and register specifiers give the declared objects automatic storage class, and may be
used only within functions. Such declarations also serve as definitions and cause storage to be
reserved.

The static specifier gives the declared objects static storage class, and may be used either inside
or outside functions. Inside a function, this specifier causes storage to be allocated, and serves as
a definition; for its effect outside a function, see §10.2.

The extern specifier, used inside a function, specifies that the storage for the declared objects is
defined elsewhere; for its its effects outside a function see §10.2.

The typedef specifier does not reserve storage and is called a storage class specifier for syntactic
convenience; it is discussed in §7.10.

At most one of each of the storage class specifiers may be given in a declaration. If none is
given, these rules are used: objects declared inside a function are taken to be auto; objects and
functions declared outside a function, at file-scope, are taken to be static, with external linkage.
The specifier service may only be given with external function declarations.

X5965A

XC Specification 20/48

7.2 Type Specifiers

The type specifiers are:

type-specifier ::= void
| char
| short
| int
| long
| signed
| unsigned
| chan
| chanend
| port
| port:n

| timer
| core
| struct-or-union-specifier

| enum-specifier

| typedef-name

At most one of long or short may be specified together with int; the meaning is the same if int is
not specified. At most one of signed or unsigned may be specified together with int, short, long
or char; either may appear alone, in which case int is understood. The signed specifier is useful
for forcing char objects to carry a sign; it is permissible but redundant with other integral types.
void may be specified together with port or port:n to declare a void port; it may be specified
together with timer to specify a void timer.

Otherwise, at most one type specifier may be given in a declaration; if omitted then it is taken to
be int.

Types may also be qualified, to indicate special properties of the objects being declared.

type-qualifier ::= const
| volatile
| in
| out
| buffered
| streaming

const may appear with any type specifier. A const object may be initialised, but not thereafter
assigned or input to. No object may be qualified volatile. A compiler is required to recognise
this qualifier and issue an appropriate error message.

in and out may appear with the port and port:n type specifiers but not with void. An object
qualified in may appear in input operations only, and an object qualified out may appear in output
operations only (§8.3). buffered may appear with the port and port:n type specifiers. streaming
may appear with the chan and chanend type specifiers.

X5965A

XC Specification 21/48

Automatic variables may not be declared with type port, port:n , chanend or core. Static variables
may not be declared with types chan or chanend. Ports specified with void may not be used in
input or output operations.

7.3 inline specifier

Types may be specified inline, to suggest that calls to the function be as fast as possible. A
definition is an inline definition if all the file-scope declarations for a function in the translation
unit include the inline specifier without extern. An inline definition of a function with external
linkage must not contain a definition of a modifiable object with static storage, and must not
contain a reference to an identifier with external linkage.

The extent to which suggestions are effective is implementation-defined.

7.4 Structure and Union Declarations

A structure is an object consisting of a sequence of named members of various types. A union is
an object that contains, at different times, any one of several members of various types. Structures
and unions have the same form.

struct-or-union-specifier ::= struct-or-union identifieropt { 〈member〉+ }
| struct-or-union identifier

struct-or-union ::= struct
| union

A member is a declaration for a member of the structure or union.

member ::= 〈specifier-or-qualifier〉+ struct-var-declarator-list ;

specifier-or-qualifier ::= type-specifier

| type-qualifier

struct-var-declarator-list ::= var-declarator

| var-declarator , struct-var-declarator-list

A type specifier of the form

struct-or-union identifier { 〈member〉+ }

declares the identifier to be the tag of the structure or union specified by the member list. A
subsequent declaration may refer to the same type by using the tag in a specifier without the
member list:

struct-or-union identifier

If a specifier with a tag but without a list appears when the tag is not declared, an incomplete type
is specified. Objects with an incomplete structure or union type may be used in contexts where
their size is not needed. The type becomes complete on occurrence of a subsequent specifier
with that tag, and containing a declaration list. Even in specifiers with a list, the structure or union

X5965A

XC Specification 22/48

type being declared is incomplete within the list, and becomes complete only at the } terminating
the specifier.

A structure or union may not contain a member of incomplete or resource type, except that
a structure may contain a member of type port or timer. If a structure is declared to have a
member with one of these types then variables of the structure may be declared only as external
declarations (see §9).

A structure or union specifier with a list but no tag creates a unique type; it can be referred to
directly only in the declaration of which it is a part.

The names of members and tags do not conflict with each other or with ordinary variables. A
member name may not appear twice in the same structure or union, but the same member name
may be used in different structures or unions.

The members of a structure have addresses increasing in the order of their declarations. A
member of a structure is aligned at an addressing boundary depending on its type.

A union may be thought of as a structure all of whose members begin at offset 0 and whose size
is sufficient to contain any of its members. At most one of the members can be stored in a union
at any time.

If a union contains several structures that share a common initial sequence, and if the union
currently contains one of these structures, it is permitted to refer to the common initial part of
any of the contained structures.

Bit-fields are unsupported.

7.5 Enumerations

Enumerations are unique types with values ranging over a set of named constants called enumera-
tors. The form of an enumeration specifier borrows from that of structures and unions.

enum-specifier ::= enum identifieropt { enumerator-list }
| enum identifieropt { enumerator-list , }
| enum identifier

enumerator-list ::= enumerator

| enumerator-list , enumerator

enumerator ::= identifier

| identifier = constant-expression

The enumerator type is compatible with int; identifiers in an enumerator list are declared as
constants of type int, and may appear wherever constants are required. If no enumerators with
= appear, then the values of the corresponding constants begin at 0 and increase by 1 as the
declaration is read from left to right. An enumerator with = gives the associated identifier the
value specified; subsequent identifiers continue the progression from the assigned value.

Enumerator names in the same scope must all be distinct from each other and from ordinary
variable names, but the values need not be distinct.

X5965A

XC Specification 23/48

The identifier in the enum-specifier names a particular enumeration. The rules for enum specifiers
with and without tags and lists are the same as those for structure or union specifiers, except that
incomplete enumeration types do not exist; the tag of an enum-specifier without an enumerator-list
must refer to an in-scope specifier with a list.

7.6 Declarators

Declarators have the syntax:

var-declarator ::= identifier 〈dimension-size 〉∗
| & identifier

| ? identifier 〈dimension-size〉∗
| & ? identifier

fnc-declarator ::= identifier (parameter-type-listopt)

dimension-size ::= [constant-expressionopt]

The structure of declarators resembles that of function and array expressions; the grouping is the
same.

7.7 Meaning of Declarators

One or more declarators appear after a sequence of storage class and type specifiers. The
declarators may be prefixed by either select or transaction, in which case only storage class
specifiers are permitted as the declaration specifiers; the return type is implicitly void. Each
declarator declares a unique main identifier. The storage class specifiers apply directly to this
identifier, but its type depends on its form.

Considering only the type parts of the declaration specifiers (§7.2), the optional transaction
and select, and a particular declarator, a declaration has the form “opt-transaction-or-select T D”
where T is a type and D is a declarator. The type attributed to the identifier in the various forms of
declarator is described using this notation.

In a declaration T D where D is an unadorned identifier, the type of the identifier is T.

A port may be declared as an external declaration (see §9) or as a parameter only. A channel may
be declared as a local variable only and a channel end may be declared as a parameter only. A
structure containing a member or, recursively, any submember of resource type may be declared
as an external declaration only.

7.7.1 Array Declarators

In a non-parameter declaration T D where D has the form

identifier [constant-expression]

and the type of the identifier in the declaration T identifier is “type-modifier T,” the type of the
identifier of D is “type-modifier n-array of T,” where n is the result of evaluating the constant

X5965A

XC Specification 24/48

expression and specifies the number of elements in the array. The constant expression must have
integral type, and value greater than 0.

In a parameter declaration T D where D has the form

identifier [constant-expression]

and the type of the identifier in the declaration T identifier is “type-modifier T,” the type of the
identifier of D is “reference to type-modifier n-array of T,” where n is the result of evaluating the
constant expression and specifies the number of elements in the array. The constant expression
must have integral type, and value greater than 0.

In a declaration T D where D has the form

identifier []

and the type of the identifier in the declaration T identifier is “type-modifier T,” the type of the
identifier of D is “type-modifier incomplete-array of T.”

An array may be constructed from an arithmetic type, from a structure or union, from a port,
timer, channel or channel end, or from another array (to generate a multi-dimensional array). Any
type from which an array is constructed must be complete; it must not be an array or structure of
incomplete type. This implies that for a multi-dimensional array, only the first dimension may be
missing. The type of an object of incomplete array type is completed either by another, complete,
declaration for the object (§9.2), or by initialising it (§7.8) or, for a function parameter in which
the first dimension is missing, at run-time on entry to the function by the caller.

If E1 is an array and E2 an integer, then E1[E2] refers to the E2th member of E1. Arrays are stored
by rows (last subscript varies faster) so that the first subscript in the declaration helps determine
the amount of storage consumed by an array, but plays no other part in subscript calculations.

7.7.2 Reference Declarators

In a declaration T D where D has the form

& identifier

and the type of the identifier in the declaration T identifier is “type-modifier T,” the type of the
identifier of D is “reference to type-modifier T.”

A reference declared with & may have an arithmetic, structure or union type, and may only be
declared as a function parameter.

X5965A

XC Specification 25/48

7.7.3 Nullable Declarator

In a declaration T D where D has the form

? identifier

and the type of the identifier in the declaration T identifier is “type-modifier T,” the type of the
identifier of D is “nullable type-modifier T.”

A nullable object declared with ? may have a resource type or a reference type, and may only be
declared as a function parameter.

If an object contains a reference to null, it is invalid to reference the object except as the argument
to a function taking a nullable parameter, as the operand of the isnull operator, or as the operand
of the sizeof operator.

7.7.4 Function Declarators

In a function declaration T D where D has the form

D1(parameter-type-list)

and the type of the identifier in the declaration T D1 is “type-modifier T,” the type of the identifier
of D is “type-modifier function with arguments parameter-type-list returning T.” If T has the
form {T1,..., Tn } then the return type is modified to read “list of types T1,...,Tn .” In a function
declaration transaction void D where D has the form

D1(parameter-type-list)

and the type of the identifier in the declaration T D1 is “type-modifier T,” the type of the identifier
of D is “type-modifier transaction function with arguments parameter-type-list returning void.” In
a function declaration select void D where D has the form

D1(parameter-type-list)

and the type of the identifier in the declaration T D1 is “type-modifier T,” the type of the identifier
of D is “type-modifier select function with arguments parameter-type-list returning void.”

The syntax of the parameters is:

parameter-type-list ::= parameter-list

| parameter-list , parameter-declaration

parameter-list ::= parameter-declaration

| parameter-list , parameter-declaration

parameter-declaration ::= 〈dec-specifier〉+ abstract-or-void-dec

abstract-or-void-dec ::= var-declarator

| abstract-var-declarator

X5965A

XC Specification 26/48

The parameter list specifies the types of the parameters. As a special case, the declarator for a
function with no parameters has a parameter list consisting solely of the keyword void. This is
also signified by an empty parameter list. If the parameter type list ends with an ellipsis “, ...”,
then the function may accept more than the number of parameters explicitly described; see §6.3.2.

The only storage class specifier permitted in a parameter’s declaration specifier is register, and
this specifier is ignored unless the function declarator heads a function definition. This specifier
has no effect on the behaviour of the function; the extent to which suggestions made by using
this specifier are effective is implementation-defined.

Similarly, if the declarators contain identifiers and the function declarator does not prefix a
function definition, the identifiers go out of scope immediately. Abstract declarators, which do
not mention the identifiers, are discussed in §7.9.

A function declared with the storage class specifier service may declare only variables of type
chanend.

Old-style C function declarations (see K&R §A8.6.3) are unsupported.

7.8 Initialisation

When an object is declared, its init-var-declarator may specify an initial value for the identifier
being declared. The initialiser is preceded by =, and is either an expression, or a list of initialisers
nested in braces.

initialiser ::= on-statementopt expression

| { initialiser-list }
| { initialiser-list , }

initialiser-list ::= initialiser

| initialiser-list

On statements are discussed in §8.8. If more than one on-statement is used with the same variable
declaration, then all of these statements must refer to the same core.

All the expressions in the initialiser for a static object or array must be constant expressions as
described in §6.19. The expressions in the initialiser for an auto or register object must likewise
be constant expressions if the initialiser is a brace-enclosed list. However, if the initialiser for
an automatic object is a single expression, it need not be a constant expression, but must have
appropriate type for assignment to the object.

Timers, channels and cores must not be explicitly initialised. Timers not declared extern are
initialised, at run-time, to refer to an unaliased hardware timer. Channels not declared extern
are initialised, at run-time, to refer to two unaliased hardware channel ends that are connected
together to create a point-to-point communication link. Ports not declared extern, and not
explicitly initialised, are initialised with an implementation-defined value.

A static object that is not a timer, channel or port, and is not explicitly initialised, is initialised as
if its expression (or its members) were assigned the constant 0. The initial value of an automatic
object with arithmetic type not explicitly initialised is undefined.

X5965A

XC Specification 27/48

The initialiser for an object of arithmetic type is a single expression, possibly in braces. The
expression is assigned to the object. The initialiser for a port is a single constant expression,
possibly in braces. The expression is assigned to the object; its interpretation and validity is
implementation-defined.

The initialiser for a structure is either an expression of the same type, or a brace-enclosed list
of initialisers for its members in order. If there are fewer initialisers in the list than members of
the structure, the trailing members are initialised with 0. There may not be more initialisers than
members.

The initialiser for an array is a brace-enclosed list of initialisers for its members. If the array has
unknown size, the number of initialisers determines the size of the array, and its type becomes
complete. If the array has fixed size, the number of initialisers may not exceed the number of
members of the array; if there are fewer, the trailing members are initialised with 0.

As a special case, a character array may be initialised by a string literal (braces are optional);
successive characters of the string initialise successive members of the array. If the array has
unknown size, the number of characters in the string, including the terminating null character,
determines its size; if its size is fixed, the number of characters in the string, not counting the
terminating null character, must not exceed the size of the array.

The initialiser for a union is either a single expression of the same type, or a brace-enclosed
initialiser for the first member of the union.

An aggregate is a structure or array. If an aggregate contains members of aggregate type, the
initialisation rules apply recursively. Braces may be elided in the initialisation as follows: if the
initialiser for an aggregate’s member that is itself an aggregate begins with a left brace, then
the succeeding comma-separated list of initialisers initialises the members of the subaggregate;
it is erroneous for there to be more initialisers than members. If, however, the initialiser for a
subaggregate does not begin with a left brace, then only enough elements from the list are taken
to account for the members of the subaggregate; any remaining members are left to initialise the
next member of the aggregate of which the subaggregate is a part.

7.9 Type Names

In several contexts (to specify type conversions explicitly with a cast, in a reinterpretation, and to
declare parameter types in function declarators) it is necessary to supply the name of a data type.
This is accomplished using a type name, which is syntactically a declaration for an object of that
type omitting the name of the object.

type-name ::= 〈specifier-or-qualifier〉+ abstract-var-declarator

abstract-var-declarator ::= 〈dimension-size〉∗

7.10 Typedef

Declarations whose storage class specifier is typedef do not declare objects; instead they define
identifiers that name types (called typedef names).

typedef-name ::= identifier

X5965A

XC Specification 28/48

A typedef declaration attributes a type to each name among its declarators in the usual way
(see §7.7). Thereafter, each such typedef name is syntactically equivalent to a type specifier
keyword for the associated type. typedef does not introduce new types, only synonyms for types
that could be specified in another way. Typedef names may be redeclared in an inner scope, but a
non-empty set of type specifiers must be given.

7.11 Type Equivalence

Two type specifier lists are equivalent if they contain the same set of type specifiers, taking into
account that some specifiers can be implied by others (for example, long alone implies long int,
register in formals is ignored). Structures and unions with different tags are distinct, and a
tagless structure or union specifies a unique type.

Two types are the same if their abstract declarators (§7.9), after deleting any function parameter
identifiers, are the same up to equivalence of type specifier lists. Array sizes (including the size of
array parameters) are significant. For each parameter qualified const that is not a reference type,
its type for this comparison is the unqualified version of its type.

8 Statements

Except as described, statements are executed in sequence. Statements are executed for their
effect, and do not have values. They fall into several groups.

statement ::= simple-statementopt ;
| compound-statement

| selection-statement

| iteration-statement

| jump-statement

| parallel-statement

| transaction-statement

simple-statement ::= expression-statement

| multiple-assignment

| input

| output

A semicolon by itself is called a null statement; it is often used to supply an empty body to an
iteration statement.

8.1 Expression Statement

The syntax of an expression statement is:

expression-statement ::= expression

expression ::= assignment-expression

X5965A

XC Specification 29/48

Most expression statements are assignments or function calls. An expression statement must not
have resource type. All side effects from the expression are completed before the next statement
is executed.

8.2 Multiple Assignment Statement

The syntax of a multiple assignment statement is:

multiple-assignment ::= { return-list } arithmetic-operator function-call

return-list ::= optional-variable

| optional-variable , return-list

optional-variable ::= variable-reference

| void

The function must have return type “list of types T1,...,Tn ” where n is the same as the number of
optional variables in the return list.

The rules for assignment (see §6.17) apply to each of the variables in the return list: the ith
value returned by the function replaces that of the object referred to by the ith optional variable
reference. If the optional variable reference is void then the value is discarded.

A variable which is changed in the subscript of an optional variable may not appear in any other
optional variable or in the function call, including the arguments to the function. A variable which
is changed in the function call, including arguments to function may not appear in any optional
variable. These rules apply recursively to variables which are changed or appear in functions
called in the optional variables or the function call.

A variable which is changed by the assignment may not appear in any other optional variable or
recursively appear in functions called in any other optional variable.

If any of the objects assigned to are the same as one another then the assignment is invalid.

8.3 Input and Output Statements

An input statement receives a value from a channel end, port or timer, and assigns the received
value to an object.

input ::= resource timeopt predicateopt input-operator dest input-timestampopt

resource ::= variable-reference

time ::= @ expression

input-operator ::= :>
| :> >>

dest ::= declared-var-reference

X5965A

XC Specification 30/48

input-timestamp ::= @ declared-var-reference

declared-var-reference ::= 〈declaration-specifier〉+ identifieropt

| variable-reference

predicate ::= when function-call

The resource must name either a channel end, port or timer. If the resource names a channel
end or timer then neither a time nor an input-timestamp is allowed. If the resource names a
channel end then a predicate is not allowed. If the resource names a port then the port must not
be qualified out and the destination variable must have arithmetic type.

If a time is provided then the time expression must have arithmetic type. The input is said to be
timed.

If an input-timestamp is provided then the declared-var-reference must name a modifiable lvalue
with arithmetic type. The input is said to be timestamped.

If a predicate is provided then the named function must have been declared to return void and
from its parameter list there must be precisely one port or timer declaration, which must be
qualified void. The input is said to be predicated. The supported predicates are implementation-
defined. The function call is shortcutted: the resource variable must not be passed as an argument;
it is passed implicitly as the port or timer argument.

A declared-var-reference must be a modifiable lvalue if an identifier is named. It must not define
a new type. If the resource names a port or timer then the lvalue must not reference a structure
or union; if no identifier is given then the type must not specify a structure or union, but it may
specify void. If no declaration specifiers are provided then the type of the variable must not be
qualified with const; if it is a structure or union, it must not have any member or, recursively,
submember qualified with const. If any declaration specifiers are provided then the variable
reference is also a declaration; the specifiers must not contain typedef but may contain const.

A variable which is changed by any part of the input may not, except as described below, appear
in any other part of the input. If the declared-var-reference is a variable-reference then the
identifier named may appear in any other parts of the input, as long as the variables named by
the identifiers in these parts are not changed. Additionally, the variable which is written by the
input-timestamp may not appear in the dest, and the variable which is written by the dest may not
appear in the input-timestamp. These rules apply recursively to all variables which are changed in
functions called by the input.

The first variable declared in an input begins an inner scope which is understood to begin
immediately preceding the declaration and which persists to the end of the input. If the input
appears in the case of a select then this scope continues to persist to the end of the statement list
after the colon.

If the resource names a channel end or timer, or the destination identifier is omitted, then the
:> >> operator is not allowed.

X5965A

XC Specification 31/48

An output statement transmits the value of an expression to a channel end or port.

output ::= resource timeopt output-operator expression output-timestampopt

output-operator ::= <:
| <: >>

output-timestamp ::= @ variable-reference

The resource must name a channel end or port. If the resource names a channel end then neither
a time nor an output-timestamp is allowed. If the resource names a port then the port must
not be qualified in and the output expression must have arithmetic type; otherwise the output
expression must either have arithmetic type, or must be a structure or union.

If the resource names a channel end then the <: >> operator is not allowed. If the <: >> is specified
then the output expression must be a modifiable lvalue.

If a time is provided then an output-timestamp is not allowed. The time expression must have
arithmetic type. The output is said to be timed.

If an output-timestamp is provided then the variable reference must be a modifiable lvalue with
arithmetic type. The output is said to be timestamped.

A variable which is changed by any part of the output may not, except as described below, appear
in any other part of the output. The identifier named by the output-timestamp may appear in any
other parts of the output as long as the variables named by the identifiers in these parts are not
changed. These rules apply recursively to all variables which are changed in functions called by
the output.

Input and output statements are new; I/O operations are conventially performed using interrupts and
system calls (via library routines in C).

8.3.1 Channel Input and Output

An input on a channel end causes the processor to wait until a matching outputter is ready in a
parallel statement (see §8.8) before receiving a value. If the type of an input variable is specified
but the identifier is missing then the received value is ignored. See §11 for the meaning of an
input in a channel communication.

An output on a channel causes the processor to wait until a matching inputter is ready in a
parallel statement before sending the value. See §11 for the meaning of an output in a channel
communication.

8.3.2 Port Input and Output

An input from a port causes the specified port to provide the processor a value. If the port transfer
width is w bits, these w bits are assigned to the least significant bits of a variable with the port’s
notional transfer type (see §3.2) with any remaining bits being set to zero. If the type of an
input variable is specified but an identifier is missing, or if a void type is specified, then this

X5965A

XC Specification 32/48

input variable is ignored. If the input is used with the :> >> operator, the destination variable
is right-shifted by w bits and the bitwise inclusive-or of this value and the input variable is then
assigned to the destination variable; otherwise the input variable is assigned to the destination
variable.

If a when condition is provided, the function and its arguments are provided to the port before
performing the input.

An output to a port causes the output expression to be first cast to the port’s notional transfer
type and then provided to the port. If the output is used with the <: >> operator, the output
variable is then right-shifted by w bits.

If the input or output is timed, the value specified by time is cast to the port’s notional counter
type and provided to the port before performing the input or output.

If the input or output is timestamped, t bits are assigned to the least significant bits of a variable
with the port’s notional counter type (see §3.2) with any remaining bits being set to zero; this
variable is then assigned to the timestamp variable.

The meaning of inputs and outputs on ports is implementation-defined.

8.3.3 Timer Input

An input from a timer causes the timer to provide the current value of its counter. This value is
assigned to the least significant bits of a variable with the timer’s notional counter type (see §3.2)
with any remaining bits being set to zero. If the type of an input variable is specified but an
identifier is missing, or if a void type is specified, then this input variable is ignored; otherwise
the input variable is assigned to the destination variable.

8.4 Compound Statement

So that several statements can be used where one is expected, the compound statement (or
“block”) is provided. The body of a function definition is a compound statement.

compound-statement ::= { 〈var-declaration〉∗ 〈statement〉∗ }

If an identifier in the var-declaration-list was in scope outside the block, the outer declaration
is suspended within the block (see §10.1). An identifier may be declared only once in the same
block. These rules apply to identifiers in the same name space (§10); identifiers in different name
spaces are treated as distinct.

Initialisation of automatic objects is performed each time the block is entered at the top, and
proceeds in the order of the declarators. Initialisation of static objects is performed only once,
before the program begins execution.

X5965A

XC Specification 33/48

8.5 Selection Statements

Selection statements choose one of several flows of control.

selection-statement ::= if (expression) statement

| if (expression) statement else statement

| switch (expression) { 〈labelled-statement〉+ }
| select { 〈guarded-statement〉+ }

labelled-statement ::= case constant-expression : 〈statement〉∗
| default : 〈statement〉∗

guarded-statement ::= case replicatoropt enable-expopt input : 〈statement〉∗
| case replicatoropt enable-expopt function-call : 〈statement〉∗
| case replicatoropt enable-expopt slave-statement : 〈statement〉∗
| default : 〈statement〉∗
| case function-call ;

replicator ::= (int variable = expression ; expression ; expression)

enable-exp ::= expression =>

In both forms of the if statement, the expression, which must have arithmetic type, is evaluated,
including all side effects, and if it compares unequal to 0, the first substatement is executed. In
the second form, the second substatement is executed if the expression is 0. The else ambiguity
is resolved by connecting an else with the last encountered else-less if at the same block nesting
level.

The switch statement causes control to be transferred to one of several case statements depending
on the value of the expression, which must have integral type. The controlling expression
undergoes integral promotion (§5.1), and the case constants are converted to the promoted type.
No two of the case constants in the same switch may have the same value after conversion. There
may also be at most one default label associated with a switch.

When the switch statement is executed, its expression is evaluated, including all side effects,
and compared with each case constant. If one of these case constants is equal to the value of
the expression, control passes to the statement of the matched case label. If no case constant
matches the expression, and if there is a default label, control passes to the default-labelled
statement. If no case matches, and if there is no default, then none of the substatements of the
switch is executed.

The select statement causes control to be transferred to one of several guarded case statements.
A guarded statement may consist of an optional replicator and an optional expression followed by
an input (§8.3), a slave transaction statement (§8.9) or a function call, followed by a colon and a
list of zero or more statements.

In a replicator, the third expression must either add or subtract a constant expression to the
variable declared by the replicator. A replicator is short-hand for multiple cases, and has the
same meaning as if the code was expanded as with a for loop. In addition, if the initialiser is
a constant expression and the second expression is a relational expression that compares the

X5965A

XC Specification 34/48

variable declared by the replicator to a constant expression, the variable declared by the replicator
is treated as a constant expression in the replicator body. The declared variable may not be
modified outside of the replicator.

If the statement before the colon is a call to a transaction function (§9.1.1) then this is considered
shorthand for a slave transaction statement that performs the call. The enable expression must
have arithmetic type, and it must not modify a local variable, static variable or reference parameter;
any functions called within the expression, recursively, must not modify a static variable, reference
parameter, or perform an input or output. The modification rules that apply to the enable
expression also apply to the arguments of a call to a select function; the rules also apply to
an input statement that appears before the colon, except that the input lvalue is (by definition)
modified. An input guard that causes any observable behaviour on a port prior to being selected
is invalid. There may be at most one default label associated with a select.

A guarded statement may also consist of a call to a select function (see §9.1.2) followed by a
semicolon. The rules that apply to the enable expression also apply to the arguments of a call to a
select function. The ports, timers and channel ends named before each colon, and as arguments
to a select function, must be distinct.

When the select statement is executed, each guard that contains no enable expression is enabled.
For each guard containing an enable expression, the expression is evaluated and, if it compares
unequal to 0, the case is enabled. The behaviour of a call to a select function is the same as if the
cases of the select function were included inline in the select.

Following the enabling sequence, if no cases are enabled then either the default case is executed,
if provided, or none of the substatements of the select is executed and the select never completes
(it deadlocks). Otherwise, the select waits until an input or transaction in one of the enabled cases
is ready and performs the corresponding input or transaction. If more than one of these inputs or
transactions is ready then the choice of which is executed is made nondeterministically.

After performing an input or transaction, the statements following the colon of the selected case
are executed.

The statements after the colon in each select case statement must terminate with a break or return, so
that control never flows from one case statement to the next.

8.6 Iteration Statements

Iteration statements specify looping.

iteration-statement ::= while (expression) statement

| do statement while (expression) ;
| for (for-initopt ; expressionopt ; simple-listopt) statement

for-init ::= var-declaration

| simple-list

simple-list ::= simple-statement

| simple-statement , simple-list

X5965A

XC Specification 35/48

In the while and do statements, the substatement is executed repeatedly so long as the value of
the expression remains unequal to 0; the expression must have arithmetic type. With while, the
test, including all side effects from the expression, occurs before each execution of the statement;
with do, the test follows each iteration.

A for statement may declare a variable (see §3), whose scope begins immediately after the
declaration and persists to the end of the statement; if present, the variable initialiser is evaluated
once. Alternatively, if a list of simple statements is provided, the statements are executed once.
The expression must have arithmetic type; it is evaluated before each iteration, and if it is equal
to 0, the for is terminated. The optional list of simple statements following the second semicolon
is evaluated after each iteration. Any of these three components may be dropped; a missing test
expression makes the implied test equivalent to testing a non-zero constant.

8.7 Jump Statements

Jump statements transfer control unconditionally.

jump-statement ::= continue ;

| break ;
| return expressionopt ;
| return { expression-list } ;

A continue statement may appear only within an iteration statement, and may not appear in a
parallel, master or slave statement, unless that statement contains an iteration statement in which
it is enclosed. It causes control to pass to the loop-continuation portion of the smallest enclosing
such statement.

A break statement may appear only in an iteration statement, a switch statement or a select
statement, and may not appear in a parallel, master or slave statement, unless that statement
contains an iteration, switch or select statement in which it is enclosed. It terminates execution
of the smallest enclosing such statement; control passes to the statement following the terminated
statement.

A function returns to its caller by the return statement. A return statement may not appear in
a parallel, master or slave statement. When return is followed by an expression, the value is
returned to the caller of the function. The expression is converted, as if by assignment, to the
type returned by the function in which it appears.

When return is followed by an list of expressions in braces, the list of values is returned to the
caller of the function. For a return with n expressions, the return type of the function must
be “list of types T1,...,Tn .” For all expressions (i=1..n), the ith expression is converted, as if by
assignment, to the ith type returned by the function in which it appears.

Flowing off the end of a function is equivalent to a return with no expression. In either case, the
returned value is undefined.

goto is unsupported.

X5965A

XC Specification 36/48

8.8 Concurrency Statement

So that several statements can be executed concurrently, the parallel statement is provided.

parallel-statement ::= par replicatoropt { 〈thread〉∗ }

thread ::= on-statementopt statement

Replicators are discussed in §8.5. In addition, the initialiser must assign a constant expression,
and the second expression must be a relational expression that compares the variable declared
by the replicator to a constant expression. The relation operator may not be equality or inequality
and the condition must be satisfiable for some value of the declared variable (for example, x >
MAX_INT is disallowed).

An on-statement is only permitted if it appears in a parallel-statement that is either the only
statement in the enclosing function, or if it is one of two statements of a function compound-
statement, the second being a return statement that returns a constant expression that evaluates
to 0.

on does not change the behaviour of the statement it prefixes.

Values may be passed between concurrent statements by communication on channels (§3.2) using
input and output statements (§8.3).

Variables and channels used in parallel statements are subject to usage rules which prevent them
from being accidentally shared between statements in potentially dangerous ways, as described
below.

A variable which is changed by assignment or input in one of the statements of a par may not
appear in any other statement of the par. This rule applies recursively to all variables which are
changed by assignment or input in a function that is called by a statement of a par.

(By implication, a variable may appear in expressions in any number of statements of a par so
long as it is not assigned or input in any of these statements.)

A channel may not be used in more than two statements of a par. Channel ends, ports and timers
may not be used in more than one statement of a par.

If a statement contains of a number of sub-statements, such as a compound-statement (§8.4),
then all of the sub-statements are considered together as a single statement for the purpose of
this rule.

X5965A

XC Specification 37/48

8.9 Transaction Statement

So that several communications over a channel can be logically grouped together, the transaction
statement is provided.

transaction-statement ::= slave-statement

| master-statement

slave-statement ::= slave statement

master-statement ::= master statement

All inputs and outputs within master or slave are logically part of the same transaction; the extent
to which the underlying communication protocols are optimised for transaction communications
is implementation-defined.

The statements must reference precisely one channel end, which is said to be the transactor. If
the variable reference designating the transactor contains any array indices then the indices must
be constant expressions. The transactor must not name a streaming channel.

Within a transaction statement, inputs and outputs on any channel end other than the transactor
is prohibited; using a channel end other than the transactor as an argument to a function is
prohibited; using the transactor as an argument to a function that is not a transaction function is
prohibited; introducing a nested transaction statement is prohibited; and declaring a channel (in
the statement or, recursively, in any function called within the transaction) is prohibited.

9 External Declarations

The unit of input provided to the XC compiler is called a translation unit; it consists of a sequence
of external declarations, which are either declarations or function definitions.

translation-unit ::= 〈external-declaration〉+

external-declaration ::= declaration

| function-definition

The scope of external declarations persists to the end of the translation unit in which they are
declared.

9.1 Function Definitions

Function definitions have the form:

function-definition ::= fnc-declaration compound-statement

| trn-declaration compound-statement

| sel-declaration { 〈guarded-statement〉+ }

The only storage-class specifiers allowed among the declaration specifiers are extern, static
or inline; see §10.2 for the effect. The ellipses “, ...” operator is not allowed in function
definitions.

X5965A

XC Specification 38/48

A function may return an arithmetic type, a structure, a union or void, but not a resource type,
a function or an array. Alternatively it may return a list of any combination of arithmetic types,
structures and unions. A function may not return a structure containing a member or, recursively,
any submember of resource type.

Unless the parameters consist solely of void, indicating that the function takes no parameters,
each declarator in the parameter list must contain an identifier. The parameters are understood to
be declared just after the beginning of the compound statement constituting the function’s body,
and thus the same identifiers must not be redeclared there (although they may be redeclared
in inner blocks). During the call to a function, the arguments are converted as necessary and
assigned to the parameters; see §6.3.2.

9.1.1 Transaction Functions

A function declaration modified by the keyword transaction is a transaction function (see §7.7.4).
The function body consists of a list of statements, which is by definition a transaction statement
(see §8.9). The function must declare precisely one channel end in its parameter list, which is by
definition the transactor.

9.1.2 Select Functions

A function declaration modified by the keyword select is a select function (see §7.7.4). The
function body consists of a list of guarded statements, which is by definition a select statement
(see §8.5). The guards of a select function may not contain replicators or transactors.

9.2 External Declarations

External declarations specify the characteristics of objects, functions and other identifiers. The
term “external” refers to their location outside functions, and is not directly connected with the
extern keyword; the storage class for an externally-declared object may be left empty, or it may
be specified as extern or static.

Several external declarations for the same identifier may exist within the same translation unit if
they agree in type and linkage, and if there is at most one definition for the identifier.

Two declarations for an object or function are deemed to agree in type under the rules discussed
in §7.11. In addition, if the declarations differ because one type is an incomplete structure or
union and the other is the corresponding completed type with the same tag, the types are taken
to agree. If one type is an incomplete array type (§7.7.1) and the other is a completed array type,
the types, if otherwise identical, are also taken to agree.

If the first external declaration for a function or object includes the static specifier, the identifier
has file-scope (internal linkage); otherwise it has program-scope (external linkage). Linkage is
discussed in §10.2.

An external declaration for an object is a definition if it has an initialiser. An external object
declaration that does not have an initialiser, and does not contain the extern specifier, is a
tentative definition. If a definition for an object appears in a translation unit, any tentative

X5965A

XC Specification 39/48

definitions are treated as redundant declarations. If no definition for the object appears in the
translation unit, all its tentative definitions become a single definition with initialiser 0.

Each object must have exactly one definition. For objects with internal linkage, the rules apply
separately to each translation unit. For objects with external linkage, it applies to the entire
program.

10 Scope and Linkage

There are two kinds of scope to consider: first, the lexical scope of an identifier, which is the region
of the program text within which the identifier’s characteristics are understood; and second, the
scope associated with objects with external linkage, which determines the connections between
identifiers in separately compiled translation units.

10.1 Lexical Scope

Identifiers fall into several name spaces that do not interfere with one another; the same identifier
may be used for different purposes, even in the same scope, if the uses are in different name
spaces. These classes are: objects and functions; tags of structures and unions; and members of
each structure or union individually.

The lexical scope of an object or function identifier in an external declaration begins at the end
of its declarator and persists to the end of the translation unit in which it appears. The scope of
a parameter of a function definition begins at the start of the block defining the function, and
persists through the function; the scope of a parameter in a function declaration ends at the end
of the declarator. The scope of an identifier declared at the head of a block begins at the end of
its declarator, and persists to the end of the block. The scope of a structure or union begins at its
appearance in a type specifier, and persists to the end of the translation unit (for declarations at
the external level) or to the end of the block (for declarations within a function).

If an identifier is explicitly declared at the head of a block, including the block constituting a
function, any declaration of the identifier outside the block is suspended until the end of the
block.

10.2 Linkage

Within a translation unit, all declarations of the same object or function identifier with internal
linkage refer to the same thing, and the object or function is unique to that translation unit. All
declarations for the same object or function identifier with external linkage refer to the same
thing, and the object or function is shared by the entire program.

The first external declaration for an identifier gives the identifier internal linkage if the static
specifier is used, external linkage otherwise.

An inline definition (§7.3) does not provide an external definition for the function and does not
forbid an external definition. An inline definition provides an alternative to an external definition
which may be used it implement any call to the function in the same translation unit. It is
unspecified whether a call to the function uses the inline definition or the external definition.

X5965A

XC Specification 40/48

11 Channel Communication

A channel communication occurs when, on the same channel,

· an output is executed in parallel with an input, or

· a master transaction is executed in parallel with a slave transaction.

An output executed in parallel with a slave transaction is invalid; a master transaction executed in
parallel with an input is invalid.

Outside a transaction, an output-input communication in which the number of bytes output is
unequal to the number of bytes input is invalid. Inside a transaction, if all communications are
valid individually then the transaction is also valid. Additionally, if a communication occurs in
which the number of bytes output is unequal to the number of bytes input then whether or not
the transaction is invalid, and the value communicated, is implementation-defined.

An invalid communication within a transaction need not cause the transaction to become invalid
until slave transaction statement goes out of scope.

The meaning of an output-input communication in which the type of the output expression e
is the same as the type of the input variable v is the same as the assignment v = e. If the
types are different and the communication is not invalid then the meaning is the assignment
v = (e, type(v)) (see §6.3.4).

12 Invalid Operations

An operation that is syntactically legal but for some reason or under some circumstances is
semantically invalid may be treated in one of three ways:

· It may be reported as a compiler error.

· It may have implementation-defined behaviour, for example the processor could issue a trap,
and a trap handler could terminate the program.

· It may result in undefined behaviour.

If at time t a program is guaranteed to execute some sequence of events that cause it to become
invalid at some time in the future t+n then it is permitted to become invalid any time during
[t..t+n]. This allows an implementation to improve code efficiency, for example by relocating
safety checks outside of loops.

13 Preprocessing

The preprocessor specification is defined to be the same as with C99 §6.10 (see X1805), with the
following exceptions:

· The macro __XC__ is defined as 1.

· The macros __STDC__, __STDC_HOSTED__ and __STD_VERSION__ are not defined.

X5965A

http://www.xmos.com/docnum/X1805#c99

XC Specification 41/48

14 Grammar

Below is a summary of the grammar given throughout this document. The grammar has undefined
terminal symbols integer-constant, character-constant, identifier, string and enumeration-constant;
words and symbols wrtten in typewriter are terminals given literally.

translation-unit ::= 〈external-declaration〉+

external-declaration ::= declaration

| function-definition

function-definition ::= fnc-declaration compound-statement

| trn-declaration compound-statement

| sel-declaration { 〈guarded-statement〉+ }

declaration ::= on-statementopt actual-declaration

actual-declaration ::= var-declaration

| fnc-declaration ;
| trn-declaration ;
| sel-declaration ;

on-statement ::= on variable-reference :

var-declaration ::= 〈dec-specifierier〉∗ init-var-declarator-listopt ;

fnc-declaration ::= 〈dec-specifierier〉∗ fnc-declarator

| { dec-specifier-list } fnc-declarator

trn-declaration ::= 〈dec-specifierier 〉∗ transaction fnc-declarator

sel-declaration ::= 〈dec-specifierier〉∗ select fnc-declarator

dec-specifier-list ::= 〈dec-specifier〉∗
| dec-specifier-list , 〈dec-specifierier〉∗

dec-specifier ::= storage-class-specifier

| type-specifier

| type-qualifier

| inline

X5965A

XC Specification 42/48

storage-class-specifier ::= auto
| register
| static
| extern
| typedef
| service

type-specifier ::= void
| char
| short
| int
| long
| signed
| unsigned
| chan
| chanend
| port
| port:n

| timer
| core
| struct-or-union-specifier

| enum-specifier

| typedef-name

type-qualifier ::= const
| volatile
| in
| out
| buffered
| streaming

struct-or-union-specifier ::= struct-or-union identifieropt { 〈member〉+ }
| struct-or-union identifier

struct-or-union ::= struct
| union

init-var-declarator-list ::= init-var-declarator

| init-var-declarator , init-var-declarator-list

init-var-declarator ::= var-declarator 〈= initialiser 〉opt

member ::= 〈specifier-or-qualifier〉+ struct-var-declarator-list ;

X5965A

XC Specification 43/48

specifier-or-qualifier ::= type-specifier

| type-qualifier

struct-var-declarator-list ::= var-declarator

| var-declarator , struct-var-declarator-list

enum-specifier ::= enum identifieropt { enumerator-list }
| enum identifieropt { enumerator-list , }
| enum identifier

enumerator-list ::= enumerator

| enumerator-list , enumerator

enumerator ::= identifier

| identifier = constant-expression

var-declarator ::= identifier 〈dimension-size 〉∗
| & identifier

| ? identifier 〈dimension-size〉∗
| & ? identifier

fnc-declarator ::= identifier (parameter-type-listopt)

dimension-size ::= [constant-expressionopt]

parameter-type-list ::= parameter-list

| parameter-list , parameter-declaration

parameter-list ::= parameter-declaration

| parameter-list , parameter-declaration

parameter-declaration ::= 〈dec-specifier〉+ abstract-or-void-dec

abstract-or-void-dec ::= var-declarator

| abstract-var-declarator

initialiser ::= on-statementopt expression

| { initialiser-list }
| { initialiser-list , }

initialiser-list ::= initialiser

| initialiser-list

type-name ::= 〈specifier-or-qualifier〉+ abstract-var-declarator

abstract-var-declarator ::= 〈dimension-size〉∗

X5965A

XC Specification 44/48

typedef-name ::= identifier

statement ::= simple-statementopt ;
| compound-statement

| selection-statement

| iteration-statement

| jump-statement

| parallel-statement

| transaction-statement

simple-statement ::= expression-statement

| multiple-assignment

| input

| output

compound-statement ::= { 〈var-declaration〉∗ 〈statement〉∗ }

selection-statement ::= if (expression) statement

| if (expression) statement else statement

| switch (expression) { 〈labelled-statement〉+ }
| select { 〈guarded-statement〉+ }

labelled-statement ::= case constant-expression : 〈statement〉∗
| default : 〈statement〉∗

guarded-statement ::= case replicatoropt enable-expopt input : 〈statement〉∗
| case replicatoropt enable-expopt function-call : 〈statement〉∗
| case replicatoropt enable-expopt slave-statement : 〈statement〉∗
| default : 〈statement〉∗
| case function-call ;

replicator ::= (int variable = expression ; expression ; expression)

enable-exp ::= expression =>

iteration-statement ::= while (expression) statement

| do statement while (expression) ;
| for (for-initopt ; expressionopt ; simple-listopt) statement

for-init ::= var-declaration

| simple-list

simple-list ::= simple-statement

| simple-statement , simple-list

X5965A

XC Specification 45/48

jump-statement ::= continue ;

| break ;
| return expressionopt ;
| return { expression-list } ;

parallel-statement ::= par replicatoropt { 〈thread〉∗ }

thread ::= on-statementopt statement

transaction-statement ::= slave-statement

| master-statement

slave-statement ::= slave statement

master-statement ::= master statement

expression-statement ::= expression

expression ::= assignment-expression

assignment-expression ::= conditional-expression

| variable-reference assignment-operator assignment-expression

assignment-operator ::= one of

= *= /= %= += -= <<= >>= &= ^= |=

conditional-expression ::= logical-OR-expression

| logical-OR-expression ? expression : conditional-expression

constant-expression ::= conditional-expression

logical-OR-expression ::= logical-AND-expression

| logical-OR-expression || logical-AND-expression

logical-AND-expression ::= inclusive-OR-expression

| logical-AND-expression && inclusive-OR-expression

inclusive-OR-expression ::= exclusive-OR-expression

| inclusive-OR-expression | exclusive-OR-expression

exclusive-OR-expression ::= AND-expression

| exclusive-OR-expression ^ AND-expression

AND-expression ::= equality-expression

| AND-expression & equality-expression

X5965A

XC Specification 46/48

equality-expression ::= relational-expression

| equality-expression == relational-expression

| equality-expression != relational-expression

relational-expression ::= shift-expression

| relational-expression < shift-expression

| relational-expression > shift-expression

| relational-expression <= shift-expression

| relational-expression >= shift-expression

shift-expression ::= additive-expression

| shift-expression << additive-expression

| shift-expression >> additive-expression

additive-expression ::= multiplicative-expression

| additive-expression + multiplicative-expression

| additive-expression - multiplicative-expression

multiplicative-expression ::= cast-expression

| multiplicative-expression * cast-expression

| multiplicative-expression / cast-expression

| multiplicative-expression % cast-expression

cast-expression ::= unary-expression

| (type-name) cast-expression

unary-expression ::= postfix-expression

| ++ variable-reference

| -- variable-reference

| unary-operator cast-expression

| sizeof unary-expression

| sizeof (type-name)
| isnull (unary-expression)

unary-operator ::= one of

+ - ~ !

postfix-expression ::= primary-expression

| variable-reference ++
| variable-reference --

X5965A

XC Specification 47/48

primary-expression ::= variable-reference

| function-call

| constant

| string

| (expression)

variable-reference ::= identifier

| variable-reference [expression]
| variable-reference . identifier

| (variable-reference , type-name)

function-call ::= identifier (expression-listopt)

expression-list ::= expression

| expression , expression-list

multiple-assignment ::= { return-list } assignment-operator function-call

return-list ::= optional-variable

| return-list , optional-variable

optional-variable ::= variable-reference

| void

input ::= resource timeopt predicateopt input-operator dest input-timestampopt

resource ::= variable-reference

time ::= @ expression

input-operator ::= :>
| :> >>

dest ::= declared-var-reference

input-timestamp ::= @ declared-var-reference

declared-var-reference ::= 〈declaration-specifier〉+ identifieropt

| variable-reference

predicate ::= when function-call

output ::= resource timeopt output-operator expression output-timestampopt

output-operator ::= <:
| <: >>

X5965A

XC Specification 48/48

output-timestamp ::= @ variable-reference

constant ::= integer-constant

| character-constant

| enumeration-constant

| null

Copyright © 2011, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

X5965A

	Lexical Conventions
	Syntax Notation
	Meaning of Identifiers
	Objects and Lvalues
	Conversions
	Expressions
	Declarations
	Statements
	External Declarations
	Scope and Linkage
	Channel Communication
	Invalid Operations
	Preprocessing
	Grammar

