
SPI 2.0.0

SPI Library
A software defined, industry-standard, SPI (serial peripheral interface) component that allows you to con-
trol an SPI bus via the xCORE GPIO hardware-response ports. SPI is a four-wire hardware bi-directional
serial interface. This component is controlled via C using the XMOS multicore extensions and can either
act as SPI master or slave.

The component can be used by multiple tasks within the xCORE device and (each addressing the same or
different slaves) and is compatible with other slave devices on the same bus.

Features

• SPI master and SPI slave modes.
• Supports speed of ?? Mbit.
• Multiple slave device support
• All clock polarity and phase configurations supported.

Components

• SPI master (mode 0,1,2,3)
• SPI master, multiple slaves (mode 0,1,2,3)
• SPI slave (mode 0,1,2,3)

Resource Usage

TODO

Software version and dependencies

This document pertains to version 2.0.0 of the SPI library. It is intended to be used with version 13.x of
the xTIMEcomposer studio tools.

The library does not have any dependencies (i.e. it does not rely on any other libraries).

Related application notes

The following application notes use this library:

• AN00052 - How to use the SPI master component
• AN00057 - How to use the SPI slave component

Copyright 2015 XMOS Ltd. 1 www.xmos.com
XM006232 (A)



SPI 2.0.0

1 Hardware characteristics

The SPI protocol requires two wires to be connected to the xCORE device: a clock line and data line as
shown in Figure ??.

SCLK Clock line, driven by the master

MOSI Master Output, Slave Input data line, driven by the master

MISO Master Output, Slave Input data line, driven by the slave

SS Slave select line, driven by the master

Table 1: SPI data wires

TODO:

• diagrams showing connections of ports to lines (including optional tying down of slave select for
single slave)

• mode descriptions (polarity and phase) with timing diags
• description of connecting multiple devices to the same bus

Copyright 2015 XMOS Ltd. 2 www.xmos.com
XM006232 (A)



SPI 2.0.0

2 Usage

2.1 SPI master synchronous operation

There are two types of interface for SPI master components: synchronous and asynchronous.

The synchronous API provides blocking operation. Whenever a client makes a read or write call the
operation will complete before the client can move on - this will occupy the core that the client code is
running on until the end of the operation. This method is easy to use, has low resource use and is very
suitable for applications such as setup and configuration of attached peripherals.

SPI master components are instantiated as parallel tasks that run in a par statement. For synchronous
operation, the application can connect via an interface connection using the spi_master_if interface
type:

SPI
master
SPI
masterappapp

spi_master_if

Figure 1: SPI master task diagram

For example, the following code instantiates an SPI master component and connect to it:

port p_miso = XS1_PORT_1A;
port p_ss[1] = XS1_PORT_1B;
port p_sclk = XS1_PORT_1C;
port p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1B;

int main(void) {
spi_master_if i_spi[1];
par {
spi_master(i_spi, 1, p_sclk, p_mosi, p_miso, p_ss, 1, clk_spi);
my_application(i_spi[0]);

}
return 0;

}

Note that the connection is an array of interfaces, so several tasks can connect to the same component
instance. The slave select ports are also an array since the same SPI data lines can connect to several
devices via different slave lines.

The application can use the client end of the interface connection to perform SPI bus operations e.g.:

void my_application(client spi_master_if spi) {
uint8_t val;
printf("Doing one byte transfer. Sending 0x22.\n");
spi.begin_transaction(0, 100, SPI_MODE_0);
val = spi.transfer8(0x22);
spi.end_transaction()
printf("Read data %d from the bus.\n", val);

}

Here, begin_transaction selects the device 0 and asserts its slave select line. The application can then

Copyright 2015 XMOS Ltd. 3 www.xmos.com
XM006232 (A)



SPI 2.0.0

transfer data to and from the slave device and finish with end_transaction, which de-asserts the slave
select line.

Operations such as spi.transfer8 will block until the operation is completed on the bus. More infor-
mation on interfaces and tasks can be be found in the XMOS Programming Guide (see XM-004440-PC).
By default the SPI synchronous master mode component does not use any logical cores of its own. It
is a distributed task which means it will perform its function on the logical core of the application task
connected to it (provided the application task is on the same tile).

2.2 SPI master asynchronous operation

The synchronous API will block your application until the bus operation is complete. In cases where the
application cannot afford to wait for this long the asynchronous API can be used.

The asynchronous API offloads operations to another task. Calls are provide to initiate reads and writes
and notifications are provided when the operation completes. This API requires more management in
the application but can provide much more efficient operation. It is particularly suitable for applications
where the SPI bus is being used for continuous data transfer.

Setting up an asynchronous SPI master component is done in the same manner as the synchronous
component:

port p_miso = XS1_PORT_1A;
port p_ss = XS1_PORT_1B;
port p_sclk = XS1_PORT_1C;
port p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1B;

int main(void) {
i2c_master_async_if i_spi[1];
par {
spi_master_async(i_spi, 1, p_sclk, p_mosi, p_miso, p_ss,

clk_spi, 100,
my_application(i_spi[0]);

}
return 0;

}

Copyright 2015 XMOS Ltd. 4 www.xmos.com
XM006232 (A)

http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide


SPI 2.0.0

The application can use the asynchronous API to offload bus operations to the component. This is done
by moving pointers to the SPI slave task to transfer and then retrieving pointers when the operation is
complete. For example, the following code repeatedly calculates 100 bytes to send over the bus and
handles 100 bytes coming back from the slave:

void my_application(client spi_master_async_if spi) {
uint8_t outdata[100];
uint8_t indata[100];
uint8_t * movable buf_in = indata;
uint8_t * movable buf_out = outdata;

// create and send initial data
fill_buffer_with_data(outdata);
spi.begin_transaction(0, 100, SPI_MODE_0);
spi.init_transfer_array_8(move(buf_in), move(buf_out), 100);
while (1) {
select {
case spi.operation_complete():
retreive_transfer_buffers_8(buf_in, buf_out);
spi.end_transaction();

// Handle the data that has come in
handle_incoming_data(buf_in);
// Calculate the next set of data to go
fill_buffer_with_data(buf_out);

spi.begin_transaction(0, 100, SPI_MODE_0);
spi.init_transfer_array_8(move(buf_in), move(buf_out));
break;

}
}

}

The SPI asynchronous task is combinable so can be run on a logical core with other tasks (including the
application task it is connected to).

Copyright 2015 XMOS Ltd. 5 www.xmos.com
XM006232 (A)



SPI 2.0.0

2.3 Slave usage

SPI slave components are instantiated as parallel tasks that run in a par statement. The application can
connect via an interface connection.

SPI
slave
SPI
slaveappapp

spi_slave_callback_if

Figure 2: SPI slave task diagram

For example, the following code instantiates an SPI slave component and connect to it:

port p_miso = XS1_PORT_1A;
port p_ss = XS1_PORT_1B;
port p_sclk = XS1_PORT_1C;
port p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1B;

int main(void) {
spi_slave_if spi;
par {
spi_slave(i_spi, p_sclk, p_mosi, p_miso, p_ss, clk, SPI_MODE_0,

SPI_TRANSFER_SIZE_8);
my_application(i2c);

}
return 0;

}

When a slave component is instantiated the mode and transfer size needs to be specified.

Copyright 2015 XMOS Ltd. 6 www.xmos.com
XM006232 (A)



SPI 2.0.0

The slave component acts as the client of the interface connection. This means it can “callback” to the
application to respond to requests from the bus master. For example, the following code snippet shows
part of an application that responds to SPI transactions where the first word is a command to read or write
command and subsequent transfers either provide or consume data:

while (1) {
uint32_t command = 0;
size_t index = 0;
select {
case spi.master_starts_transaction():

// The master has asserted slave select to start a transaction.
command = 0;
index = 0;
break;

case spi.master_supplied_data32(uint32_t data):
if (command == 0) {
command = data;

} else if (command == WRITE_COMMAND) {
handle_write_data_item(data, index);
index++;

}
break;

case spi.master_requires_data32() -> uint32_t data:
if (command == 0) {
// Not got the command yet.
data = 0;

} else if (command == READ_COMMAND) {
data = get_read_data_item(index);
index++;

} else {
data = 0;

}
break;

case spi.master_requires_data() -> uint8_t data:
// We are working in 32-bit mode so nothing to do here.
break;

case spi.master_supplied_data(uint8_t data):
// We are working in 32-bit mode so nothing to do here.
break;

case spi.master_ends_transaction():
// The master has de-asserted slave select.
break;

}
}

Note that the time taken to handle the callbacks will determine the timing requirements of the SPI slave.
See application note AN????? for more details on different ways of working with the SPI slave component.

Copyright 2015 XMOS Ltd. 7 www.xmos.com
XM006232 (A)



SPI 2.0.0

3 Master API

All SPI master functions can be accessed via the spi.h header:

#include <spi.h>

You will also have to add lib_spi to the USED_MODULES field of your application Makefile.

3.1 Supporting types

The following type is used to configure the SPI components.

Type spi_mode_t

Description This type indicates what mode an SPI component should use.

Values SPI_MODE_0
SPI Mode 0 - Polarity = 0, Clock Edge = 1.

SPI_MODE_1
SPI Mode 1 - Polarity = 0, Clock Edge = 0.

SPI_MODE_2
SPI Mode 2 - Polarity = 1, Clock Edge = 0.

SPI_MODE_3
SPI Mode 3 - Polarity = 1, Clock Edge = 1.

Copyright 2015 XMOS Ltd. 8 www.xmos.com
XM006232 (A)



SPI 2.0.0

3.2 Creating an SPI master instance

Function spi_master

Description Task that implements the SPI proctocol in master mode that is connected to a multiple
slaves on the bus.
Each slave must be connected to using the same SPI mode.
You can access different slave devices over the interface connection using the de-
vice_index parameter of the interface functions. The task will allocate the device
indices in the order of the supplied array of slave select ports.

Type [[distributable]]
void
spi_master(server interface spi_master_if i[num_clients],

size_t num_clients,
out port sclk,
out port mosi,
in port miso,
out port p_ss[num_slaves],
size_t num_slaves,
clock clk)

Parameters i an array of interface connection to the clients of the task.

num_clients
the number of clients connected to the task.

clk a clock block used by the task.

sclk the SPI clock port.

mosi the SPI MOSI (master out, slave in) port.

miso the SPI MISO (master in, slave out) port.

p_ss an array of ports connected to the slave select signals of the slave.

num_slaves
The number of slave devices on the bus.

clk a clock for the component to use.

Copyright 2015 XMOS Ltd. 9 www.xmos.com
XM006232 (A)



SPI 2.0.0

Function spi_master_async

Description SPI master component for asynchronous API.
This component implements SPI and allows a client to connect using the asynchronous
SPI master interface.

Type [[combinable]]
void
spi_master_async(

server interface spi_master_async_if i[num_clients],
size_t num_clients,
out port sclk,
out port mosi,
in port miso,
out port p_ss[num_slaves],
size_t num_slaves,
clock clk)

Parameters i an array of interface connection to the clients of the task.

num_clients
the number of clients connected to the task.

clk a clock block used by the task.

sclk the SPI clock port.

mosi the SPI MOSI (master out, slave in) port.

miso the SPI MISO (master in, slave out) port.

p_ss an array of ports connected to the slave select signals of the slave.

num_slaves
The number of slave devices on the bus.

clk a clock for the component to use.

Copyright 2015 XMOS Ltd. 10 www.xmos.com
XM006232 (A)



SPI 2.0.0

3.3 SPI master interface

Type spi_master_if

Description This interface allows clients to interact with SPI master task.

Functions
Function begin_transaction

Description Begin a transaction.
This will start a transaction on the bus. During a transaction,
no other client to the SPI component can send or receive data.
If another client is currently using the component then this call
will block until the bus is released.

Type [[guarded]]
void
begin_transaction(unsigned device_index,

unsigned speed_in_khz,
spi_mode_t mode)

Parameters device_index
the index of the slave device to interact with.

speed_in_khz
The speed that the SPI bus should run at during
the transaction (in kHZ).

mode The mode of spi transfers during this transaction.

Function end_transaction

Description End a transaction.
This ends a transaction on the bus and releases the component
to other clients.

Type void end_transaction(void)

Continued on next page

Copyright 2015 XMOS Ltd. 11 www.xmos.com
XM006232 (A)



SPI 2.0.0

Type spi_master_if (continued)

Function transfer8

Description Transfer a byte over the spi bus.
This function will transmit and receive 8 bits of data over the
SPI bus. The data will be transmitted least-significant bit first.

Type uint8_t transfer8(uint8_t data)

Parameters data the data to transmit the MOSI port.

Returns the data read in from the MISO port.

Function transfer32

Description Transfer a 32-bit word over the spi bus.
This function will transmit and receive 32 bits of data over the
SPI bus. The data will be transmitted least-significant bit first.

Type uint32_t transfer32(uint32_t data)

Parameters data the data to transmit the MOSI port.

Returns the data read in from the MISO port.

Copyright 2015 XMOS Ltd. 12 www.xmos.com
XM006232 (A)



SPI 2.0.0

3.4 SPI master asynchronous interface

Type spi_master_async_if

Description Asynchronous interface to an SPI component.
This interface allows programs to offload SPI bus transfers to another task. An asyn-
chronous notification occurs when the transfer is complete.

Functions
Function begin_transaction

Description Begin a transaction.
This will start a transaction on the bus. During a transaction,
no other client to the SPI component can send or receive data.
If another client is currently using the component then this call
will block until the bus is released.

Type [[guarded]]
void
begin_transaction(unsigned device_index,

unsigned speed_in_khz,
spi_mode_t mode)

Parameters device_index
the index of the slave device to interact with.

speed_in_khz
The speed that the SPI bus should run at during
the transaction (in kHZ)

mode The mode of spi transfers during this transaction

Function end_transaction

Description End a transaction.
This ends a transaction on the bus and releases the component
to other clients.

Type void end_transaction(void)

Continued on next page

Copyright 2015 XMOS Ltd. 13 www.xmos.com
XM006232 (A)



SPI 2.0.0

Type spi_master_async_if (continued)

Function init_transfer_array_8

Description Initialize Transfer an array of bytes over the spi bus.
This function will initialize a transmit of 8 bit data over the SPI
bus.

Type void
init_transfer_array_8(uint8_t *movable inbuf,

uint8_t *movable outbuf,
size_t nbytes)

Parameters inbuf A movable pointer that is moved to the other task
pointing to the buffer area to fill with data. If this
parameter is NULL then the incoming data of the
transfer will be discarded.

outbuf A movable pointer that is moved to the other task
pointing to the buffer area to with data to trans-
mit. If this parameter is NULL then the outgoing
data of the transfer will consist of undefined val-
ues.

nbytes The number of bytes to transfer over the bus.

Function init_transfer_array_32

Description Initialize Transfer an array of bytes over the spi bus.
This function will initialize a transmit of 32 bit data over the SPI
bus.

Type void
init_transfer_array_32(uint8_t *movable inbuf,

uint8_t *movable outbuf,
size_t nwords)

Parameters inbuf A movable pointer that is moved to the other task
pointing to the buffer area to fill with data. If this
parameter is NULL then the incoming data of the
transfer will be discarded.

outbuf A movable pointer that is moved to the other task
pointing to the buffer area to with data to trans-
mit. If this parameter is NULL then the outgoing
data of the transfer will consist of undefined val-
ues.

nwords The number of words to transfer over the bus.

Continued on next page

Copyright 2015 XMOS Ltd. 14 www.xmos.com
XM006232 (A)



SPI 2.0.0

Type spi_master_async_if (continued)

Function operation_complete

Description Transfer completed notification.
This notification occurs when a transfer is completed.

Type [[notification]]
slave void operation_complete(void)

Function retrieve_transfer_buffers_8

Description Retrieve transfer buffers.
This function should be called after the transfer_complete()
notification and will return the buffers given to the other task
by init_transfer_array_8().

Type [[clears_notification]]
void
retrieve_transfer_buffers_8(uint8_t *movable &inbuf,

uint8_t *movable &outbuf)

Parameters inbuf A movable pointer that will be set to the buffer
pointer that was filled during the transfer.

outbuf A movable pointer that will be set to the buffer
pointer that was transmitted during the transfer.

Function retrieve_transfer_buffers_32

Description Retrieve transfer buffers.
This function should be called after the transfer_complete()
notification and will return the buffers given to the other task
by init_transfer_array_32().

Type [[clears_notification]]
void
retrieve_transfer_buffers_32(uint8_t *movable &inbuf,

uint8_t *movable &outbuf)

Parameters inbuf A movable pointer that will be set to the buffer
pointer that was filled during the transfer.

outbuf A movable pointer that will be set to the buffer
pointer that was transmitted during the transfer.

Copyright 2015 XMOS Ltd. 15 www.xmos.com
XM006232 (A)



SPI 2.0.0

4 Slave API

All SPI slave functions can be accessed via the spi.h header:

#include <spi.h>

You will also have to add lib_spi to the USED_MODULES field of your application Makefile.

4.1 Creating an SPI slave instance

Function spi_slave

Description SPI slave component.
This function implements an SPI slave bus.

Type [[combinable]]
void
spi_slave(client spi_slave_callback_if i,

in port p_sclk,
in port p_mosi,
out port p_miso,
in port p_ss,
clock clk,
spi_mode_t mode,
spi_transfer_type_t transfer_type)

Parameters i The interface to connect to the user of the component. The component
acts as the client and will make callbacks to the application.

p_sclk the SPI clock port.

p_mosi the SPI MOSI (master out, slave in) port.

p_miso the SPI MISO (master in, slave out) port.

p_ss the SPI SS (slave select) port.

clk clock to be used by the component.

mode the SPI mode of the bus.

transfer_type
the type of transfer the slave will perform: either
SPI_TRANSFER_SIZE_8 or SPI_TRANSFER_SIZE_32.

Copyright 2015 XMOS Ltd. 16 www.xmos.com
XM006232 (A)



SPI 2.0.0

Type spi_transfer_type_t

Description This type specifies the transfer size from the SPI slave component to the application.

Values SPI_TRANSFER_SIZE_8
Transfers should by 8-bit.

SPI_TRANSFER_SIZE_32
Transfers should be 32-bit.

Copyright 2015 XMOS Ltd. 17 www.xmos.com
XM006232 (A)



SPI 2.0.0

4.2 The SPI slave interface API

Type spi_slave_callback_if

Description This interface allows clients to interact with SPI slave tasks by completing callbacks
that show how to handle data.

Functions
Function master_starts_transaction

Description This callback will get called when the master asserts on the
slave select line to start a transaction.

Type void master_starts_transaction(void)

Function master_ends_transaction

Description This callback will get called when the master de-asserts on teh
slave select line to end a transaction.

Type vois master_ends_transaction(void)

Function master_requires_data

Description This callback will get called when the master initiates a bus
transfer or when more data is required during a transaction.
The application must supply the data to transmit to
the master. If the spi slave component is set to
SPI_TRANSFER_SIZE_32 mode then this callback will not be
called and master_requires_data32() will be called instead.
Data is transmitted for the least significant bit first. If the mas-
ter completes the transaction before 8 bits are transferred the
remaining bits are discarded.

Type uint8_t master_requires_data(void)

Returns the 8-bit value to transmit.

Continued on next page

Copyright 2015 XMOS Ltd. 18 www.xmos.com
XM006232 (A)



SPI 2.0.0

Type spi_slave_callback_if (continued)

Function master_requires_data32

Description This callback will get called when the master initiates a bus
transfer.
The application must supply the data to transmit to the master.
Data is transmitted for the least significant bit first. If the mas-
ter completes the transaction before 32 bits are transferred the
remaining bits are discarded.

Type uint32_t
master_requires_data32(size_t &num_bytes)

Returns the 32-bit value to transmit.

Function master_supplied_data

Description This callback will get called after a transfer.
It will occur after every 8 bits transferred if the slave component
is set to SPI_TRANSFER_SIZE_8. If the component is set to
SPI_TRANSFER_SIZE_32 then it will occur if the master ends
the transaction before 32 bits are transferred.

Type void master_supplied_data(uint8_t datum)

Parameters datum the data received from the master.

Function master_supplied_data32

Description This callback will get called after a transfer.
It will only occur if the slave component is set to
SPI_TRANSFER_SIZE_32 mode and will occur after every 32
bits received.

Type void
master_supplied_data32(uint32_t datum)

Parameters datum the data received from the master.

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2015 XMOS Ltd. 19 www.xmos.com
XM006232 (A)


	Hardware characteristics
	Usage
	SPI master synchronous operation
	SPI master asynchronous operation
	Slave usage

	Master API
	Supporting types
	Creating an SPI master instance
	SPI master interface
	SPI master asynchronous interface

	Slave API
	Creating an SPI slave instance
	The SPI slave interface API


