Extending startKIT using the PCIe slot and sliceCARDs

IN THIS DOCUMENT

- ▶ Introduction
- ▶ startKIT compatible sliceCARDs
- ▶ Designing a sliceCARD

1 Introduction

The flexibility of the GPIO pins on xCORE multicore microcontrollers allows developers to reconfigure the capabilities of the devices to support many different applications. The PCIe slot on the startKIT board can be used to extend the hardware capabilities and interfaces by plugging in expansion boards that we call sliceCARDs.

XMOS already has a set of sliceCARDs that you can buy. Alternatively it is easy to design your own slices to extend the platform as the PCle connectors are simply contacts to the sliceCARD.

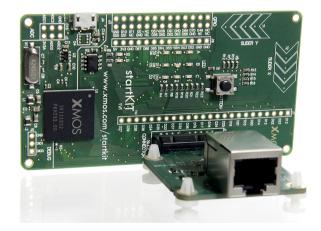


Figure 1: startKIT with Ethernet sliceCARD

Further information on sliceCARDs is available in the *sliceKIT Modular Development Kit Product Brief*¹ and *sliceKIT Selector Guide*².

Publication Date: 2014/7/29 XMOS © 2014, All Rights Reserved Document Number: XM004111A

 $^{^{1}} http://www.xmos.com/published/slicekit-modular-development-system-product-brief?version=latest$

²http://www.xmos.com/published/slicekit-selector-guide?version=latest

2 startKIT compatible sliceCARDs

The sliceCARDs listed below are compatible with the PCIe connector on startKIT:

sliceCARD	Features
Audio	4 analog I/O channels via two 3.5mm jack
	MIDI I/O
	S/PDIF output via coax
	On board audio clocks
Ethernet	10/100Mb Ethernet PHY
	RJ45 connector
	MII interface to xCORE
GPIO	4 LEDs
	2 buttons
	One RS232 serial cable with DB9 connector
	4 channel A/D via I2C interface
	Thermistor input via A/D
IS-BUS	Any serial protocol up to 60MHz pin speed, higher speeds with external SERDES
	Fully tested softIP, including: UART, RS485, USB, SPI, CAN, I2C, PWM, IEEE 802. Ethernet, ModBus
	Ample headroom for other real-time tasks
LCD	480 x 272 full color display
	40-pin ZIF connector with ribbon cable to the display
	Resistive touch screen with 2 wire interface to xCORE
MUART	8 full duplex RS232 UARTs via I/O headers
	DB9 connector allowing RS232 serial cable to connect to one of the UARTs
	Up to 115.2 Kbaud
	Configurable parity, stop bits, bits per character
SDRAM	8 MByte SDRAM
	Clock speed up to 50MHz
	Data rate up to 80MBytes/second
WiFi	High performance 2.4GHz WLAN module
	802.11b/g wireless connectivity
	Throughput of up to 7Mbps

Figure 2: startKIT compatible sliceCARDs

3 Designing a sliceCARD

This section provides guidelines for creating sliceCARDs to use with startKIT.

3.1 Signal I/O

A sliceCARD connector has 36 contacts that are connected to the xCORE I/Os as shown in the table below:

Port	Pin	PCle (top)	PCIe (bottom)	Pin	Port
	NC	B1	A1	NC	
P1F0	X0D13	B2	A2	5V	
	GND	В3	A3	X0D12	P1E0
P1G0	X0D22	B4	A4	X0D23	P1H0
	3V3	B5	A5	GND	
P4C0	X0D14	В6	A6	X0D20	P4C2
P4C1	X0D15	B7	A7	X0D21	P4C3
	GND	B8	A8	X0D25	P1J0
P4D0	X0D16	В9	A9	X0D18	P4D2
P1K0	X0D34	B10	A10	GND	
P4D1	X0D17	B11	A11	X0D19	P4D3
P1M0	X0D36	B12	A12	X0D32	P4E2
P1N0	X0D37	B13	A13	X0D33	P4E3
P4D3	CLK	B14	A14	GND	
P110	X0D24	B15	A15	X0D35	P1L0
	GND	B16	A16	RST_N	
P100	X0D38	B17	A17	X0D26	P4E0
P1P0	X0D39	B18	A18	X0D27	P4E1

Figure 3: PCle connector

NOTES:

- ▶ PCIe connector uses a 25MHz CLK signal generated by the debugger on startKIT.
- ▶ The system reset input, generated by the debugger is active low; push-pull drive.
- ▶ 5V and 3V3 power supplies are provided by the debugger.

If you want to design a sliceCARD that is compatible with startKIT and sliceKIT please refer to the sliceKIT Hardware Manual for further details on pin compatibility.

3.2 Power

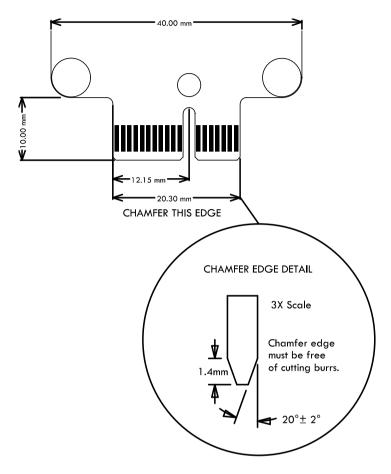
sliceCARDs have two power supplies available to them:

- ▶ 5V supply can range from 4.75V to 5.25V (5%) at a current of up to 0.25A per slice
- ➤ 3V3 supply can range from 3.13V to 3.47V (5%) at a current of up to 0.25A per slice

sliceCARDs can take their power from either 5V or 3V3 or both, but they should draw no more than 250mA from each supply.

At system power-on, the 5V supply will power up first, followed by the 3V3 supply. The system reset signal will de-assert a short time after this.

3.3 sliceCARD form factors


The sliceCARDs use a standard PCIe x1 edge finger to connect to the sliceKIT core board. Because of this, all sliceCARD PCBs must be 1.6mm thick.

There is no hard specification as to the length of sliceCARDs as this poses no mechanical clashing hazard, however to avoid clashing with other sliceCARDs or the power input connector, sliceCARDs should be limited to 40mm wide.

Four mounting holes are specified in the corners of the slice for mechanical stability. These should be used with 6mm standoffs, example part Toby Electronics DCB-6.

An optional retention hole is specified for use in securing the sliceCARD to the sliceKIT core board. This is useful to ensure the sliceCARDs is not accidentally unplugged when using the system. Typical usage uses a 2.54mm cable tie between this hole and the associated hole in the sliceKIT core board ensuring the sliceCARD cannot be unplugged.

Note that for quick, low cost boards using low cost PCB manufacturing, the chamfer is not required and can be generated by hand using a file or similar.

Copyright © 2014, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the "Information") and is providing it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims.