
How to use notifications over interfaces

version 1.1.1

scope Example. This code is provided as example code for a user to base
their code on.

description How to use notifications over interfaces

boards Unless otherwise specified, this example runs on the SliceKIT Core
Board, but can easily be run on any XMOS device by using a different
XN file.

Sometimes the server end of an interface needs to signal information to the client
end. However, usually the client end initiates communication.

Notifications provide a way for the server to contact the client independently of the
client making a call. It can raise a signal and then carry on processing.

Within the interface declaration, a notification function can be declared with the
[[notification]] attribute.

[[notification]] slave void data_ready(void);

The function is declared as slave to indicate the direction of communication is
from the server end to the client end. In other words, the server will call the
function and the client will respond. Notification functions must take no arguments
and have a void return type.

Once the server raises a notification, it triggers an event at the client end of the
interface. However, repeatedly raising the notification has no effect until the client
clears the notification. This can be done by marking one or more functions in the
interface with the [clears_notification] attribute.

[[clears_notification]] int get_data ();

The client will then clear the notification whenever it calls that function.

The server end of the interface can call the notification function to notify the client
end. One important property of notifications is that they will not block and the
server can continue doing work.

c.data_ready ();
// The above call is non -blocking , so the task carries on
printf("task1: Sent notification\n");

Publication Date: 2013/11/15 REV A

XMOS © 2013, All Rights Reserved

How to use notifications over interfaces 2/2

After calling data_ready, calling it again will have no effect (i.e. the signal can
only be raised once). The server end can then carry on with processing, including
receiving messages from the client end of the same interface connection.

// Wait for some incoming messages
for (int i = 0;i < 2; i++) {

select {
case c.msg(int x):

printf("task1: Received data message %d\n",x);
break;

case c.get_data () -> int return_value:
printf("task1: Received response to notification\n");
return_value = data;
break;

}
}

After the get_data call has been received, this task could re-notify the client.

The client end of the interface can make calls as normal, but can also select upon
the notification from the server end of the interface.

void task2(client interface if1 c)
{

c.msg (5);
select {
case c.data_ready ():

int x = c.get_data ();
printf("task2: Got data %d\n",x);
break;

}
}

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV A

