
I2C (3.1.1)

I2C Library
A software defined, industry-standard, I2C library that allows you to control an I2C bus via xCORE ports.
I2C is a two-wire hardware serial interface, first developed by Philips. The components in the libary are
controlled via C using the XMOS multicore extensions (xC) and can either act as I2C master or slave.

The libary is compatible with multiple slave devices existing on the same bus. The I2C master component
can be used by multiple tasks within the xCORE device (each addressing the same or different slave
devices).

Features

• I2C master and I2C slave modes.
• Supports speed up to 400 Kb/s.
• Clock stretching suppoirt.
• Synchronous and asynchronous APIs for efficient usage of processing cores.

Typical Resource Usage

This following table shows typical resource usage in some different configurations. Exact resource usage
will depend on the particular use of the library by the application.

Configuration Pins Ports Clocks Ram Logical cores

Master 2 2 (1-bit) 0 ~1.1K 0

Master (single port) 2 1 (multi-bit) 0 ~0.9K 0

Master (asynchronous) 2 2 (1-bit) 0 ~3.1K 1

Master (asynchronous, combinable) 2 2 (1-bit) 0 ~2.9K ≤ 1

Slave 2 2 (1-bit) 0 ~1.4K ≤ 1

Software version and dependencies

This document pertains to version 3.1.1 of this library. It is known to work on version 14.0.2 of the
xTIMEcomposer tools suite, it may work on other versions.

This library depends on the following other libraries:

• lib_logging (>=2.0.0) • lib_xassert (>=2.0.0)

Related application notes

The following application notes use this library:

• AN00181 - xCORE-200 explorer accelerometer demo

Copyright 2015 XMOS Ltd. 1 www.xmos.com
XM004927



I2C (3.1.1)

1 External signal description

All signals are designed to comply with the timings in the I2C specification found here:

http://www.nxp.com/documents/user_manual/UM10204.pdf

Note that the following optional parts of the I2C specification are not supported:

• Multi-master arbitration
• 10-bit slave addressing
• General call addressing
• Software reset
• START byte
• Device ID
• Fast-mode Plus, High-speed mode, Ultra Fast-mode

I2C consists of two signals: a clock line (SCL) and a data line (SDA). Both these signals are open-drain and
require external resistors to pull the line up if no device is driving the signal down. The correct value for
the resistors can be found in the I2C specification.

xCORE device

SDA

SCL

Figure 1: I2C open-drain layout

Transactions on the line occur between a master and a slave. The master always drives the clock (though
the slave can delay the transaction at any point by holding the clock line down). The master initiates
a transaction with a start bit (consisting of driving the data line from high to low whilst the clock line
is high). It will then clock out a seven-bit device address followed by a read/write bit. The master will
then drive one more clock signal during which the slave can either ACK (drive the line low), accepting the
transaction or NACK (leave the line high). This sequence is shown in Figure 2.

Figure 2: I2C transaction start

If the read/write bit of the transaction start is 1 then the master will execute a sequence of reads. Each
read consists of the master driving the clock whilst the slave drives the data for 8-bits (most siginificant
bit first). At the end of each byte, the master drives another clock pulse and will either drive either an
ACK (0) or NACK (1) signal on the data line. When the master drives a NACK signal, the sequence of reads
is complete. A read byte sequence is show in Figure 3

Copyright 2015 XMOS Ltd. 2 www.xmos.com
XM004927

http://www.nxp.com/documents/user_manual/UM10204.pdf


I2C (3.1.1)

Figure 3: I2C read byte

If the read/write bit of the transaction start is 1 then the master will execute a sequence of writess. Each
read consists of the master driving the clock whilst and also driving he data for 8-bits (most siginificant
bit first). At the end of each byte, the slave drives another clock pulse and will either drive either an ACK
(0) (signalling that is can accept more data) or a NACK (1) (signalling that is cannot accept more data)
on the data line. After the ACK/NACK signal, the master can complete the transaction with a stop bit or
repeated start. A write byte sequence is show in Figure 4

Figure 4: I2C write byte

After a transaction is complete, the master may start a new transaction with the same device (a repeated
start) or will send a stop bit consisting of driving the data line from low to high whilst the clock line is
high (see Figure 5).

Figure 5: I2C stop bit

Copyright 2015 XMOS Ltd. 3 www.xmos.com
XM004927



I2C (3.1.1)

1.1 Connecting to the xCORE device

When the xCORE is the I2C master, the normal configuration is to connect the clock and data lines to
different 1-bit ports as shown in Figure 6.

1 bit
port

SDA

SCLxCORE device

1 bit
port

Figure 6: I2C master (1-bit ports)

It is possible to connect both lines to different bits of a multi-bit port as shown in Figure 7. This is useful
if other constraints limit the use of once bit ports. However the following should be taken into account:

• On L-series and U-series devices in this configuration, the xCORE can only perform write transactions
to the I2C bus.

• On L-series and U-series clock stretching is not supported in this configuration.
• The other bits of the multi-bit port cannot be used for any other function.

The restrictions on reading and clock stretching do not apply to xCORE-200 devices.

n-bit
port

SDA

SCLxCORE device

Figure 7: I2C master (single n-bit port)

When the xCORE is acting as I2C slave the two lines must be connected to two 1-bit ports (as shown in
Figure 8).

1 bit
port

SDA

SCLxCORE device

1 bit
port

Figure 8: I2C slave connection

Copyright 2015 XMOS Ltd. 4 www.xmos.com
XM004927



I2C (3.1.1)

2 Usage

2.1 I2C master synchronous operation

There are two types of interface for I2C master components: synchronous and asynchronous.

The synchronous API provides blocking operation. Whenever a client makes a read or write call the
operation will complete before the client can move on - this will occupy the core that the client code is
running on until the end of the operation. This method is easy to use, has low resource use and is very
suitable for applications such as setup and configuration of attached peripherals.

I2C master components are instantiated as parallel tasks that run in a par statement. For synchronous
oepration, the application can connect via an interface connection using the i2c_master_if interface
type:

i2c 
master

i2c 
masterappapp

i2c_master_if

Figure 9: I2C master task diagram

For example, the following code instantiates an I2C master component and connect to it:

port p_scl = XS1_PORT_4C;
port p_sda = XS1_PORT_1G;

int main(void) {
i2c_master_if i2c[1];
par {
i2c_master(i2c, 1, p_scl, p_sda, 100);
my_application(i2c[0]);

}
return 0;

}

For the single multi-bit port version of I2C the top level instantiation would look like:

port p_i2c = XS1_PORT_4C;

int main(void) {
i2c_master_if i2c[1];
par {
i2c_master_single_port(i2c, 1, p_i2c, 100, 1, 3, 0);
my_application(i2c[0]);

}
return 0;

}

Note that the connection is an array of interfaces, so several tasks can connect to the same component
instance.

Copyright 2015 XMOS Ltd. 5 www.xmos.com
XM004927



I2C (3.1.1)

The application can use the client end of the interface connection to perform I2C bus operations e.g.:

void my_application(client i2c_master_if i2c) {
uint8_t data[2];
i2c.read(0x90, data, 2, 1);
printf("Read data %d, %d from the bus.\n", data[0], data[1]);

}

Here the operations such as i2c.read will block until the operation is completed on the bus. More
information on interfaces and tasks can be be found in the XMOS Programming Guide (see XM-004440-
PC). By default the I2C synchronous master mode component does not use any logical cores of its own.
It is a distributed task which means it will perform its function on the logical core of the application task
connected to it (provided the application task is on the same tile).

2.2 I2C master asynchronous operation

The synchronous API will block your application until the bus operation is complete. In cases where the
application cannot afford to wait for this long the asynchronous API can be used.

The asynchronous API offloads operations to another task. Calls are provide to initiate reads and writes
and notifications are provided when the operation completes. This API requires more management in
the application but can provide much more efficient operation. It is particularly suitable for applications
where the I2C bus is being used for continuous data transfer.

Setting up an asynchronous I2C master component is done in the same manner as the synchronous
component:

port p_scl = XS1_PORT_4C;
port p_sda = XS1_PORT_1G;

int main(void) {
i2c_master_async_if i2c[1];
par {
i2c_master_async(i2c, 1, p_scl, p_sda, 100);
my_application(i2c[0]);

}
return 0;

}

Copyright 2015 XMOS Ltd. 6 www.xmos.com
XM004927

http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide
http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide


I2C (3.1.1)

The application can then use the asynchronous API to offload bus operations to the component. For
example, the following code repeatedly calculates 100 bytes to send over the bus:

void my_application(client i2c_master_async_if i2c, uin8_t device_addr) {
uint8_t buffer[100];

// create and send initial data
fill_buffer_with_data(buffer);
i2c.write(device_addr, buffer, 100, 1);
while (1) {
select {
case i2c.operation_complete():
i2c_res_t result;
unsigned num_bytes_sent;
result = get_tx_result(num_bytes_sent);
if (num_bytes_send != 100)

handle_bus_error(result);

// Offload the next 100 bytes data to be sent
i2c.write(device_addr, buffer, 100, 1);

// Calculate the next set of data to go
fill_buffer_with_data(buffer);
break;

}
}

}

Here the calculation of fill_buffer_with_data will overlap with the sending of data by the other task.

2.3 Repeated start bits

The library supports repeated start bits. The rx and tx functions allow the application to specify whether
to send a stop bit at the end of the transaction. If this is set to 0 then no stop bit is sent and the next
transaction will begin with a repeated start bit e.g.:

// Do a tx operation with no stop bit
i2c.write(device_addr, data, 2, num_bytes_sent, 0);

// This operation will begin with a repeated start bit.
i2c.read(device_addr, data, 1, 1);

Note that if no stop bit is sent then no other task using the component can use send or receive data. They
will block until a stop bit is sent.

Copyright 2015 XMOS Ltd. 7 www.xmos.com
XM004927



I2C (3.1.1)

2.4 I2C slave library usage

I2C slave components are instantiated as parallel tasks that run in a par statement. The application can
connect via an interface connection.

i2c 
slave
i2c 

slaveappapp
i2c_slave_if

Figure 10: I2C slave task diagram

For example, the following code instantiates an I2C slave component and connect to it:

port p_scl = XS1_PORT_4C;
port p_sda = XS1_PORT_1G;

int main(void) {
i2c_slave_if i2c;
par {
i2c_slave(i2c, p_scl, p_sda, 0x3b, 2);
my_application(i2c);

}
return 0;

}

Copyright 2015 XMOS Ltd. 8 www.xmos.com
XM004927



I2C (3.1.1)

The slave component acts as the client of the interface connection. This means it can “callback” to the
application to respond to requests from the bus master. For example, the my_application function
above needs to respond to the calls e.g.:

void my_application(server i2c_slave_if i2c)
{
while (1) {
select {
case i2c.start_read_request():
break;

case i2c.master_requests_read() -> i2c_slave_ack_t response:
response = I2C_SLAVE_ACK;
break;

case i2c.start_write_request():
break;

case i2c.master_requests_write() -> i2c_slave_ack_t response:
response = I2C_SLAVE_ACK;
break;

case i2c.start_master_write():
break;

case i2c.master_sent_data(uint8_t data) -> i2c_slave_ack_t response:
// handle write to device here, set response to NACK for the
// last byte of data in the transaction.
...
break;

case i2c.start_master_read():
break;

case i2c.master_requires_data() -> uint8_t data:
// handle read from device here
...
break;

case i2c.stop_bit():
break;

}
}

}

More information on interfaces and tasks can be be found in the XMOS Programming Guide (see XM-
004440-PC).

Copyright 2015 XMOS Ltd. 9 www.xmos.com
XM004927

http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide
http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide


I2C (3.1.1)

3 Master API

All I2C master functions can be accessed via the i2c.h header:

#include <i2c.h>

You will also have to add lib_i2c to the USED_MODULES field of your application Makefile.

3.1 Creating an I2C master instance

Function i2c_master

Description Implements I2C on the i2c_master_if interface using two ports.

Type [[distributable]]
void
i2c_master(server interface i2c_master_if i[n],

size_t n,
port p_scl,
port p_sda,
unsigned kbits_per_second)

Parameters i An array of server interface connections for clients to connect to

n The number of clients connected

p_scl The SCL port of the I2C bus

p_sda The SDA port of the I2C bus

kbits_per_second
The speed of the I2C bus

Copyright 2015 XMOS Ltd. 10 www.xmos.com
XM004927



I2C (3.1.1)

Function i2c_master_single_port

Description Implements I2C on a single multi-bit port.
This function implements an I2C master bus using a single port. However, If this
function is used with an L-series or U-series xCORE device then reading from the
bus and clock stretching are not supported. The user needs to be aware that these
restriction are appropriate for the application. On xCORE-200 devices, reading and
clock stretching are supported.

Type [[distributable]]
void
i2c_master_single_port(server interface i2c_master_if c[n],

size_t n,
port p_i2c,
unsigned kbits_per_second,
unsigned scl_bit_position,
unsigned sda_bit_position,
unsigned other_bits_mask)

Parameters c An array of server interface connections for clients to connect to

n The number of clients connected

p_i2c The multi-bit port containing both SCL and SDA. You will need to set the
relevant defines in i2c_conf.h in you application to say which bits of the
port are used

kbits_per_second
The speed of the I2C bus

sda_bit_position
The bit position of the SDA line on the port

scl_bit_position
The bit position of the SCL line on the port

other_bits_mask
The mask for the other bits of the port to use when driving it. Note that,
on occassions, the other bits are left to float, so external resistors shall
be used to reinforce the default value

Copyright 2015 XMOS Ltd. 11 www.xmos.com
XM004927



I2C (3.1.1)

Function i2c_master_async

Description I2C master component (asynchronous API).
This function implements I2C and allows clients to asynchronously perform opera-
tions on the bus.
kbits_per_second in [1..400], resources:noeffect max_transaction_size re-
sources:linear+orthoganol

Type void
i2c_master_async(server interface i2c_master_async_if i[n],

size_t n,
port p_scl,
port p_sda,
unsigned kbits_per_second,
static const size_t max_transaction_size)

Parameters i the interface to connect to the client of the component

p_scl The SCL port of the I2C bus

p_sda The SDA port of the I2C bus

kbits_per_second
The speed of the I2C bus

Copyright 2015 XMOS Ltd. 12 www.xmos.com
XM004927



I2C (3.1.1)

3.2 I2C master supporting typedefs

Type i2c_res_t

Description This type is used in I2C functions to report back on whether the slave performed and
ACK or NACK on the last piece of data sent to it.

Values I2C_NACK The slave has ack-ed the last byte.

I2C_ACK The slave has nack-ed the last byte.

Type i2c_regop_res_t

Description This type is used the supplementary I2C register read/write functions to report back
on whether the operation was a success or not.

Values I2C_REGOP_SUCCESS
The operation was successful.

I2C_REGOP_DEVICE_NACK
The operation was NACK-ed when sending the device address, so either
the device is missing or busy.

I2C_REGOP_INCOMPLETE
The operation was NACK-ed halfway through by the slave.

Copyright 2015 XMOS Ltd. 13 www.xmos.com
XM004927



I2C (3.1.1)

3.3 I2C master interface

Type i2c_master_if

Description This interface is used to communication with an I2C master component.
It provides facilities for reading and writing to the bus.

Functions
Function write

Description Write data to an I2C bus.

Type [[guarded]]
i2c_res_t write(uint8_t device_addr,

uint8_t buf[n],
size_t n,
size_t &num_bytes_sent,
int send_stop_bit)

Parameters device_addr
t the address of the slave device to write to.

buf the buffer containing data to write.

n the number of bytes to write.

num_bytes_sent
the function will set this value to the number of
bytes actually sent. On success, this will be equal
to but it will be less if the slave sends an early
NACK on the bus and the transaction fails.

send_stop_bit
If this is set to non-zero then a stop bit will be out-
put on the bus after the transaction. This is usu-
ally required for normal operation. If this param-
eter is non-zero then no stop bit will be omitted.
In this case, no other task can use the component
until either a new read or write call is made (a re-
peated start) or the send_stop_bit() function is
called.

Returns whether the write succeeded

Continued on next page

Copyright 2015 XMOS Ltd. 14 www.xmos.com
XM004927



I2C (3.1.1)

Type i2c_master_if (continued)

Function read

Description Read data from an I2C bus.

Type [[guarded]]
i2c_res_t read(uint8_t device_addr,

uint8_t buf[n],
size_t n,
int send_stop_bit)

Parameters device_addr
the address of the slave device to read from

buf the buffer to fill with data

n the number of bytes to read

send_stop_bit
If this is set to non-zero then a stop bit will be out-
put on the bus after the transaction. This is usu-
ally required for normal operation. If this param-
eter is non-zero then no stop bit will be omitted.
In this case, no other task can use the component
until either a new read or write call is made (a re-
peated start) or the send_stop_bit() function is
called.

Function send_stop_bit

Description Send a stop bit.
This function will cause a stop bit to be sent on the bus.
It should be used to complete/abort a transaction if the
send_stop_bit argument was not set when calling the read()
or write() functions.

Type void send_stop_bit(void)

Function shutdown

Description Shutdown the I2C component.
This function will cause the I2C task to shutdown and return.

Type void shutdown()

Continued on next page

Copyright 2015 XMOS Ltd. 15 www.xmos.com
XM004927



I2C (3.1.1)

Type i2c_master_if (continued)

Function read_reg

Description Read an 8-bit register on a slave device.
This function reads an 8-bit addressed, 8-bit register from the
i2c bus. The function reads data by transmitting the register
addr and then reading the data from the slave device.
Note that no stop bit is transmitted between the write and the
read. The operation is performed as one transaction using a
repeated start.

Type uint8_t read_reg(uint8_t device_addr,
uint8_t reg,
i2c_regop_res_t &result)

Parameters device_addr
the address of the slave device to read from

reg the address of the register to read

Returns the value of the register

Function write_reg

Description Write an 8-bit register on a slave device.
This function writes an 8-bit addressed, 8-bit register from the
i2c bus. The function writes data by transmitting the register
addr and then transmitting the data to the slave device.

Type i2c_regop_res_t write_reg(uint8_t device_addr,
uint8_t reg,
uint8_t data)

Parameters device_addr
the address of the slave device to write to

reg the address of the register to write

data the 8-bit value to write

Continued on next page

Copyright 2015 XMOS Ltd. 16 www.xmos.com
XM004927



I2C (3.1.1)

Type i2c_master_if (continued)

Function read_reg8_addr16

Description Read an 8-bit register on a slave device from a 16 bit register
address.
This function reads a 16-bit addressed, 8-bit register from the
i2c bus. The function reads data by transmitting the register
addr and then reading the data from the slave device.
Note that no stop bit is transmitted between the write and the
read. The operation is performed as one transaction using a
repeated start.

Type uint8_t
read_reg8_addr16(uint8_t device_addr,

uint16_t reg,
i2c_regop_res_t &result)

Parameters device_addr
the address of the slave device to read from

reg the address of the register to read

Returns the value of the register

Function write_reg8_addr16

Description Write an 8-bit register on a slave device from a 16 bit register
address.
This function writes a 16-bit addressed, 8-bit register from the
i2c bus. The function writes data by transmitting the register
addr and then transmitting the data to the slave device.

Type i2c_regop_res_t
write_reg8_addr16(uint8_t device_addr,

uint16_t reg,
uint8_t data)

Parameters device_addr
the address of the slave device to write to

reg the address of the register to write

data the 8-bit value to write

Continued on next page

Copyright 2015 XMOS Ltd. 17 www.xmos.com
XM004927



I2C (3.1.1)

Type i2c_master_if (continued)

Function read_reg16

Description Read an 16-bit register on a slave device from a 16 bit register
address.
This function reads a 16-bit addressed, 16-bit register from the
i2c bus. The function reads data by transmitting the register
addr and then reading the data from the slave device.
Note that no stop bit is transmitted between the write and the
read. The operation is performed as one transaction using a
repeated start.

Type uint16_t read_reg16(uint8_t device_addr,
uint16_t reg,
i2c_regop_res_t &result)

Parameters device_addr
the address of the slave device to read from

reg the address of the register to read

Returns the value of the register

Function write_reg16

Description Write an 16-bit register on a slave device from a 16 bit register
address.
This function writes a 16-bit addressed, 16-bit register from the
i2c bus. The function writes data by transmitting the register
addr and then transmitting the data to the slave device.

Type i2c_regop_res_t write_reg16(uint8_t device_addr,
uint16_t reg,
uint16_t data)

Parameters device_addr
the address of the slave device to write to

reg the address of the register to write

data the 16-bit value to write

Continued on next page

Copyright 2015 XMOS Ltd. 18 www.xmos.com
XM004927



I2C (3.1.1)

Type i2c_master_if (continued)

Function read_reg16_addr8

Description Read an 16-bit register on a slave device from a 8-bit register
address.
This function reads a 8-bit addressed, 16-bit register from the
i2c bus. The function reads data by transmitting the register
addr and then reading the data from the slave device.
Note that no stop bit is transmitted between the write and the
read. The operation is performed as one transaction using a
repeated start.

Type uint16_t
read_reg16_addr8(uint8_t device_addr,

uint8_t reg,
i2c_regop_res_t &result)

Parameters device_addr
the address of the slave device to read from

reg the address of the register to read

Returns the value of the register

Function write_reg16_addr8

Description Write an 16-bit register on a slave device from a 8-bit register
address.
This function writes a 8-bit addressed, 16-bit register from the
i2c bus. The function writes data by transmitting the register
addr and then transmitting the data to the slave device.

Type i2c_regop_res_t
write_reg16_addr8(uint8_t device_addr,

uint8_t reg,
uint16_t data)

Parameters device_addr
the address of the slave device to write to

reg the address of the register to write

data the 8-bit value to write

Copyright 2015 XMOS Ltd. 19 www.xmos.com
XM004927



I2C (3.1.1)

3.4 I2C master asynchronous interface

Type i2c_master_async_if

Description This interface is used to communication with an I2C master component asyn-
chronously.
It provides facilities for reading and writing to the bus.

Functions
Function write

Description Initialize a write to an I2C bus.

Type [[guarded]]
void write(uint8_t device_addr,

uint8_t buf[n],
size_t n,
int send_stop_bit)

Parameters device_addr
the address of the slave device to write to

buf the buffer containing data to write

n the number of bytes to write

send_stop_bit
If this is set to non-zero then a stop bit will be out-
put on the bus after the transaction. This is usu-
ally required for normal operation. If this param-
eter is non-zero then no stop bit will be omitted.
In this case, no other task can use the component
until either a new read or write call is made (a re-
peated start) or the send_stop_bit() function is
called.

Continued on next page

Copyright 2015 XMOS Ltd. 20 www.xmos.com
XM004927



I2C (3.1.1)

Type i2c_master_async_if (continued)

Function read

Description Initialize a read to an I2C bus.

Type [[guarded]]
void read(uint8_t device_addr,

size_t n,
int send_stop_bit)

Parameters device_addr
the address of the slave device to read from.

n the number of bytes to read.

send_stop_bit
If this is set to non-zero then a stop bit will be out-
put on the bus after the transaction. This is usu-
ally required for normal operation. If this param-
eter is non-zero then no stop bit will be omitted.
In this case, no other task can use the component
until either a new read or write call is made (a re-
peated start) or the send_stop_bit() function is
called.

Function operation_complete

Description Completed operation notification.
This notification will fire when a read or write is completed.

Type [[notification]]
slave void operation_complete(void)

Continued on next page

Copyright 2015 XMOS Ltd. 21 www.xmos.com
XM004927



I2C (3.1.1)

Type i2c_master_async_if (continued)

Function get_write_result

Description Get write result.
This function should be called after a write has completed.

Type [[clears_notification]]
i2c_res_t
get_write_result(size_t &num_bytes_sent)

Parameters num_bytes_sent
the function will set this value to the number of
bytes actually sent. On success, this will be equal
to but it will be less if the slave sends an early
NACK on the bus and the transaction fails.

Returns whether the write succeeded

Function get_read_data

Description Get read result.
This function should be called after a read has completed.

Type [[clears_notification]]
i2c_res_t get_read_data(uint8_t buf[n], size_t n)

Parameters buf the buffer to fill with data.

n the number of bytes to read, this should be
the same as the number of bytes specified in
init_rx(), otherwise the behavior is undefined.

Returns Either I2C_SUCCEEDED or I2C_FAILED to indicate whether the
operation was a success.

Function send_stop_bit

Description Send a stop bit.
This function will cause a stop bit to be sent on the bus.
It should be used to complete/abort a transaction if the
send_stop_bit argument was not set when calling the rx()
or write() functions.

Type void send_stop_bit(void)

Continued on next page

Copyright 2015 XMOS Ltd. 22 www.xmos.com
XM004927



I2C (3.1.1)

Type i2c_master_async_if (continued)

Function shutdown

Description Shutdown the I2C component.
This function will cause the I2C task to shutdown and return.

Type void shutdown()

Copyright 2015 XMOS Ltd. 23 www.xmos.com
XM004927



I2C (3.1.1)

4 Slave API

All I2C slave functions can be accessed via the i2c.h header:

#include <i2c.h>

You will also have to add lib_i2c to the USED_MODULES field of your application Makefile.

Copyright 2015 XMOS Ltd. 24 www.xmos.com
XM004927



I2C (3.1.1)

4.1 Creating an I2C slave instance

Function i2c_slave

Description I2C slave task.
This function instantiates an i2c_slave component.

Type [[combinable]]
void
i2c_slave(client i2c_slave_callback_if i,

port p_scl,
port p_sda,
uint8_t device_addr)

Parameters i the client end of the i2c_slave_if interface. The component takes the
client end and will make calls on the interface when the master performs
reads or writes.

p_scl The SCL port of the I2C bus

p_sda The SDA port of the I2C bus

device_addr
The address of the slave device

max_transaction_size
The maximum number of bytes that will be read or written by the mas-
ter.

Copyright 2015 XMOS Ltd. 25 www.xmos.com
XM004927



I2C (3.1.1)

4.2 I2C slave interface

Type i2c_slave_callback_if

Description This interface is used to communication with an I2C slave component.
It provides facilities for reading and writing to the bus. The I2C slave component
acts a client to this interface. So the application must respond to these calls (i.e. the
members of the interface are callbacks to the application).

Functions
Function start_read_request

Description Start of a read request.
This callback function will be called by the component if the
bus master requests a read from this slave device. A follow-up
call to ack_read_request() will request the slave to ack the
request or not.

Type [[guarded]]
void start_read_request(void)

Function ack_read_request

Description Master has requested a read.
This callback function will be called by the component if the
bus master requests a read from this slave device after the
start_read_request() call. At this point the slave can choose
to accept the request (and drive an ACK signal back to the mas-
ter) or not (and drive a NACK signal).

Type [[guarded]]
i2c_slave_ack_t ack_read_request(void)

Returns the callback must return either I2C_SLAVE_ACK or
I2C_SLAVE_NACK.

Function start_write_request

Description Start of a write request.
This callback function will be called by the component if the
bus master requests a write from this slave device. A follow-up
call to ack_write_request() will request the slave to ack the
request or not.

Type [[guarded]]
void start_write_request(void)

Continued on next page

Copyright 2015 XMOS Ltd. 26 www.xmos.com
XM004927



I2C (3.1.1)

Type i2c_slave_callback_if (continued)

Function ack_write_request

Description Master has requested a write.
This callback function will be called by the component if the
bus master requests a write from this slave device after the
start_write_request() call. At this point the slave can
choose to accept the request (and drive an ACK signal back
to the master) or not (and drive a NACK signal).

Type [[guarded]]
i2c_slave_ack_t ack_write_request(void)

Returns the callback must return either I2C_SLAVE_ACK or
I2C_SLAVE_NACK.

Function start_master_read

Description Start of a data read.
This callback function will be called at the start of a byte read.

Type [[guarded]]
void start_master_read(void)

Function master_requires_data

Description Master requires data.
This callback function will be called when the I2C master re-
quires data from the slave.

Type [[guarded]]
uint8_t master_requires_data()

Returns the data to pass to the master.

Function start_master_write

Description Start of a data write.
This callback function will be called at the start of writing a
byte.

Type [[guarded]]
void start_master_write(void)

Continued on next page

Copyright 2015 XMOS Ltd. 27 www.xmos.com
XM004927



I2C (3.1.1)

Type i2c_slave_callback_if (continued)

Function master_sent_data

Description Master has sent some data.
This callback function will be called when the I2C master has
transferred a byte of data to the slave.

Type [[guarded]]
i2c_slave_ack_t master_sent_data(uint8_t data)

Function stop_bit

Description Stop bit.
This callback function will be called by the component when a
stop bit is sent by the master.

Type void stop_bit(void)

Function shutdown

Description Shutdown the I2C component.
This function will cause the I2C slave task to shutdown and
return.

Type [[notification]]
slave void shutdown()

Copyright 2015 XMOS Ltd. 28 www.xmos.com
XM004927



I2C (3.1.1)

APPENDIX A - Known Issues

There are no known issues with this library.

Copyright 2015 XMOS Ltd. 29 www.xmos.com
XM004927



I2C (3.1.1)

APPENDIX B - I2C library change log

B.1 3.1.1

• Minor user guide updates

B.2 3.1.0

• Add support for reading on i2c_master_single-port for xCORE-200 series.
• Document reg_read functions more clearly with respect to stop bit behavior.

B.3 3.0.0

• Consolidated version, major rework from previous I2C components.

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2015 XMOS Ltd. 30 www.xmos.com
XM004927


	I2C Library
	External signal description
	Connecting to the xCORE device

	Usage
	I2C master synchronous operation
	I2C master asynchronous operation
	Repeated start bits
	I2C slave library usage

	Master API
	Creating an I2C master instance
	I2C master supporting typedefs
	I2C master interface
	I2C master asynchronous interface

	Slave API
	Creating an I2C slave instance
	I2C slave interface

	Known Issues
	I2C library change log
	3.1.1
	3.1.0
	3.0.0


