
Ethernet MAC 3.4.0

Ethernet MAC library
The Ethernet MAC library provides a complete, software defined, Ethernet MAC that supports
10/100/1000 Mb/s data rates and is designed to IEEE Std 802.3-2002 specifications.

Features

• 10/100/1000 Mb/s full-duplex operation
• Media Independent Interface (MII) and Reduced Gigabit Media Independent Interface (RGMII) to the

physical layer
• Configurable Ethertype and MAC address filters for unicast, multicast and broadcast addresses
• Frame alignment, CRC, and frame length error detection
• IEEE 802.1Q Audio Video Bridging priority queueing and credit based traffic shaper
• Support for VLAN-tagged frames
• Transmit and receive frame timestamp support for IEEE 1588 and 802.1AS
• Management Data Input/Output (MDIO) Interface for physical layer management

Components

• 10/100 Mb/s Ethernet MAC
• 10/100 Mb/s Ethernet MAC with real-time

features

• 10/100/1000 Mb/s Ethernet MAC with
real-time features (xCORE-200 XE/XEF)

• Raw MII interface

Software version and dependencies

This document pertains to version 3.4.0 of this library. It is known to work on version 14.3.3 of the
xTIMEcomposer tools suite, it may work on other versions.

This library depends on the following other libraries:

• lib_gpio (>=1.1.0)
• lib_xassert (>=3.0.0)

• lib_locks (>=2.0.0)
• lib_logging (>=2.1.0)

Typical Resource Usage

This following table shows typical resource usage in some different configurations. Exact resource
usage will depend on the particular use of the library by the application.

Copyright 2018 XMOS Ltd. 1 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Configuration Pins Ports Clocks Ram Logical cores

10/100 Mb/s 13 5 (1-bit), 2 (4-
bit), 1 (any-
bit)

2 ~16.1K 2

10/100 Mb/s
real-time

13 5 (1-bit), 2 (4-
bit)

2 ~22.9K 4

10/100/1000
Mb/s

12 8 (1-bit), 2 (4-
bit), 2 (8-bit)

4 ~101.7K 8

Raw MII 13 5 (1-bit), 2 (4-
bit)

2 ~10.0K 1

SMI (MDIO) 2 2 (1-bit) or 1
(multi-bit)

0 ~0.7K 0

Related application notes

The following application notes use this library:

• AN00120 - How to use the Ethernet MAC library

Copyright 2018 XMOS Ltd. 2 www.xmos.com
XM006386



Ethernet MAC 3.4.0

1 External signal description

1.1 MII: Media Independent Interface

MII is an interface standardized by IEEE 802.3 that connects different types of PHYs to the same Ethernet
Media Access Control (MAC). The MAC can interact with any PHY using the same hardware interface,
independent of the media the PHYs are connected to.

The MII transfers data using 4 bit words (nibbles) in each direction, clocked at 25 MHz to achieve 100
Mb/s data rate.

An enable signal (TXEN) is set active to indicate start of frame and remains active until it is completed. A
clock signal (TXCLK) clocks nibbles (TXD[3:0]) at 2.5 MHz for 10 Mb/s mode and 25 MHz for 100 Mb/s
mode. The RXDV signal goes active when a valid frame starts and remains active throughout a valid frame
duration. A clock signal (RXCLK) clocks the received nibbles (RXD[3:0]). Table 1 below describes the MII
signals:

Port Requirement Signal Name Description

4-bit port [Bit 3] TXD3 Transmit data bit 3

4-bit port [Bit 2] TXD2 Transmit data bit 2

4-bit port [Bit 1] TXD1 Transmit data bit 1

4-bit port [Bit 0] TXD0 Transmit data bit 0

1-bit port TXCLK Transmit clock (2.5/25 MHz)

1-bit port TXEN Transmit data valid

1-bit port RXCLK Receive clock (2.5/25 MHz)

1-bit port RXDV Receive data valid

1-bit port RXERR Receive data error

4-bit port [Bit 3] RX3 Receive data bit 3

4-bit port [Bit 2] RX2 Receive data bit 2

4-bit port [Bit 1] RX1 Receive data bit 1

4-bit port [Bit 0] RX0 Receive data bit 0

Table 1: MII signals

Any unused 1-bit and 4-bit xCORE ports can be used for MII providing that they are on the same Tile and
there is enough resource to instantiate the relevant Ethernet MAC component on that Tile.

1.2 RGMII: Reduced Gigabit Media Independent Interface

RGMII requires half the number of data pins used in GMII by clocking data on both the rising and the
falling edges of the clock, and by eliminating non-essential signals (carrier sense and collision indication).

xCORE-200 XE/XEF devices have a set of pins that are dedicated to communication with a Gigabit Ethernet
PHY or switch via RGMII, designed to comply with the timings in the RGMII v1.3 specification:

http://www.hp.com/rnd/pdfs/RGMIIv1_3.pdf

RGMII supports Ethernet speeds of 10 Mb/s, 100 Mb/s and 1000 Mb/s.

The Ethernet MAC implements ID mode as specified by RGMII. TX clock from xCORE to PHY is delayed.
Default 10/100 and 1000 Mb/s delays are set in rgmii_consts.h to an integer number of system clock
ticks (e.g. 1 x 2ns if system clock is 500MHz):

Copyright 2018 XMOS Ltd. 3 www.xmos.com
XM006386

http://www.hp.com/rnd/pdfs/RGMIIv1_3.pdf


Ethernet MAC 3.4.0

#define RGMII_DELAY 1
#define RGMII_DIVIDE_1G 3
#define RGMII_DELAY_100M 3

Note that some Ethernet PHY operate in “hybrid mode” and apply skew compensation on incoming TX
clock. You may need to adjust this compensation, disable it, or set the above delay to 0 in the Ethernet
MAC.

The Ethernet MAC will expect RX clock from PHY to xCORE be delayed by 1.2-2ns as specified by RGMII.

The pins and functions are listed in Table 2. When the 10/100/1000 Mb/s Ethernet MAC is instantiated
these pins can no longer be used as GPIO pins, and will instead be driven directly from a Double Data
Rate RGMII block, which in turn is interfaced to a set of ports on Tile 1.

Mandatory Pin Signal Name Description

X1D40 TX3 Transmit data bit 3

X1D41 TX2 Transmit data bit 2

X1D42 TX1 Transmit data bit 1

X1D43 TX0 Transmit data bit 0

X1D26 TX_CLK Transmit clock (2.5/25/125 MHz)

X1D27 TX_CTL Transmit data valid/error

X1D28 RX_CLK Receive clock (2.5/25/125 MHz)

X1D29 RX_CTL Receive data valid/error

X1D30 RX3 Receive data bit 3

X1D31 RX2 Receive data bit 2

X1D32 RX1 Receive data bit 1

X1D33 RX0 Receive data bit 0

Table 2: RGMII pins and signals

The RGMII block is connected to the ports on Tile 1 as shown in Figure 1. When the 10/100/1000 Mb/s
Ethernet MAC is instantiated, the ports and IO pins shown can only be used by the MAC component. Other
IO pins and ports are unaffected.

1.3 PHY Serial Management Interface (MDIO)

The MDIO interface consists of clock (MDC) and data (MDIO) signals. Both should be connected to two
one-bit ports that are configured as open-drain IOs, using external pull-ups to either 3.3V or 2.5V (RGMII).

Copyright 2018 XMOS Ltd. 4 www.xmos.com
XM006386



Ethernet MAC 3.4.0

X1D40
X1D41
X1D42
X1D43
X1D26
X1D27
X1D28
X1D29
X1D30
X1D31
X1D32
X1D33

RGMII
Block

PORT_1A
PORT_1O
PORT_1B
PORT_8A
PORT_1K
PORT_4E

CLKBLK

CLKBLK

RXERROR

RXDATA

MODE

RXERR

RXD0..7
RXDV

RXCLK

TXERR

TXD0..7
TXDV

TXCLK
CLK

PORT_1E TXERROR

PORT_1P CLKBLK
PORT_1G

PORT_1F
PORT_8B TXDATA

xCore TIle 1External
RGMII
PHY

TX3
TX2
TX1
TX0

TX_CLK
TX_CTL
RX_CLK
RX_CTL

RX0
RX1
RX2
RX3

X1D11
X1D10 PORT_1C

PORT_1D

CLKBLK

SMC
SMIO SMIO

SMC

Figure 1: RGMII port structure

Copyright 2018 XMOS Ltd. 5 www.xmos.com
XM006386



Ethernet MAC 3.4.0

2 Usage

2.1 10/100 Mb/s Ethernet MAC operation

There are two types of 10/100 Mb/s Ethernet MAC that are optimized for different feature sets. Both
connect to a standard 10/100 Mb/s Ethernet PHY using the same MII interface described in §1.1.

The resource-optimized MAC described here is provided for applications that do not require real-time
features, such as those required by the Audio Video Bridging standards.

The same API is shared across all configurations of the Ethernet MACs. Additional API calls are available
in the configuration interface of the real-time MACs that will cause a run-time assertion if called by the
non-real-time configuration.

Ethernet MAC components are instantiated as parallel tasks that run in a par statement. The applica-
tion can connect via a transmit, receive and configuration interface connection using the ethernet_tx_if,
ethernet_rx_if and ethernet_cfg_if interface types:

MII Ethernet 
MACmii_if

Application

ethernet_cfg_if

ethernet_rx_if

ethernet_tx_if

mii_ethernet_mac

Figure 2: 10/100 Mb/s Ethernet MAC task diagram

For example, the following code instantiates a standard Ethernet MAC component and connects to it:

Copyright 2018 XMOS Ltd. 6 www.xmos.com
XM006386



Ethernet MAC 3.4.0

port p_eth_rxclk = XS1_PORT_1J;
port p_eth_rxd = XS1_PORT_4E;
port p_eth_txd = XS1_PORT_4F;
port p_eth_rxdv = XS1_PORT_1K;
port p_eth_txen = XS1_PORT_1L;
port p_eth_txclk = XS1_PORT_1I;
port p_eth_rxerr = XS1_PORT_1P;
port p_eth_timing = XS1_PORT_8C;
clock eth_rxclk = XS1_CLKBLK_1;
clock eth_txclk = XS1_CLKBLK_2;

int main()
{
ethernet_cfg_if i_cfg[1];
ethernet_rx_if i_rx[1];
ethernet_tx_if i_tx[1];
par {
mii_ethernet_mac(i_cfg, 1, i_rx, 1, i_tx, 1,

p_eth_rxclk, p_eth_rxerr, p_eth_rxd, p_eth_rxdv,
p_eth_txclk, p_eth_txen, p_eth_txd, p_eth_timing,
eth_rxclk, eth_txclk, 1600);

application(i_cfg[0], i_rx[0], i_tx[0]);
}
return 0;

}

Note that the connections are arrays of interfaces, so several tasks can connect to the same component
instance.

The application can use the client end of the interface connections to perform Ethernet MAC operations
e.g.:

void application(client ethernet_cfg_if i_cfg,
client ethernet_rx_if i_rx,
client ethernet_tx_if i_tx)

{
ethernet_macaddr_filter_t macaddr_filter;
size_t index = i_rx.get_index();
for (int i = 0; i < MACADDR_NUM_BYTES; i++)
macaddr_filter.addr[i] = i;

i_cfg.add_macaddr_filter(index, 0, macaddr_filter);

while (1) {
select {
case i_rx.packet_ready():
uint8_t rxbuf[ETHERNET_MAX_PACKET_SIZE];
ethernet_packet_info_t packet_info;
i_rx.get_packet(packet_info, rxbuf, ETHERNET_MAX_PACKET_SIZE);
i_tx.send_packet(rxbuf, packet_info.len, ETHERNET_ALL_INTERFACES);
break;

}
}

}

Copyright 2018 XMOS Ltd. 7 www.xmos.com
XM006386



Ethernet MAC 3.4.0

2.2 10/100 Mb/s real-time Ethernet MAC

The real-time 10/100 Mb/s Ethernet MAC supports additional features required to implement, for exam-
ple, an AVB Talker and/or Listener endpoint, but has additional xCORE resource requirements compared
to the non-real-time MAC.

It is instantiated similarly to the non-real-time Ethernet MAC, with additional streaming channels for send-
ing and receiving high-priority Ethernet traffic:

Ethernet 
MAC

Ethernet 
MAC

Application
A

ethernet_cfg_if

ethernet_rx_if

ethernet_tx_if

mii_ethernet_rt_mac

(4 logical cores) Application
B

c_rx_hp

c_tx_hp

ethernet_cfg_if

Figure 3: 10/100 Mb/s real-time Ethernet MAC task diagram

For example, the following code instantiates a real-time Ethernet MAC component with high and low-
priority interfaces and connects to it:

Copyright 2018 XMOS Ltd. 8 www.xmos.com
XM006386



Ethernet MAC 3.4.0

port p_eth_rxclk = XS1_PORT_1J;
port p_eth_rxd = XS1_PORT_4E;
port p_eth_txd = XS1_PORT_4F;
port p_eth_rxdv = XS1_PORT_1K;
port p_eth_txen = XS1_PORT_1L;
port p_eth_txclk = XS1_PORT_1I;
port p_eth_rxerr = XS1_PORT_1P;
clock eth_rxclk = XS1_CLKBLK_1;
clock eth_txclk = XS1_CLKBLK_2;

int main()
{
ethernet_cfg_if i_cfg[1];
ethernet_rx_if i_rx_lp[1];
ethernet_tx_if i_tx_lp[1];
streaming chan c_rx_hp;
streaming chan c_tx_hp;
par {
mii_ethernet_rt_mac(i_cfg, 1, i_rx_lp, 1, i_tx_lp, 1,

c_rx_hp, c_tx_hp, p_eth_rxclk, p_eth_rxerr,
p_eth_rxd, p_eth_rxdv, p_eth_txclk,
p_eth_txen, p_eth_txd, eth_rxclk, eth_txclk,
4000, 4000, ETHERNET_ENABLE_SHAPER);

application(i_cfg[0], i_rx_lp[0], i_tx_lp[0], c_rx_hp, c_tx_hp);
}

}

The application can use the other end of the streaming channels to send and receive high-priority traffic
e.g.:

void application(client ethernet_cfg_if i_cfg,
client ethernet_rx_if i_rx,
client ethernet_tx_if i_tx,
streaming chanend c_rx_hp,
streaming chanend c_tx_hp)

{
ethernet_macaddr_filter_t macaddr_filter;
size_t index = i_rx.get_index();
for (int i = 0; i < MACADDR_NUM_BYTES; i++)
macaddr_filter.addr[i] = i;

i_cfg.add_macaddr_filter(index, 1, macaddr_filter);

while (1) {
uint8_t rxbuf[ETHERNET_MAX_PACKET_SIZE];
ethernet_packet_info_t packet_info;
select {
case ethernet_receive_hp_packet(c_rx_hp, rxbuf, packet_info):
ethernet_send_hp_packet(c_tx_hp, rxbuf, packet_info.len,

ETHERNET_ALL_INTERFACES);
break;

}
}

}

Copyright 2018 XMOS Ltd. 9 www.xmos.com
XM006386



Ethernet MAC 3.4.0

2.3 10/100/1000 Mb/s real-time Ethernet MAC

The 10/100/1000 Mb/s Ethernet MAC supports the same feature set and API as the 10/100 Mb/s real-
time MAC but with higher throughput and lower end-to-end latency. The component connects to a Gigabit
Ethernet PHY via an RGMII interface as described in §1.2.

It is instantiated similarly to the real-time Ethernet MAC, with an additional combinable task that allows the
configuration interface to be shared with another slow interface such as SMI/MDIO. It must be instantiated
on Tile 1 and the user application run on Tile 0:

Ethernet 
MAC

10/100/1000
Ethernet MAC

Application
A

ethernet_cfg_if

ethernet_rx_if

ethernet_tx_if

rgmii_ethernet_mac

(7 logical cores) Application
B

c_rx_hp

c_tx_hp

ethernet_cfg_if

MAC 
configuration

c_rgmii_cfg

rgmii_ethernet_mac_config

Figure 4: 10/100/1000 Mb/s Ethernet MAC task diagram

For example, the following code instantiates a 10/100/1000 Mb/s Ethernet MAC component with high
and low-priority interfaces and connects to it:

rgmii_ports_t rgmii_ports = on tile[1]: RGMII_PORTS_INITIALIZER;

int main()
{
ethernet_cfg_if i_cfg[1];
ethernet_rx_if i_rx_lp[1];
ethernet_tx_if i_tx_lp[1];
streaming chan c_rx_hp;
streaming chan c_tx_hp;
streaming chan c_rgmii_cfg;
par {
on tile[1]: rgmii_ethernet_mac(i_rx, 1, i_tx, 1,

c_rx_hp, c_tx_hp,
c_rgmii_cfg, rgmii_ports,
ETHERNET_ENABLE_SHAPER);

on tile[1]: rgmii_ethernet_mac_config(i_cfg, 1, c_rgmii_cfg);
on tile[0]: application(i_cfg[0], i_rx_lp[0], i_tx_lp[0], c_rx_hp, c_tx_hp);

}
}

Copyright 2018 XMOS Ltd. 10 www.xmos.com
XM006386



Ethernet MAC 3.4.0

2.4 Raw MII interface

The raw MII interface implements a MII layer component with a basic buffering scheme that is shared with
the application. It provides a direct access to the MII pins as described in §1.1. It does not implement the
buffering and filtering required by a compliant Ethernet MAC layer, and defers this to the application.

The buffering of this task is shared with the application it is connected to. It sets up an interrupt handler
on the logical core the application is running on (via the init function on the mii_if interface connection)
and also consumes some of the MIPs on that core in addition to the core mii is running on.

MII Application
mii_if

Figure 5: MII task diagram

For example, the following code instantiates a MII component and connects to it:

port p_eth_rxclk = XS1_PORT_1J;
port p_eth_rxd = XS1_PORT_4E;
port p_eth_txd = XS1_PORT_4F;
port p_eth_rxdv = XS1_PORT_1K;
port p_eth_txen = XS1_PORT_1L;
port p_eth_txclk = XS1_PORT_1I;
port p_eth_rxerr = XS1_PORT_1P;
port p_eth_timing = XS1_PORT_8C;
clock eth_rxclk = XS1_CLKBLK_1;
clock eth_txclk = XS1_CLKBLK_2;

int main()
{
mii_if i_mii;
par {
mii(i_mii, p_eth_rxclk, p_eth_rxerr, p_eth_rxd, p_eth_rxdv,

p_eth_txclk, p_eth_txen, p_eth_txd, p_eth_timing,
eth_rxclk, eth_txclk, 4096);

application(i_mii);
}
return 0;

}

More information on interfaces and tasks can be be found in the XMOS Programming Guide (see XM-
004440-PC).

Copyright 2018 XMOS Ltd. 11 www.xmos.com
XM006386

http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide
http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide


Ethernet MAC 3.4.0

3 API

All Ethernet functions can be accessed via the ethernet.h header:

#include <ethernet.h>

You will also have to add lib_ethernet to the USED_MODULES field of your application Makefile.

3.1 Creating a 10/100 Mb/s Ethernet MAC instance

Function mii_ethernet_mac

Description 10/100 Mb/s Ethernet MAC component that connects to an MII interface.
This function implements a 10/100 Mb/s Ethernet MAC component connected to an
MII interface. Interaction to the component is via the connected configuration and
data interfaces.

Type void
mii_ethernet_mac(server ethernet_cfg_if i_cfg[n_cfg],

static const unsigned n_cfg,
server ethernet_rx_if i_rx[n_rx],
static const unsigned n_rx,
server ethernet_tx_if i_tx[n_tx],
static const unsigned n_tx,
in port p_rxclk,
in port p_rxer,
in port p_rxd,
in port p_rxdv,
in port p_txclk,
out port p_txen,
out port p_txd,
port p_timing,
clock rxclk,
clock txclk,
static const unsigned rx_bufsize_words)

Continued on next page

Copyright 2018 XMOS Ltd. 12 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Parameters i_cfg Array of client configuration interfaces

n_cfg The number of configuration clients connected

i_rx Array of receive clients

n_rx The number of receive clients connected

i_tx Array of transmit clients

n_tx The number of transmit clients connected

p_rxclk MII RX clock port

p_rxer MII RX error port

p_rxd MII RX data port

p_rxdv MII RX data valid port

p_txclk MII TX clock port

p_txen MII TX enable port

p_txd MII TX data port

p_timing Internal timing port - this can be any xCORE port that is not connected
to any external device.

rxclk Clock used for MII receive timing

txclk Clock used for MII transmit timing

rx_bufsize_words
The number of words to used for a receive buffer. This should be at
least 1500 words.

Copyright 2018 XMOS Ltd. 13 www.xmos.com
XM006386



Ethernet MAC 3.4.0

3.2 Creating a 10/100 Mb/s real-time Ethernet MAC instance

Function mii_ethernet_rt_mac

Description 10/100 Mb/s real-time Ethernet MAC component to connect to an MII interface.
This function implements a 10/100 Mb/s Ethernet MAC component, connected to an
MII interface, with real-time features (priority queuing and traffic shaping). Interaction
to the component is via the connected configuration and data interfaces.

Type void
mii_ethernet_rt_mac(server ethernet_cfg_if i_cfg[n_cfg],

static const unsigned n_cfg,
server ethernet_rx_if i_rx_lp[n_rx_lp],
static const unsigned n_rx_lp,
server ethernet_tx_if i_tx_lp[n_tx_lp],
static const unsigned n_tx_lp,
streaming chanend ?c_rx_hp,
streaming chanend ?c_tx_hp,
in port p_rxclk,
in port p_rxer,
in port p_rxd,
in port p_rxdv,
in port p_txclk,
out port p_txen,
out port p_txd,
clock rxclk,
clock txclk,
static const unsigned rx_bufsize_words,
static const unsigned tx_bufsize_words,
enum ethernet_enable_shaper_t shaper_enabled)

Continued on next page

Copyright 2018 XMOS Ltd. 14 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Parameters i_cfg Array of client configuration interfaces

n_cfg The number of configuration clients connected

i_rx_lp Array of low priority receive clients

n_rx_lp The number of low priority receive clients connected

i_tx_lp Array of low priority transmit clients

n_tx_lp The number of low priority transmit clients connected

c_rx_hp Streaming channel end for high priority receive data

c_tx_hp Streaming channel end for high priority transmit data

p_rxclk MII RX clock port

p_rxer MII RX error port

p_rxd MII RX data port

p_rxdv MII RX data valid port

p_txclk MII TX clock port

p_txen MII TX enable port

p_txd MII TX data port

rxclk Clock used for MII receive timing

txclk Clock used for MII transmit timing

rx_bufsize_words
The number of words to used for a receive buffer. This should be at
least 500 words.

tx_bufsize_words
The number of words to used for a transmit buffer. This should be at
least 500 words.

shaper_enabled
This should be set to ETHERNET_ENABLE_SHAPER or
ETHERNET_DISABLE_SHAPER to either enable or disable the 802.1Qav
traffic shaper within the MAC.

3.3 Real-time supporting typedefs

Copyright 2018 XMOS Ltd. 15 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Type ethernet_enable_shaper_t

Description Enum representing a flag to enable or disable the 802.1Qav credit based traffic shaper
on the egress MAC port.

Values ETHERNET_ENABLE_SHAPER
Enable the credit based shaper.

ETHERNET_DISABLE_SHAPER
Disable the credit based shaper.

Copyright 2018 XMOS Ltd. 16 www.xmos.com
XM006386



Ethernet MAC 3.4.0

3.4 Creating a 10/100/1000 Mb/s Ethernet MAC instance

Type rgmii_ports_t

Description Structure representing the port and clock resources required by RGMII.
A macro to initialize this structure is provided:

rgmii_ports_t rgmii_ports = on tile[1]: RGMII_PORTS_INITIALIZER;

Fields in port p_rxclk
RX clock port.

in buffered port:1 p_rxer
RX error port.

in buffered port:32 p_rxd_1000
1Gb RX data port

in buffered port:32 p_rxd_10_100
10/100Mb RX data port

in buffered port:4 p_rxd_interframe
Interframe RX data port.

in port p_rxdv
RX data valid port.

in port p_rxdv_interframe
Interframe RX data valid port.

in port p_txclk_in
TX clock input port.

out port p_txclk_out
TX clock output port.

out port p_txer
TX error port.

out port p_txen
TX enable port.

out buffered port:32 p_txd
TX data port.

clock rxclk
Clock used for receive timing.

Continued on next page

Copyright 2018 XMOS Ltd. 17 www.xmos.com
XM006386



Ethernet MAC 3.4.0

clock rxclk_interframe
Clock used for interframe receive timing.

clock txclk
Clock used for transmit timing.

clock txclk_out
Second clock used for transmit timing.

Function rgmii_ethernet_mac

Description 10/100/1000 Mb/s Ethernet MAC component to connect to an RGMII interface.
This function implements a 10/100/1000 Mb/s Ethernet MAC component, connected
to an RGMII interface, with real-time features. Interaction to the component is via the
connected configuration and data interfaces.

Type void
rgmii_ethernet_mac(server ethernet_rx_if i_rx_lp[n_rx_lp],

static const unsigned n_rx_lp,
server ethernet_tx_if i_tx_lp[n_tx_lp],
static const unsigned n_tx_lp,
streaming chanend ?c_rx_hp,
streaming chanend ?c_tx_hp,
streaming chanend c_rgmii_cfg,
rgmii_ports_t &rgmii_ports,
enum ethernet_enable_shaper_t shaper_enabled)

Continued on next page

Copyright 2018 XMOS Ltd. 18 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Parameters i_rx_lp Array of low priority receive clients

n_rx_lp The number of low priority receive clients connected

i_tx_lp Array of low priority transmit clients

n_tx_lp The number of low priority transmit clients connected

c_rx_hp Streaming channel end for high priority receive data

c_tx_hp Streaming channel end for high priority transmit data

c_rgmii_cfg
A streaming channel end connected to rgmii_ethernet_mac_config()

rgmii_ports
A rgmii_ports_t structure initialized with the RGMII_PORTS_INITIALIZER
macro

shaper_enabled
This should be set to ETHERNET_ENABLE_SHAPER or
ETHERNET_DISABLE_SHAPER to either enable or disable the 802.1Qav
traffic shaper within the MAC.

Function rgmii_ethernet_mac_config

Description RGMII Ethernet MAC configuration task.
This function implements the server side of the ethernet_cfg_if interface and com-
municates internally with the RGMII Ethernet MAC via a streaming channel end.
The function can be combined with SMI from within the top level par.

Type [[combinable]]
void
rgmii_ethernet_mac_config(server ethernet_cfg_if i_cfg[n],

unsigned n,
streaming chanend c_rgmii_cfg)

Parameters i_cfg Array of client configuration interfaces

n The number of configuration clients connected

c_rgmii_cfg
A streaming channel end connected to rgmii_ethernet_mac()

Copyright 2018 XMOS Ltd. 19 www.xmos.com
XM006386



Ethernet MAC 3.4.0

3.5 The Ethernet MAC configuration interface

Type ethernet_cfg_if

Description Ethernet MAC configuration interface.
This interface allows clients to configure the Ethernet MAC.

Functions
Function set_macaddr

Description Set the source MAC address of the Ethernet MAC.

Type void set_macaddr(size_t ifnum,
uint8_t mac_address[MACADDR_NUM_BYTES])

Parameters ifnum The index of the MAC interface to set

mac_address
The six-octet MAC address to set

Function get_macaddr

Description Gets the source MAC address of the Ethernet MAC.

Type void get_macaddr(size_t ifnum,
uint8_t mac_address[MACADDR_NUM_BYTES])

Parameters ifnum The index of the MAC interface to get

mac_address
The six-octet MAC address of this interface

Function set_link_state

Description Set the current link state.
This function sets the current link state and speed of the PHY
to the MAC.

Type void set_link_state(int ifnum,
ethernet_link_state_t new_state,
ethernet_speed_t speed)

Parameters ifnum The index of the MAC interface to set

new_state The new link state for the port.

speed The active link speed and duplex of the PHY.

Continued on next page

Copyright 2018 XMOS Ltd. 20 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Type ethernet_cfg_if (continued)

Function add_macaddr_filter

Description Add MAC addresses to the filter.
Only packets with the specified MAC address will be forwarded
to the client.

Type ethernet_macaddr_filter_result_t
add_macaddr_filter(size_t client_num,

int is_hp,
ethernet_macaddr_filter_t entry)

Parameters client_num
The index into the set of RX clients. Can be ac-
quired by calling the get_index() method.

is_hp Indicates whether the RX client is high prior-
ity. There is only one high priority client, so
client_num must be 0 when is_hp is set. High
priority queueing is only available in the 10/100
Mb/s real-time and 10/100/1000 Mb/s MACs.

entry The filter entry to add.

Returns ETHERNET_MACADDR_FILTER_SUCCESS when the entry is
added or ETHERNET_MACADDR_FILTER_TABLE_FULL on failure.

Function del_macaddr_filter

Description Delete MAC addresses from the filter.

Type void
del_macaddr_filter(size_t client_num,

int is_hp,
ethernet_macaddr_filter_t entry)

Parameters client_num
The index into the set of RX clients. Can be ac-
quired by calling the get_index() method.

is_hp Indicates whether the RX client is high prior-
ity. There is only one high priority client, so
client_num must be 0 when is_hp is set. High
priority queueing is only available in the 10/100
Mb/s real-time and 10/100/1000 Mb/s MACs.

entry The filter entry to delete.

Continued on next page

Copyright 2018 XMOS Ltd. 21 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Type ethernet_cfg_if (continued)

Function del_all_macaddr_filters

Description Delete all MAC addresses from the filter registered for this
client.

Type void
del_all_macaddr_filters(size_t client_num,

int is_hp)

Parameters client_num
The index into the set of RX clients. Can be ac-
quired by calling the get_index() method.

is_hp Indicates whether the RX client is high prior-
ity. There is only one high priority client, so
client_num must be 0 when is_hp is set. High
priority queueing is only available in the 10/100
Mb/s real-time and 10/100/1000 Mb/s MACs.

Function add_ethertype_filter

Description Add an Ethertype to the filter.
This filter is applied after the MAC address filter and only if it
is successful. Only packets with the specified Ethertypes will be
forwarded to the client. A maximum of 2 Ethertype filters can
be applied per client.

Type void
add_ethertype_filter(size_t client_num,

uint16_t ethertype)

Parameters client_num
The index into the set of RX clients. Can be ac-
quired by calling the get_index() method.

ethertype A two-octet Ethertype value to filter.

Continued on next page

Copyright 2018 XMOS Ltd. 22 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Type ethernet_cfg_if (continued)

Function del_ethertype_filter

Description Delete an Ethertype from the filter.

Type void
del_ethertype_filter(size_t client_num,

uint16_t ethertype)

Parameters client_num
The index into the set of RX clients. Can be ac-
quired by calling the get_index() method.

ethertype A two-octet Ethertype value to delete from filter.

Function get_tile_id_and_timer_value

Description Get the tile ID that the Ethernet MAC is running on and the
current timer value on that tile.
This function is only available in the 10/100 Mb/s real-time and
10/100/1000 Mb/s MACs.

Type void
get_tile_id_and_timer_value(unsigned &tile_id,

unsigned &time_on_tile)

Parameters tile_id The tile ID returned from the Ethernet MAC

time_on_tile
The current timer value from the Ethernet MAC

Function set_egress_qav_idle_slope

Description Set the high-priority TX queue’s credit based shaper idle slope.
This function is only available in the 10/100 Mb/s real-time and
10/100/1000 Mb/s MACs.

Type void
set_egress_qav_idle_slope(size_t ifnum,

unsigned slope)

Parameters ifnum The index of the MAC interface to set the slope

slope The slope value

Continued on next page

Copyright 2018 XMOS Ltd. 23 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Type ethernet_cfg_if (continued)

Function set_ingress_timestamp_latency

Description Set the ingress latency to correct for the offset between the
timestamp measurement plane relative to the reference plane.
See 802.1AS 8.4.3.
This latency can change at different PHY speeds, thus re-
quires a latency value to be set for each speed in the
ethernet_speed_t enum.
All ingress timestamps received by the client will be corrected
with the set value. The latency is initialized to 0 for all speeds.
This function is only available in the 10/100 Mb/s real-time and
10/100/1000 Mb/s MACs.

Type void
set_ingress_timestamp_latency(size_t ifnum,

ethernet_speed_t speed,
unsigned value)

Parameters ifnum The index of the MAC interface to set the latency

speed The speed to set the latency for

value The latency value in nanoseconds

Function set_egress_timestamp_latency

Description Set the egress latency to correct for the offset between the
timestamp measurement plane relative to the reference plane.
See 802.1AS 8.4.3.
This latency can change at different PHY speeds, thus re-
quires a latency value to be set for each speed in the
ethernet_speed_t enum.
All egress timestamps received by the client will be corrected
with the set value. The latency is initialized to 0 for all speeds.
This function is only available in the 10/100 Mb/s real-time and
10/100/1000 Mb/s MACs.

Type void
set_egress_timestamp_latency(size_t ifnum,

ethernet_speed_t speed,
unsigned value)

Parameters ifnum The index of the MAC interface to set the latency

speed The speed to set the latency for

value The latency value in nanoseconds

Continued on next page

Copyright 2018 XMOS Ltd. 24 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Type ethernet_cfg_if (continued)

Function enable_strip_vlan_tag

Description Enable stripping of any VLAN tags on packets delivered to this
client.
This feature is available on the real-time 100 Mbps Ethernet
MAC only.

Type void
enable_strip_vlan_tag(size_t client_num)

Parameters client_num
The index into the set of RX clients. Can be ac-
quired by calling the get_index() method.

Function disable_strip_vlan_tag

Description Disable stripping of any VLAN tags on packets delivered to this
client.
This feature is available on the real-time 100 Mbps Ethernet
MAC only.

Type void
disable_strip_vlan_tag(size_t client_num)

Parameters client_num
The index into the set of RX clients. Can be ac-
quired by calling the get_index() method.

Function enable_link_status_notification

Description Enable notifications of link status changes.
These will be sent over the RX interface using ETH_IF_STATUS
packets.

Type void
enable_link_status_notification(size_t client_num)

Parameters client_num
The index into the set of RX clients. Can be ac-
quired by calling the get_index() method.

Continued on next page

Copyright 2018 XMOS Ltd. 25 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Type ethernet_cfg_if (continued)

Function disable_link_status_notification

Description Disable notifications of link status changes.

Type void
disable_link_status_notification(size_t client_num)

Parameters client_num
The index into the set of RX clients. Can be ac-
quired by calling the get_index() method.

Type ethernet_link_state_t

Description Type representing link events.

Values ETHERNET_LINK_DOWN
Ethernet link down event.

ETHERNET_LINK_UP
Ethernet link up event.

Type ethernet_speed_t

Description Type representing the PHY link speed and duplex.

Values LINK_10_MBPS_FULL_DUPLEX
10 Mbps full duplex

LINK_100_MBPS_FULL_DUPLEX
100 Mbps full duplex

LINK_1000_MBPS_FULL_DUPLEX
1000 Mbps full duplex

NUM_ETHERNET_SPEEDS
Count of speeds in this enum.

Type ethernet_macaddr_filter_t

Description Structure representing MAC address filter data that is registered with the Ethernet
MAC.

Continued on next page

Copyright 2018 XMOS Ltd. 26 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Fields uint8_t addr
Six-octet destination MAC address to filter to the client that registers it.

unsigned appdata
An optional word of user data that is stored by the Ethernet MAC and
returned to the client when a packet is received with the destination
MAC address indicated by the addr field.

Type ethernet_macaddr_filter_result_t

Description Type representing the result of adding a filter entry to the Ethernet MAC.

Values ETHERNET_MACADDR_FILTER_SUCCESS
The filter entry was added succesfully.

ETHERNET_MACADDR_FILTER_TABLE_FULL
The filter entry was not added because the filter table is full.

Copyright 2018 XMOS Ltd. 27 www.xmos.com
XM006386



Ethernet MAC 3.4.0

3.6 The Ethernet MAC data handling interface

Type ethernet_tx_if

Description Ethernet MAC data transmit interface.
This interface allows clients to send packets to the Ethernet MAC for transmission

Functions
Function _init_send_packet

Description Internal API call.
Do not use.

Type void _init_send_packet(size_t n, size_t ifnum)

Function _complete_send_packet

Description Internal API call.
Do not use.

Type void
_complete_send_packet(char packet[n],

unsigned n,
int request_timestamp,
size_t ifnum)

Function _get_outgoing_timestamp

Description Internal API call.
Do not use.

Type unsigned _get_outgoing_timestamp()

Continued on next page

Copyright 2018 XMOS Ltd. 28 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Type ethernet_tx_if (continued)

Function send_packet

Description Function to send an Ethernet packet on the specified interface.
The call will block until a transmit buffer is available and the
packet has been copied to the Ethernet MAC.

Type void send_packet(char packet[n],
unsigned n,
unsigned ifnum)

Parameters packet A byte-array containing the Ethernet packet to
send. Must include a valid Ethernet frame header.

n The number of bytes in the packet array to send

ifnum The index of the MAC interface to send the
packet Use the ETHERNET_ALL_INTERFACES de-
fine to send to all interfaces.

Function send_timed_packet

Description Function to send an Ethernet packet on the specified interface
and return a timestamp when the packet was sent by the MAC.
The call will block until the packet has been sent and the egress
timestamp retrieved.

Type unsigned send_timed_packet(char packet[n],
unsigned n,
unsigned ifnum)

Parameters packet A byte-array containing the Ethernet packet to
send. Must include a valid Ethernet frame header.

n The number of bytes in the packet array to send

ifnum The index of the MAC interface to send the
packet Use the ETHERNET_ALL_INTERFACES de-
fine to send to all interfaces.

Returns A 32-bit timestamp off a 100 MHz reference clock that
represents the egress time. May be corrected for egress
latency, see set_egress_timestamp_latency() on the
ethernet_cfg_if interface.

Copyright 2018 XMOS Ltd. 29 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Type ethernet_rx_if

Description Ethernet MAC data receive interface.
This interface allows clients to receive packets from the Ethernet MAC.

Functions
Function get_index

Description Get the index of a given receiver client.

Type size_t get_index()

Function packet_ready

Description Packet ready notification.
This notification will fire when a packet has been queued for
this client and is ready to be received using get_packet().
The event can be selected upon e.g.:

select {
case i_eth_rx.packet_ready():
... // Get and handle the packet

break;
}

Type [[notification]]
slave void packet_ready()

Function get_packet

Description Function to receive an Ethernet packet or status/control data
from the MAC.
Should be called after a packet_ready() notification.

Type [[clears_notification]]
void
get_packet(ethernet_packet_info_t &desc,

char packet[n],
unsigned n)

Parameters desc A descriptor containing metadata about the
packet contents.

packet A byte-array containing the packet data.

n The number of bytes to receive. The data array
must be large enough to receive the number of
bytes specified.

Copyright 2018 XMOS Ltd. 30 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Type eth_packet_type_t

Description Type representing the type of packet from the MAC.

Values ETH_DATA A packet containing data.

ETH_IF_STATUS
A control packet containing interface status information.

ETH_OUTGOING_TIMESTAMP_INFO
A control packet containing an outgoing timestamp.

ETH_NO_DATA
A packet containing no data.

Type ethernet_packet_info_t

Description Structure representing a received data or control packet from the Ethernet MAC.

Fields eth_packet_type_t type
Type representing the type of packet from the MAC.

unsigned len
Length of the received packet in bytes.

unsigned timestamp
The local time the packet was received by the MAC.

unsigned src_ifnum
The index of the MAC interface that received the packet.

unsigned filter_data
A word of user data that was registered with the MAC address filter.

Copyright 2018 XMOS Ltd. 31 www.xmos.com
XM006386



Ethernet MAC 3.4.0

3.7 The Ethernet MAC high-priority data handling interface

Function ethernet_send_hp_packet

Description Function to send a priority-queued packet over a high priority channel from the
10/100 Mb/s real-time MAC.

Type void
ethernet_send_hp_packet(streaming chanend c_tx_hp,

char packet[n],
unsigned n,
unsigned ifnum)

Parameters c_tx_hp A streaming channel end connected to the MAC.

packet A byte-array containing the Ethernet packet to send. Must include a
valid Ethernet frame header.

n The number of bytes in the packet array to send

ifnum The index of the MAC interface to send the packet Use the
ETHERNET_ALL_INTERFACES define to send to all interfaces.

Function ethernet_receive_hp_packet

Description Function to receive a priority-queued packet over a high priority channel from the
10/100 Mb/s real-time MAC.
The packet can be split into two transactions due to internal buffering and therefore
this function must be used to receive the packet.

Type void
ethernet_receive_hp_packet(streaming chanend c_rx_hp,

char packet[],
ethernet_packet_info_t &packet_info)

Parameters c_rx_hp A streaming channel end connected to the MAC.

packet A byte-array containing the packet data.

packet_info
A descriptor containing metadata about the packet contents.

Copyright 2018 XMOS Ltd. 32 www.xmos.com
XM006386



Ethernet MAC 3.4.0

3.8 Creating a raw MII instance

All raw MII functions can be accessed via the mii.h header:

#include <mii.h>

Function mii

Description Raw MII component.
This function implements a MII layer component with a basic buffering scheme that
is shared with the application. It provides a direct access to the MII pins. It does not
implement the buffering and filtering required by a compliant Ethernet MAC layer,
and defers this to the application.
The buffering of this task is shared with the application it is connected to. It sets up
an interrupt handler on the logical core the application is running on via the init
function on the mii_if interface connection) and also consumes some of the MIPs on
that core in addition to the core mii is running on.

Type void mii(server mii_if i_mii,
in port p_rxclk,
in port p_rxer,
in port p_rxd,
in port p_rxdv,
in port p_txclk,
out port p_txen,
out port p_txd,
port p_timing,
clock rxclk,
clock txclk,
static const unsigned rx_bufsize_words)

Continued on next page

Copyright 2018 XMOS Ltd. 33 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Parameters i_mii The MII interface to connect to the application.

p_rxclk MII RX clock port

p_rxer MII RX error port

p_rxd MII RX data port

p_rxdv MII RX data valid port

p_txclk MII TX clock port

p_txen MII TX enable port

p_txd MII TX data port

p_timing Internal timing port - this can be any xCORE port that is not connected
to any external device.

rxclk Clock used for MII receive timing

txclk Clock used for MII transmit timing

rx_bufsize_words
The number of words to used for a receive buffer. This should be at
least 1500 words.

3.9 The MII interface

Type mii_if

Description Interface allowing access to the MII packet layer.

Functions
Function init

Description Initialize the MII layer.
This function initializes the MII layer. In doing so it will setup
an interrupt handler on the current logical core that calls the
function (so tasks on that core may be interrupted and can no
longer rely on the deterministic runtime of the xCORE).

Type mii_info_t init()

Returns state structure to use in subsequent calls to send/receive pack-
ets.

Continued on next page

Copyright 2018 XMOS Ltd. 34 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Type mii_if (continued)

Function get_incoming_packet

Description Get incoming packet from MII layer.
This function can be called after an event is triggered by the
mii_incoming_packet() function. It gets the next incoming
packet from the packet buffer of the MII layer.

Type {int * unsafe, size_t, unsigned} get_incoming_packet()

Returns a tuple containing a pointer to the data (which is owned by the
application until the release_packet() function is called), the
number of bytes in the packet and a timestamp. If no packet is
available then the first element will be a NULL pointer.

Function release_packet

Description Release a packet back to the MII layer.
This function will release a packet back to the MII layer to be
used for buffering.

Type void release_packet(int *unsafe data)

Parameters data The pointer to packet to return. This
should be the same pointer returned by
get_incoming_packet()

Function send_packet

Description Send a packet to the MII layer.
This function will send a packet over MII. It does not block and
will return immediately with the MII layer now owning the mem-
ory of the packet. The function mii_packet_sent() should be
subsequently called to determine when the packet has been
transmitted and the application can use the buffer again.

Type void send_packet(int *unsafe buf, size_t n)

Parameters buf The pointer to the packet to be transferred to the
MII layer.

n The number of bytes in the packet to send.

Copyright 2018 XMOS Ltd. 35 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Function mii_incoming_packet

Description Event on/wait for an incoming packet.
This function waits for an incoming packet from the MII layer. It can be used in a
select to detect an incoming packet e.g

mii_info_t mii_info = i_mii.init();
select {
case mii_incoming_packet(mii_info):

...
break;

...

Type unsafe void mii_incoming_packet(mii_info_t info)

Function mii_packet_sent

Description Event on/wait for a packet send to complete.
This function will wait for a packet transmitted with the send_packet function on the
mii_interface to complete. It can be used in a select to event when the transmission
is complete e.g

mii_info_t mii_info = i_mii.init();
select {
case mii_packet_sent(mii_info):

...
break;

...

Type unsafe void mii_packet_sent(mii_info_t info)

Type mii_info_t

Description

Copyright 2018 XMOS Ltd. 36 www.xmos.com
XM006386



Ethernet MAC 3.4.0

3.10 Creating an SMI/MDIO instance

All SMI functions can be accessed via the smi.h header:

#include <smi.h>

Function smi

Description SMI component that connects to an Ethernet PHY or switch via MDIO on separate
ports.
This function implements a SMI component that connects to an Ethernet PHY/ switch
via MDIO/MDC connected on separate ports. Interaction to the component is via the
connected SMI interface.

Type [[distributable]]
void smi(server interface smi_if i_smi, port p_mdio, port p_mdc)

Parameters i_smi Client register read/write interface

p_mdio SMI MDIO port

p_mdc SMI MDC port

Function smi_singleport

Description SMI component that connects to an Ethernet PHY or switch via MDIO on a shared
multi-bit port.
This function implements a SMI component that connects to an Ethernet PHY/ switch
via MDIO/MDC connected on the same multi-bit port. Interaction to the component is
via the connected SMI interface.

Type [[distributable]]
void
smi_singleport(server interface smi_if i_smi,

port p_smi,
unsigned mdio_bit,
unsigned mdc_bit)

Parameters i_smi Client register read/write interface

p_smi The multi-bit port with MDIO/MDC pins

mdio_bit The MDIO bit position on the multi-bit port

mdc_bit The MDC bit position on the multi-bit port

Copyright 2018 XMOS Ltd. 37 www.xmos.com
XM006386



Ethernet MAC 3.4.0

3.11 The SMI/MDIO PHY interface

Type smi_if

Description SMI register configuration interface.
This interface allows clients to read or write the PHY SMI registers

Functions
Function read_reg

Description Read the specified SMI register in the PHY.

Type uint16_t read_reg(uint8_t phy_address,
uint8_t reg_address)

Parameters phy_address
The 5-bit SMI address of the PHY

reg_address
The 5-bit register address to read

Returns The 16-bit data value read from the register

Function write_reg

Description Write the specified SMI register in the PHY.

Type void write_reg(uint8_t phy_address,
uint8_t reg_address,
uint16_t val)

Parameters phy_address
The 5-bit SMI address of the PHY

reg_address
The 5-bit register address to write

val The 16-bit data value to write to the register

Copyright 2018 XMOS Ltd. 38 www.xmos.com
XM006386



Ethernet MAC 3.4.0

3.12 SMI PHY configuration helper functions

Function smi_configure

Description Function to configure the PHY speed/duplex with or without auto negotiation.
The smi_phy_is_powered_down() function should be called to check that the PHY is
not powered down before calling this function.

Type void smi_configure(client smi_if smi,
uint8_t phy_address,
ethernet_speed_t speed_mbps,
smi_autoneg_t auto_neg)

Parameters smi An interface connection to the SMI component

phy_address
The 5-bit SMI address of the PHY

speed_mbps
If auto negotiation is disabled, the specified speed will be forced, other-
wise the PHY will be configured to advertise as capable of all full-duplex
speeds up to and including the specified speed.

auto_neg If set to SMI_ENABLE_AUTONEG auto negotiation is enabled, otherwise
disabled if set to SMI_DISABLE_AUTONEG

Type smi_autoneg_t

Description Type representing PHY auto negotiation enable/disable flags.

Values SMI_DISABLE_AUTONEG
Enable auto negotiation.

SMI_ENABLE_AUTONEG
Disable auto negotiation.

Function smi_set_loopback_mode

Description Function to enable loopback mode with the Ethernet PHY.

Type void
smi_set_loopback_mode(client smi_if smi,

uint8_t phy_address,
int enable)

Continued on next page

Copyright 2018 XMOS Ltd. 39 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Parameters smi An interface connection to the SMI component

phy_address
The 5-bit SMI address of the PHY

enable Loopback enable flag. If set to 1, loopback is enabled, otherwise 0 to
disable

Function smi_get_id

Description Function to retrieve the PHY manufacturer ID number.

Type unsigned smi_get_id(client smi_if smi, uint8_t phy_address)

Parameters smi An interface connection to the SMI component

phy_address
The 5-bit SMI address of the PHY

Returns The PHY manufacturer ID number

Function smi_phy_is_powered_down

Description Function to retrieve the power down status of the PHY.

Type unsigned
smi_phy_is_powered_down(client smi_if smi,

uint8_t phy_address)

Parameters smi An interface connection to the SMI component

phy_address
The 5-bit SMI address of the PHY

Returns 1 if the PHY is powered down, 0 otherwise

Function smi_get_link_state

Description Function to retrieve the link up/down status.

Type ethernet_link_state_t
smi_get_link_state(client smi_if smi,

uint8_t phy_address)

Continued on next page

Copyright 2018 XMOS Ltd. 40 www.xmos.com
XM006386



Ethernet MAC 3.4.0

Parameters smi An interface connection to the SMI component

phy_address
The 5-bit SMI address of the PHY

Returns ETHERNET_LINK_UP if the link is up, ETHERNET_LINK_DOWN if the link is down

Copyright 2018 XMOS Ltd. 41 www.xmos.com
XM006386



Ethernet MAC 3.4.0

APPENDIX A - Known Issues

There are no known issues with this library.

Copyright 2018 XMOS Ltd. 42 www.xmos.com
XM006386



Ethernet MAC 3.4.0

APPENDIX B - Ethernet MAC library change log

B.1 3.4.0

• RESOLVED: Fix crash caused by significant backpressure being applied to the mii_eternet_mac.
• RESOLVED: Fix lockup in mii_eternet_mac due to bug in packet commit logic.
• RESOLVED: Fix bug in mii_ethernet_rt_mac that would corrupt the packet length when buffers filled.
• RESOLVED: Ensure interrupts are disabled in the RGMII low-level driver on speed changes.
• RESOLVED: Clean up code to fix compiler signed/unsigned warnings.
• CHANGE: Prevent packet drop from RGMII LP queue when there is no HP queue.

B.2 3.3.1

• ADDED: Function to write SMI extended MMD registers that some PHYs use
• ADDED: Function to reset PHY by writing bit 15 of SMI register 0

B.3 3.3.0

• CHANGE: Update dependencies
• ADDED: Ability for the standard MII ethernet MAC to be able to provide link status notifications.
• RESOLVED: Fix test_appdata that failed randomly due to timing changes
• RESOLVED: Fix RT MII ethernet transmit being broken by a memory corruption caused by a race

condition. It could cause random packet contents to be sent on the wire and invalid sized packets.
• RESOLVED: Fix RT MII buffer read pointer wrapping over the write pointer and causing the MAC layer

to crash when the ethernet clients were not keeping up with the packets being received.

B.4 3.2.0

• ADDED: Ability to enable link status notifications to the client
• RESOLVED: Fix bug which caused random crashes
• RESOLVED: Fix bug in RT MII which caused packet to delay for 21.4s when sent after no packets sent

for > 21.4s

B.5 3.1.2

• RESOLVED: Fixes incorrect memset length on packet queue pointers array
• CHANGE: Update to source code license and copyright

B.6 3.1.1

• RESOLVED: Fixed issue with application filter data not being forwarded to clients of 100Mb MACs

B.7 3.1.0

• ADDED: VLAN tag stripping option to RT 100Mb Ethernet MAC configuration interface

B.8 3.0.3

• CHANGED: Update RGMII port delays to use best candidate from testing

Copyright 2018 XMOS Ltd. 43 www.xmos.com
XM006386



Ethernet MAC 3.4.0

B.9 3.0.2

• RESOLVED: Improve interoperability of PHY speed and link detection via RGMII inter-frame data
• RESOLVED: Fix 64-bit alignment of MII lite to prevent crash on XS2

B.10 3.0.1

• RESOLVED: Fixed issue with optimisation build flags not being overridden by the module
• ADDED: Missing extern declaration for inline interface function send_timed_packet()
• ADDED: Ability to override the number of Ethertype filters from the ethernet_conf.h

B.11 3.0.0

• CHANGE: Major rework of structure and API
• ADDED: RGMII Gigabit Ethernet MAC support for xCORE-200
• Changes to dependencies:

– lib_gpio: Added dependency 1.0.0
– lib_locks: Added dependency 2.0.0
– lib_logging: Added dependency 2.0.0
– lib_xassert: Added dependency 2.0.0

Copyright © 2018, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2018 XMOS Ltd. 44 www.xmos.com
XM006386


	Ethernet MAC library
	External signal description
	MII: Media Independent Interface
	RGMII: Reduced Gigabit Media Independent Interface
	PHY Serial Management Interface (MDIO)

	Usage
	10/100 Mb/s Ethernet MAC operation
	10/100 Mb/s real-time Ethernet MAC
	10/100/1000 Mb/s real-time Ethernet MAC
	Raw MII interface

	API
	Creating a 10/100 Mb/s Ethernet MAC instance
	Creating a 10/100 Mb/s real-time Ethernet MAC instance
	Real-time supporting typedefs
	Creating a 10/100/1000 Mb/s Ethernet MAC instance
	The Ethernet MAC configuration interface
	The Ethernet MAC data handling interface
	The Ethernet MAC high-priority data handling interface
	Creating a raw MII instance
	The MII interface
	Creating an SMI/MDIO instance
	The SMI/MDIO PHY interface
	SMI PHY configuration helper functions

	Known Issues
	Ethernet MAC library change log
	3.4.0
	3.3.1
	3.3.0
	3.2.0
	3.1.2
	3.1.1
	3.1.0
	3.0.3
	3.0.2
	3.0.1
	3.0.0


