
STARTKIT_SUPPORT (2.0.0)

Startkit support library
This library provides support for accessing the available functionaility of the startKIT development board.

Features

• Ability to access on-board ADC.
• Ability to access LEDs and buttons.
• Ability to access the board’s capacitive sensors.

Resource usage

This following table shows typical resource usage in some different configurations. Exact resource usage
will depend on the particular use of the library by the application.

Configuration Pins Ports Clocks Ram Logical
cores

Simple LED control 9 1 (32-bit) 0 ~2.2K 0

LED, buttons and cap-
sense

9 1 (32-bit), 2 (4-bit) 1 ~14.0K ≤ 1

ADC 4 0 0 ~3.7K ≤ 1

Cap-sense slider 9 1 (4-bit) 1 ~11.9K ≤ 1

Software version and dependencies

This document pertains to version 2.0.0 of this library. It is known to work on version 14.0.0 of the
xTIMEcomposer tools suite, it may work on other versions.

The library does not have any dependencies (i.e. it does not rely on any other libraries).

Related application notes

The following application notes use this library:

• AN00173 - A startKIT accelerometer demo
• AN00174 - A startKIT glowing LED demo
• AN00175 - A startKIT LED demo
• AN00176 - A startKIT noughts and crosses game (tic-tac-toe)
• AN00177 - A startKIT ADC example

Copyright 2015 XMOS Ltd. 1 www.xmos.com
XM007621

STARTKIT_SUPPORT (2.0.0)

1 Usage

To access any of the library functionality the application Makefile needs to add lib_startkit_support
to its build modules:

USED_MODULES = ... lib_startkit_support ...

The GPIO functions can be found by using the following header:

#include <startkit_gpio.h>

The ADC functions can be found by usings the following header:

#include <startkit_adc.h>

The capacitive sensing functions can be found by usings the following header:

#include <startkit_slider.h>

1.1 Simple LED control

The startkit_led_driver task allows your program to drive LEDS on and off in the 3x3 LED array on
the startKIT. This task only allows simple on-off control but has low resource usage.

The driver is instantiated as a parallel task that run in a par statement. The application communicates to
this tasks using the startkit_led_if interface.

startKIT
LED
driver

startKIT
LED
driver

appapp
startkit_led_if

Figure 1: Simple LED control task diagram

For example, the following code instantiates the LED driver component and connects to it:

#include <platform.h>
#include <startkit_gpio.h>

port p_gpio = XS1_PORT_32A;

int main() {
interface startkit_led_if i_led[1];
par {
on tile[0]: startkit_led_driver(i_led, 1, p_gpio);
on tile[0]: app(i_led[0]);

}
}

The task must be passed port 32A. The interface connection is an array (so several tasks can access the
LEDs).

Copyright 2015 XMOS Ltd. 2 www.xmos.com
XM007621

STARTKIT_SUPPORT (2.0.0)

The application can then communicate with the task via the interface e.g.:

void app(client startkit_led_if led)
{
...
// Set the middle LED (row 1, col 1) on
led.set(1, 1, LED_ON);
// Set the top left LED (row 0, col 0) off
led.set(0, 0, LED_OFF);
...

1.2 Controlling LEDs, buttons and capacitive sensing together

On the startKIT board, the LEDs, buttons and capacitive sensors are all either on the same xCORE ports
or are routed close enough on the board to cause possible cross-talk. For this reason, they all need to be
controlled synchronized together so they do not intefere.

The startkit_gpio_driver gives your application access to all these hardware interfaces. It is a task
that supplies several software interfaces to the application:

startKIT
GPIO
driver

startKIT
GPIO
driver

appapp

startkit_led_if

startkit_button_if

slider_if

Figure 2: GPIO task diagram

The driver tasks can be instatiated in the top level of the program as in this example:

// The port structure required for the GPIO task
startkit_gpio_ports gpio_ports =
{XS1_PORT_32A, XS1_PORT_4A, XS1_PORT_4B, XS1_CLKBLK_1};

int main() {
startkit_button_if i_button;
startkit_led_if i_led;
slider_if i_slider_x, i_slider_y;
par {
on tile[0]: startkit_gpio_driver(i_led, i_button,

i_slider_x, i_slider_y,
gpio_ports);

on tile[0]: app(i_led, i_button, i_slider_x, i_slider_y);
}
return 0;

}

The slider interface is described in §1.3.

Copyright 2015 XMOS Ltd. 3 www.xmos.com
XM007621

STARTKIT_SUPPORT (2.0.0)

1.2.1 The PWM LED interface

When using the GPIO driver. The LED interface can set a level for the LED which is driven via a PWM signal.
For each LED, the interface accepts a range from 0 to LED_ON. So for example, the following code will set
an LED to 50% illumination:

void app(client startkit_led_if led, ...) {

...
led.set(1, 1, LED_ON/2);

1.2.2 The button interface

The button interface causes an changed event that can be selected on using xC select construct when-
ever a change occurs in the button. The get_value function can then be used to get the button state
e.g.:

void app(.., client startkit_button_if button, ...) {
..
select {
case button.changed():

if (button.get_value() == BUTTON_DOWN) {
// handle button down event

} else {
// handle button up event

}
break;

...
}
...

1.3 Using the capacative sensor

The capacitive sensor can be access via the slider_if interface. Two interfaces are provided - one in the
horizontal (x) direction and one in the vertical (y) direction.

The interface will cause a changed_state event when it changes state that can be reacted to in an xC
select statement e.g.:

void app(.., client slider_if i_slider_x, ...) {
..
select {

case i_slider_x.changed_state():
sliderstate state = i_slider_x.get_slider_state();
if (state == LEFTING) {

// handle the event when the user swipes left
} else if (state == RIGHTING) {

...

Copyright 2015 XMOS Ltd. 4 www.xmos.com
XM007621

STARTKIT_SUPPORT (2.0.0)

1.4 Accessing the ADC

The ADC functions can be found by using the following header:

#include <startkit_adc.h>

The ADC component is instantiated as a parallel task that run in a par statement. The application com-
municates to this tasks using the startkit_adc_if interface. The adc_task then needs to be connected
to the special startkit_adc service which attaches to the analogue hardware.

adc_taskadc_taskappapp
startkit_adc_if

starkit_adcstarkit_adc
channel

Figure 3: ADC task diagram

For example, the following code instantiates the ADC component and connects to it:

#include <platform.h>
#include <startkit_adc.h>

int main() {
chan c_adc;
interface startkit_adc_if i_adc;
par {
startkit_adc(c_adc);
on tile[0]: adc_task(i_adc, c_adc, 0);
on tile[0]: app(i_adc);

}
}

The application can then communicate with the task via the interface e.g.:

void app(client startkit_adc_if adc)
{
...
adc.trigger(); // Fire the ADC!
select { // Wait for the ADC to complete.
case adc.complete():

short vals[4];
adc.read(vals); // Read analogue data into vals array
...

More information on interfaces and tasks can be be found in the XMOS Programming Guide (see XM-
004440-PC).

Copyright 2015 XMOS Ltd. 5 www.xmos.com
XM007621

http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide
http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide

STARTKIT_SUPPORT (2.0.0)

2 Startkit ADC API

Type startkit_adc_if

Description ADC Interface.

Functions
Function trigger

Description Initiates a trigger sequence.
If trigger already in progress, this call is ignored

Type [[guarded]]
void trigger(void)

Function read

Description Reads the 4 ADC values and places them in array of unsigned
shorts passed.
Value is 0 to 65520 unsigned. Actual ADC is 12b so bottom 4
bits always zero. Ie. left justified. Optionally returns the ADC
state - 1 if ADC trigger/aquisition complete, or 0 if in progress.

Type [[clears_notification]]
int read(unsigned short adc_val[4])

Function complete

Description Call to client to indicate aquisition complete.
Behaves a bit like ADC finish interrupt. Optional.

Type [[notification]]
slave void complete(void)

Function adc_task

Description Runs ADC task.
Very low MIPS consumption so is good candidate for combining with other low speed
tasks Pass i_adc control inteface and automatic trigger period in microseconds. If
trigger period is set to zero, ADC will only convert on trigger() call.

Type [[combinable]]
void
adc_task(server startkit_adc_if i_adc,

chanend c_adc,
int trigger_period)

Copyright 2015 XMOS Ltd. 6 www.xmos.com
XM007621

STARTKIT_SUPPORT (2.0.0)

3 Startkit GPIO API

Type led_val

Description Enum for controlling led levels.
Leds can be set in the range LED_OFF .. LED_ON. The exact resolution depends on
the driver.

Values LED_OFF

LED_ON

Type startkit_led_if

Description Interface for controlling leds on the startkit.

Functions
Function set

Description Set an led output level.
Use this function to set a single led in the range LED_OFF ..
LED_ON

Type void set(unsigned row, unsigned col, unsigned val)

Function set_multiple

Description Set multiple led values.
Use this function to set the level of several leds at once. The
first argument is a bitmask where the least signifcant nine bits
map to the led array in the following way:
8 7 6 5 4 3 2 1 0
If the bit is set in the mask then the led is set to the second
argument. If the bit is not set then the led is set to LED_OFF.

Type void set_multiple(unsigned mask, unsigned val)

Copyright 2015 XMOS Ltd. 7 www.xmos.com
XM007621

STARTKIT_SUPPORT (2.0.0)

Type button_val

Description Enum for representing button state.

Values BUTTON_UP

BUTTON_DOWN

Type startkit_button_if

Description Interface for interacting with buttons.

Functions
Function changed

Description This notification occurs when the button changes state (i.e.
goes up->down or down->up).
You can select on this in your program e.g.
void f(client startkit_button_if i_button) { ... select { case
i_button.:c:func:change: button_val_t val = get_value();

Type [[notification]]
slave void changed()

Function get_value

Description Get the current value of the button.
This returns either BUTTON_UP or BUTTON_DOWN.

Type [[clears_notification]]
button_val_t get_value()

Copyright 2015 XMOS Ltd. 8 www.xmos.com
XM007621

STARTKIT_SUPPORT (2.0.0)

Function startkit_led_driver

Description Simple LED driver.
This task will drive leds according to commands received via the interface
startkit_led_if. It has no resolution or pwm, so leds will either be turned on or off
depending on whether the level is greater or less than LED_ON/2.
The drive is distributable, so will not take up any compute on a logical core of its own
unless it is connected to clients on a different tile.

Type [[distributable]]
void
startkit_led_driver(server startkit_led_if i_led[n],

unsigned n,
port p32)

Copyright 2015 XMOS Ltd. 9 www.xmos.com
XM007621

STARTKIT_SUPPORT (2.0.0)

Type startkit_gpio_ports

Description Ports/clocks for startkit GPIO, the ports should be XS1_PORT_32A, XS1_PORT_4A,
XS1_PORT_4B.

Fields port p32

port capx

port capy

clock clk

Function startkit_gpio_driver

Description startKIT gpio driver.
This task drives pwm output on the leds to varying brightness and also reads the
button on the board.
It requires the startKIT’s 32 bit port (XS1_PORT_32A) to be passed as the last argu-
ment.
Clients can connect via the first two arguments. Several clients can connect to set led
levels.
The function is combinable so can share a logical core with other combinable tasks.
If combined is will use cooperative multitasking to periodically drive the pwm and
sample the button value.

Type [[combinable]]
void
startkit_gpio_driver(server startkit_led_if ?i_led,

server startkit_button_if ?i_button,
server slider_if ?i_slider_x,
server slider_if ?i_slider_y,
startkit_gpio_ports &ps)

Copyright 2015 XMOS Ltd. 10 www.xmos.com
XM007621

STARTKIT_SUPPORT (2.0.0)

4 Startkit Slider API

Type sliderstate

Description Type that enumerates the possible activities that may have happened on a slider.

Values IDLE

PRESSED

LEFTING

RIGHTING

RELEASED

PRESSING

Type slider_if

Description Interface for querying the slider value and state.

Functions
Function changed_state

Description

Type [[notification]]
slave void changed_state()

Function get_slider_state

Description

Type [[clears_notification]]
sliderstate get_slider_state()

Function get_coord

Description

Type int get_coord()

Copyright 2015 XMOS Ltd. 11 www.xmos.com
XM007621

STARTKIT_SUPPORT (2.0.0)

Function slider_task

Description Function to implement a slider task.

Type [[combinable]]
void slider_task(server slider_if i,

port cap,
const clock clk,
static const int n_elements,
static const int N,
int threshold_pressed,
int threshold_unpressed)

Parameters i interface used to communicate with this task.

cap port on which the cap sense is connected

clk clock block to be used.

n_elements
number of segments on this slider. Typically 4 or 8. Note that at present
this is hardcoded in the capsens.h file too and set to 4.

N

threshold_pressed
Value above which something is pressed. Set to 1000

threshold_unpressed
Value below which something is no longer pressed. Set to 200

Copyright 2015 XMOS Ltd. 12 www.xmos.com
XM007621

STARTKIT_SUPPORT (2.0.0)

APPENDIX A - Known Issues

No known issues.

Copyright 2015 XMOS Ltd. 13 www.xmos.com
XM007621

STARTKIT_SUPPORT (2.0.0)

APPENDIX B - Startkit support library change log

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2015 XMOS Ltd. 14 www.xmos.com
XM007621

	Startkit support library
	Usage
	Simple LED control
	Controlling LEDs, buttons and capacitive sensing together
	The PWM LED interface
	The button interface

	Using the capacative sensor
	Accessing the ADC

	Startkit ADC API
	Startkit GPIO API
	Startkit Slider API
	Known Issues
	Startkit support library change log

