
Introduction to XS1 ports

IN THIS DOCUMENT

· Introduction

· Unbuffered data transfer

· Buffered data transfer

· Serialized data transfer

· Strobing

· Bidirectional ports

· Hardware port pin-out

· Port identifiers

· Port and clock configuration

1 Introduction

A port connects an xCORE tile to one or more physical pins and as such defines
the interface between hardware attached to an xCORE multicore microcontroller
and software running on the xCORE device. The port logic can drive its pins high
or low, or it can sample the value on its pins, optionally waiting for a particular
condition. Ports are accessed using dedicated instructions.

Data is transferred between the pins and core using a FIFO that comprises a SERDES
and transfer register, providing options for serialization and buffered data.

PINS

readyIn

CORE

PORT

SERDES

FIFO

clock
block

transfer
register

port counter

port
value

1-bit portreference clock

stamp/time

port
logic

output (drive) all blocks optional input (sample)

conditional
value

readyOut

Figure 1:

Port block
diagram

Publication Date: 2013/11/12 REV A

XMOS © 2013, All Rights Reserved

Introduction to XS1 ports 2/15

1.1 Port counters

Each port has a counter that can be used to control the time at which data is
transferred between the port value and transfer register. Port counters are 16-bit
and tick once for each cycle of the clock input, incrementing on the falling edge of
the signal. The counter values can be obtained at any time to find out when data
was obtained, or used to delay I/O until some time in the future.

The port counter value is automatically stored in the timestamp register when data
is moved into or out of the transfer register. The timestamped value is available to
the application programmatically providing precise control of response times.

As the port counter counts in the application clock domain, it is only a measure of
time if the input clock is a signal that has clock edges at regular intervals. If the
clock is irregular the port counter is not a measure of time.

1.2 Clock blocks

Many I/O operations need data to be sampled and driven on specific edges of a
clock. xCORE devices include a set of programmable clocks called clock blocks
that can be used to govern the rate at which ports execute. Each xCORE tile has
six clock blocks: XS1_CLKBLK_REF is the tile reference clock and runs at a default
frequency of 100MHz; XS1_CLKBLK_1 to 5 can be set to run at different frequencies.

readyIn

... ...

clock block

port counter

1-bit portdivider
100MHz
reference
clock

Figure 2:

Clock block
diagram

A clock block can use a 1-bit port as its clock source allowing external application
clocks to be used to drive the input and output interfaces.

A clock block may use the reference clock as its clock source and divide the tile
reference frequency using an 8-bit divider. When this is set to 0, the reference
clock passes directly to the output. The falling edge of the clock is used to perform
the division. Hence a setting of 1 results in an output from the clock which changes
each falling edge of the input, halving the input frequency f ; and a setting of n
produces an output frequency of f/2n.

REV A

Introduction to XS1 ports 3/15

1.3 Strobe signals

In many cases I/O signals are accompanied by strobing signals. The xCORE ports
can input and interpret strobe (known as readyIn and readyOut) signals generated
by external sources, and ports can generate strobe signals to accompany output
data.

See Section §5 for further information on strobe signals.

2 Unbuffered data transfer

When a port is used in unbuffered mode, the signalling operation of the pins is
synchronized with the core instruction execution.

2.1 Clocked ports

Data input or output on a clocked unbuffered port is defined as follows:

· An output causes data to be driven on the next falling edge of the port’s clock.
The data output changes state synchronously with the port clock.

· An input causes data to be sampled by the port on the next rising edge of the
port’s clock. The data input is sampled synchronously with the port clock.

2.2 Timed ports

If an input or output port is configured to wait for a port counter, the port waits
until the counter has reached the specified value and then moved the data to the
transfer register.

If the port is used for an output operation and the transfer register is full, the
transfer is halted until the transfer register is empty to make sure that the port
time is not changed until the pending output is completed.

2.3 Timestamped ports

The value of the port counter at which data is transferred in or out of the transfer
register is captured in the timestamp register.

2.4 Conditional input

A condition can be set to an input port, which causes the port to wait until the
specified condition is met, and then behave like a clocked input. The conditions
include:

· pins equal (pinseq): the value on the pins must equal the specified value

· pins not equal (pinsneq): the value on the pins must not equal the specified
value

REV A

Introduction to XS1 ports 4/15

If a condition is set, the port compares the value from the pins with the conditional
value. If the condition is met, a timestamp is set and the port becomes ready for
input.

If both timing and conditions are used, the port waits for the specified value on the
port counter, and then for the specified condition to be met, before data is input.

Conditions cannot be applied to output ports.

3 Buffered data transfer

Instead of clocked ports passing data directly between pins and core, ports can
be buffered so that data is held in the FIFO until the core is ready to input or
output data, allowing the core to execute other instructions during this time. Using
buffers, a single logical core can perform I/O operations on multiple ports in
parallel.

Ports used as inputs to clock blocks and strobe signals cannot be buffered.

3.1 Buffered input

The behavior of data input on a buffered port is defined as follows:

· On each rising edge, data is transferred from the FIFO to the transfer register
starting with the least significant bit (nibble, byte or 16-bit entity). If the transfer
register is full, data is discarded to make room for the most recently sampled
value.

· An input reads the next data from the transfer register; the core blocks until the
transfer register contains data.

· The time in a timed input represents the time in the future when input will start;
it causes the core to discard any data in the buffer prior to performing the input.

· A conditional input moves the data into the transfer register on the rising edge
of the clock when the condition is met. It then clears the condition.

· The value of the port counter when data is transferred into the transfer register
is recorded in the timestamp register.

· If several buffered input ports are driven from the same clock they appear to
operate as a single input port provided that the core is able to take the data
from all of them during each clock cycle.

3.2 Buffered output

The behavior of data output on a buffered port is defined as follows:

· The port transfers data from the transfer register on each falling clock edge.

· The core is blocked if it tries to output while the transfer register is full. If the
FIFO becomes empty the output port will continue to drive its last value.

REV A

Introduction to XS1 ports 5/15

· A timed output causes the port to wait until the specified time and then transfer
data from the transfer register to the FIFO.

· The value of the port counter is recorded in the timestamp register when the
data is moved from the transfer register.

· Conditional buffered output is not available.

· If several buffered output ports are driven from the same clock block, they
appear to operate as a single output port, provided that the core is able to
supply new data to all of them during each clock cycle.

4 Serialized data transfer

The SERDES can be used to serialize (output) or deserialize (input) data, reducing
the number of instructions required to input or output data. The number of bits
in the transfer register and the SERDES determine the width of the transfers (the
transfer width) between the core and the port; this is a multiple of the port width
(the number of pins).

For a FIFO that holds at most bpw bits and a w-bit wide port, the size of the FIFO
is limited to bpw/w elements. The most significant w bits of the FIFO are the value
that is most recently clocked in. The lengths of the FIFO that are supported are:

Port width Transfer width

1-bit 4, 8, 32

4-bit 8 (2 elements), 32 (8 elements)

8-bit 32 (4 elements)

16-bit 32 (2 elements)

Serialization and deserialization always shift right. If you need to start with the
most significant bit you can use a single cycle bit-reverse operation for a 1-bit port
or a byte reverse for an 8-bit port.

4.1 Serialized buffered input

The behavior of data input on a serialized buffered port is defined as follows:

· Port value is shifted right into the most significant bits of the SERDES on the
rising edge.

· When the SERDES is full, the data is moved to the transfer register.

· If full, the transfer register is overwritten with the latest value.

· For timed input, data in the SERDES is moved to the transfer register when the
port counter matches the specified time, whether full or not

REV A

Introduction to XS1 ports 6/15

· For conditional input, the entire SERDES is moved to the transfer register when
the condition is matched. The matching value is in the most significant bits; the
condition is cleared so the next value will contain the next n values.

4.2 Serialized buffered output

The behavior of data output by a serialized buffered port is defined as follows:

· The least significant bits of the SERDES are driven to the pins.

· If the SERDES is empty it is filled on the next falling edge with the transfer
register value.

· While the SERDES is not empty, data is shifted right on each falling edge.

· If both the transfer register and SERDES are empty, the last value is held.

· For timed serialization, the transfer register is transferred to the SERDES when
the port counter matches the specified time.

· No conditional serialized buffered output is available.

5 Strobing

The xCORE architecture provides support for strobing, where data is accompanied
by a separate data valid signal. Up to two pins can be used to strobe data (readyIn
and readyOut signals) providing four strobe modes; the readyIn strobe gates
the clock to the port and the readyOut strobe is high anytime that the port can
progress.

Implicit strobing Data is transferred every clock cycle. Default setting.

Slave strobing readyIn strobe is used. Data is only input or output
when the input strobe is high and a clock is present.

Master strobing readyOut strobe is used. For an output, the port signal
is driven high if there is data in transfer register. For
an input port, the signal is driven high if there is room
in transfer register.

Bidirectional strobing Both input and output strobes are used. The readyIn
signal controls the data and the readyOut signals the
state.

The behavior of strobe signals for conditional and timed input and output opera-
tions is defined below:

· During a conditional input on a buffered port, the readyOut signal is kept high
while the condition does not match; any non matching input is discarded. The
readyOut signal is kept high for as long as there is space in the transfer register.

REV A

Introduction to XS1 ports 7/15

· During a timed input on a buffered port, the readyOut signal is kept low until
the port counter reaches the specified value; at that stage the readyOut signal is
pulled high, requesting data until the transfer register is filled up.

· During a timed output on a buffered port, the readyOut signal is kept low until
the port counter reaches the specified value; at that stage the readyOut signal is
pulled high, outputting data until the transfer register is empty.

Ready-in strobes are attached to the clock block; so multiple ports can share a
single readyIn signal through one clock block.

Ports used for readyIn and readyOut signals cannot be timed, buffered or serialized.

6 Bidirectional ports

If a port is programmed in bidirectional mode, it tri-states when an input is made,
and starts to drive when an output is made.

In the case of a timed input to output, a change in tri-state or drive mode is delayed
until the port counter reaches the specified value.

When a conditional input is made, the input pins are tristated the input.

No buffering is available in bidirectional mode.

7 Hardware port pin-out

Each xCORE tile exposes a combination of 1,4, 8, 16 and 32-bit ports, depending
on the package and resources used internally. The total number of possible GPIO
far exceeds the number of pins actually bonded out, so ports and xCONNECT Links
are multiplexed, and there is a defined precedence when overlapping ports and
links exist.

In cases where only a few pins from a wide port are available, these pins can be
used as standard GPIO pins but the full width of the underlying port is not available.

7.1 Port precedence

The mapping of ports to pins is shown in Figure 3. The table lists for each pin
which ports and links can be connected to it. Links and ports on the left hand
side of the table have precedence over ports on the right hand side of the table.
Each port is identified by its width (the first number 1, 4, 8, 16, or 32) and a letter
that distinguishes multiple ports of the same width (A-P). The bits of the port are
identified with a superscripted digit 0-31. Links are identified by means of a single
letter identifier A-D. The wires of a link are identified by means of a superscripted
digit 0-4.

The port or xCONNECT Link that is actually connected to a pin is determined by the
program running on the xCORE device. For each xCORE tile, software can enable
ports and links as required:

REV A

Introduction to XS1 ports 8/15

· If a link is enabled, then this link has access to the pins; the pins of any
underlying ports are disabled.

· If a port is enabled then it overrules any ports with higher widths that share its
pins.

For example, suppose that software on tile n, enables link A in 5-wire mode and
ports 32A, 4C, and 8B. In that case:

· XnD01 - XnD10 will be connected to link A.

· XnD14, XnD15, XnD20, XnD21 will be connected to port 4C.

· XnD16 - XnD19 will be connected to bits 2 to 5 of port 8B.

· XnD49 - XnD70 will be connected to bits 0 to 19 of port 32A.

Generally, the system designer will be ensure that there is no overlap, but the
precedence has been designed so that, if required, portions of the wider ports can
still be used when overlapping narrower ports are used.

Where wide ports are fully wired out but a narrower port is used by the same pin
(for example P4B and P32A: bits 22 to 25) the bits on the wider port must be
masked after an input operation.

7.2 Banks

Figure 2 is divided in six parts which are six banks. Different packaging options
export different numbers of banks. The first few banks have a selection of 1, 4,
and 8 bit ports, and a link each. Banks further down incorporate port 32. On small
packages the 32-bit port is not available.

8 Port identifiers

Each port is, architecturally, represented with a bpw-bit identifier, called a resource
identifier. The least significant byte of a port-resource-identifier is 0 (identifying
this as a port as opposed to for example a channel or timer), the next bytes
identifies the port and the width of the port. A full list of ports is given in Figure 3.
Note that in almost all cases one can use XS1_PORT_1E rather than 0x10600 since
the include file xs1.h contains all mappings.

9 Port and clock configuration

Ports must be named by binding them to an xC identifier, and declared as buffered
or serialized, before they can be used in the application code for I/O. Functions for
configuring ports are provided in the xs1.h header file - see Figure 5.

You can configure clock blocks to either generate a clock based on a divided
reference clock or use an input pin as a clock. When you have configured the clock,
you must explicitly start it in the application. If you start the clock after all ports
linked to the clock are configured, all the ports will have the same port counter

REV A

Introduction to XS1 ports 9/15

values. Functions for configuring clocks are provided in the xs1.h header file -
see Figure 6.

Ports have some modes, such as inverting, pull-up and pad delay, that must be set
before the port is configured. Functions for configuring the advanced port modes
are provided in the xs1.h header file - see Figure 7.

Port operations can be controlled by a set of predicate functions, such as equal
and not-equal. The predicate functions are provided in the xs1.h header file -
see Figure 8.

REV A

Introduction to XS1 ports 10/15

⇐ highest Precedence lowest ⇒
Pin link 1-bit ports 4-bit ports 8-bit ports 16-bit ports 32-bit port

XnD00 1A
XnD01 A4 out 1B
XnD02 A3 out 4A0 8A0 16A0 32A20

XnD03 A2 out 4A1 8A1 16A1 32A21

XnD04 A1 out 4B0 8A2 16A2 32A22

XnD05 A0 out 4B1 8A3 16A3 32A23

XnD06 A0 in 4B2 8A4 16A4 32A24

XnD07 A1 in 4B3 8A5 16A5 32A25

XnD08 A2 in 4A2 8A6 16A6 32A26

XnD09 A3 in 4A3 8A7 16A7 32A27

XnD10 A4 in 1C
XnD11 1D
XnD12 1E
XnD13 B4 out 1F
XnD14 B3 out 4C0 8B0 16A8 32A28

XnD15 B2 out 4C1 8B1 16A9 32A29

XnD16 B1 out 4D0 8B2 16A10

XnD17 B0 out 4D1 8B3 16A11

XnD18 B0 in 4D2 8B4 16A12

XnD19 B1 in 4D3 8B5 16A13

XnD20 B2 in 4C2 8B6 16A14 32A30

XnD21 B3 in 4C3 8B7 16A15 32A31

XnD22 B4 in 1G
XnD23 1H
XnD24 1I
XnD25 1J
XnD26 4E0 8C0 16B0

XnD27 4E1 8C1 16B1

XnD28 4F0 8C2 16B2

XnD29 4F1 8C3 16B3

XnD30 4F2 8C4 16B4

XnD31 4F3 8C5 16B5

XnD32 4E2 8C6 16B6

XnD33 4E3 8C7 16B7

XnD34 1K
XnD35 1L
XnD36 1M 8D0 16B8

XnD37 1N 8D1 16B9

XnD38 1O 8D2 16B10

XnD39 1P 8D3 16B11

XnD40 8D4 16B12

XnD41 8D5 16B13

XnD42 8D6 16B14

XnD43 8D7 16B15

XnD49 C4 out 32A0

XnD50 C3 out 32A1

XnD51 C2 out 32A2

XnD52 C1 out 32A3

XnD53 C0 out 32A4

XnD54 C0 in 32A5

XnD55 C1 in 32A6

XnD56 C2 in 32A7

XnD57 C3 in 32A8

XnD58 C4 in 32A9

XnD61 D4 out 32A10

XnD62 D3 out 32A11

XnD63 D2 out 32A12

XnD64 D1 out 32A13

XnD65 D0 out 32A14

XnD66 D0 in 32A15

XnD67 D1 in 32A16

XnD68 D2 in 32A17

XnD69 D3 in 32A18

XnD70 D4 in 32A19

Figure 3:

Available
links and
ports for

each pin in
order of

decreasing
precedence

REV A

Introduction to XS1 ports 11/15

Port name Resource identifier

XS1_PORT_32A 0x200000

XS1_PORT_16A 0x100000

XS1_PORT_16B 0x100100

XS1_PORT_8A 0x80000

XS1_PORT_8B 0x80100

XS1_PORT_8C 0x80200

XS1_PORT_8D 0x80300

XS1_PORT_4A 0x40000

XS1_PORT_4B 0x40100

XS1_PORT_4C 0x40200

XS1_PORT_4D 0x40300

XS1_PORT_4E 0x40400

XS1_PORT_4F 0x40500

XS1_PORT_1A 0x10200

XS1_PORT_1B 0x10000

XS1_PORT_1C 0x10100

XS1_PORT_1D 0x10300

XS1_PORT_1E 0x10600

XS1_PORT_1F 0x10400

XS1_PORT_1G 0x10500

XS1_PORT_1H 0x10700

XS1_PORT_1I 0x10a00

XS1_PORT_1J 0x10800

XS1_PORT_1K 0x10900

XS1_PORT_1L 0x10b00

XS1_PORT_1M 0x10c00

XS1_PORT_1N 0x10d00

XS1_PORT_1O 0x10e00

XS1_PORT_1P 0x10f00

Figure 4:

Resource
identifiers for
all XS1 ports

REV A

Introduction to XS1 ports 12/15

void configure_in_port(void port p, const clock clk);

void configure_out_port(void port p, const clock clk , unsigned initial);

void configure_port_clock_output(void port p, const clock clk);

void start_port(void port p);

void stop_port(void port p);

void configure_in_port_handshake(void port p,
in port readyin ,
out port readyout ,
clock clk);

void configure_out_port_handshake(void port p,
in port readyin ,
out port readyout ,
clock clk ,
unsigned initial);

void configure_in_port_strobed_master(void port p,
out port readyout ,
const clock clk);

void configure_out_port_strobed_master(void port p,
out port readyout ,
const clock clk ,
unsigned initial);

void configure_in_port_strobed_slave(void port p,
in port readyin ,
clock clk);

void configure_out_port_strobed_slave(void port p,
in port readyin ,
clock clk ,
unsigned initial);

void set_port_use_on(void port p);

void set_port_use_off(void port p);

void set_port_mode_data(void port p);

void set_port_mode_clock(void port p);

void set_port_mode_ready(void port p);

void set_port_master(void port p);

void set_port_slave(void port p);

void set_port_no_ready(void port p);

void set_port_strobed(void port p);

void set_port_handshake(void port p);

Figure 5:

xs1.h port
configuration

functions

REV A

Introduction to XS1 ports 13/15

void configure_clock_src(clock clk , void port p);

void configure_clock_ref(clock clk , unsigned char divide);

void configure_clock_rate(clock clk , unsigned a, unsigned b);

void configure_clock_rate_at_least(clock clk , unsigned a, unsigned b);

void configure_clock_rate_at_most(clock clk , unsigned a, unsigned b);

void set_clock_src(clock clk , void port p);

void set_clock_ref(clock clk);

void set_clock_div(clock clk , unsigned char div);

void set_clock_rise_delay(clock clk , unsigned n);

void set_clock_fall_delay(clock clk , unsigned n);

void set_port_clock(void port p, const clock clk);

void set_port_ready_src(void port p, void port ready);

void set_clock_ready_src(clock clk , void port ready);

void set_clock_on(clock clk);

void set_clock_off(clock clk);

void start_clock(clock clk);

void stop_clock(clock clk);

Figure 6:

xs1.h clock
configuration

functions

REV A

Introduction to XS1 ports 14/15

void set_port_drive(void port p);

void set_port_drive_low(void port p);

void set_port_pull_up(void port p);

void set_port_pull_down(void port p);

void set_port_pull_none(void port p);

void set_port_no_sample_delay(void port p);

void set_port_sample_delay(void port p);

void set_port_no_inv(void port p);

void set_port_inv(void port p);

void set_port_shift_count(buffered void port p, unsigned n);

void set_pad_delay(void port p, unsigned n);

void sync(void port p);

unsigned peek(void port p);

void clearbuf(void port p);

unsigned endin(buffered void port p);

unsigned partin(buffered void port p,
unsigned n);

void partout(buffered void port p,
unsigned n,
unsigned val);

unsigned partout_timed (buffered void port p,
unsigned n,
unsigned val ,
unsigned t);

{unsigned value , unsigned timestamp} partin_timestamped(
buffered void port p,
unsigned n);

unsigned partout_timestamped(buffered void port p,
unsigned n,
unsigned val);

Figure 7:

xs1-h
advanced

port
configuration

functions

REV A

Introduction to XS1 ports 15/15

void pinseq(unsigned val);

void pinsneq(unsigned val);

void pinseq_at(unsigned val , unsigned time);

void pinsneq_at(unsigned val , unsigned time);

Figure 8:

xs1.h
predicate
functions

REV A

Introduction to XS1 ports 16/15

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV A

	Introduction
	Unbuffered data transfer
	Buffered data transfer
	Serialized data transfer
	Strobing
	Bidirectional ports
	Hardware port pin-out
	Port identifiers
	Port and clock configuration

