
How to debug a multicore program using XGDB

IN THIS DOCUMENT

· To debug using XGDB from xTIMEcomposer Studio

· To debug using XGDB from the command line

version 1.1.1

scope Example. This code is provided as example code for a user to base
their code on.

description How to debug a multicore program using XGDB

boards Unless otherwise specified, this example runs on the SliceKIT Core
Board, but can easily be run on any XMOS device by using a different
XN file.

A single instance of XGDB can be used to debug multicore programs. As an
example, consider the following 3 core program. This program passes a token in a
ring between each core:

The process function waits for the token on the input channel. Once received, it
prints its own core name to the console then passes the token on to the next core
in the chain.

void process(chanend cIn , chanend cOut , char coreName[], int init) {
if (init) {

cOut <: 1;
}
while (1) {

cIn :> int;
printstrln(coreName);
cOut <: 1;

}
}

The 3 instances of the process function are instantiated here. Note: The final init
parameter is used purely to get the ball rolling in the first place.

Publication Date: 2013/11/15 REV A

XMOS © 2013, All Rights Reserved



How to debug a multicore program using XGDB 2/3

int main() {
chan c01 , c12 , c20;
par {

process(c20 , c01 , "core0", 0);
process(c01 , c12 , "core1", 0);
process(c12 , c20 , "core2", 1);

}
return 0;

}

Compile the above program ensuring that debug is enabled (-g):

1 To debug using XGDB from xTIMEcomposer Studio

Create a new debug configuration via Run->Debug Configurations->xCORE Applica-
tions. Set a breakpoint on the printstr line in the process function. (Note: This will
install the breakpoint for all cores). Now start running the project. Execution will
break when the breakpoint is reached. Consider the Debug view. You can see that
the program is suspended in tile[0], core[0]. Continue execution. You can see that
you are now suspended in tile[0], core[1]. Note: When you are suspended, you can
see the current position of any core by expanding its stack tree in the Debug view,
and by clicking on a particular node in the stack tree; the Registers and Variables
views will be refreshed with the relevant contents.

2 To debug using XGDB from the command line

Start XGDB, connect to the simulator and set a breakpoint on the printstr line in
the process function. When run, execution will suspend when the breakpoint is hit.
Continuing will cause each core in turn to hit the breakpoint:

REV A



How to debug a multicore program using XGDB 3/3

> xgdb a.xe
... etc ...
(gdb) connect -s
0xffffc070 in ?? ()
(gdb) b multicore_usage.xc:22
Breakpoint 1 at 0x100e6: file multicore_usage.xc, line 22.
(gdb) run
... etc ...
Breakpoint 1, process (cIn=1026, cOut=2, coreName=@0x10568 , init =0) at
↩ multicore_usage.xc:22

22 printstrln(coreName);
(gdb) c
core0
[Switching to tile [0] core [1]]

Breakpoint 1, process (cIn=258, cOut =514, coreName=@0x10558 , init =0) at
↩ multicore_usage.xc:22

22 printstrln(coreName);
(gdb) c
core1
[Switching to tile [0] core [2]]

Breakpoint 1, process (cIn=770, cOut =1282 , coreName=@0x10560 , init =1) at
↩ multicore_usage.xc:22

22 printstrln(coreName);
(gdb) c
core2
[Switching to tile [0] core [0]]

Breakpoint 1, process (cIn=1026, cOut=2, coreName=@0x10568 , init =0) at
↩ multicore_usage.xc:22

22 printstrln(coreName);
(gdb) info threads

3 tile [0] core [2] 0x000100fa in process (cIn=770, cOut =1282 , coreName=@
↩ 0x10560 , init =1)
at multicore_usage.xc:23

2 tile [0] core [1] process (cIn=258, cOut =514, coreName=@0x10558 , init
↩ =0) at multicore_usage.xc:21

* 1 tile [0] core [0] process (cIn =1026, cOut=2, coreName=@0x10568 , init =0)
↩ at multicore_usage.xc:22

Note: As can be seen in the above XGDB trace, the info threads command can
be used to see the current location of each of the threads. The currently active
thread is marked by the asterisk. To explicitly change the currently active thread,
for example, to view the register/variable contents, the thread command can be
used. This accepts a thread ID as an argument.

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV A


	To debug using XGDB from xTIMEcomposer Studio
	To debug using XGDB from the command line

