
How to use movable pointers

version 1.0.0

scope Example. This code is provided as example code for a user to base
their code on.

description How to use movable pointers

boards Unless otherwise specified, this example runs on the SliceKIT Core
Board, but can easily be run on any XMOS device by using a different
XN file.

Movable pointers are pointers that only exist in one variable at a time. The
initialization of a movable pointer is special. At initialization time you can set
the pointer to point to a particular object. As with global pointers, the object
pointed to is then hidden so it cannot be accessed directly during the lifetime of
the pointer:

void g()
{

int * movable x = &y[0]; // x is initialized to point to y

// cannot access y during the lifetime of x
...

}

Movable pointers cannot be copied. For example the following code is invalid:

int * movable y;
...
void g()
{

int * movable x = &a[0];
y = x; // This is an error , you cannot copy the value of x.
...

}

Instead of copying the pointers can be “moved” using the special move operator.
The move operator transfers the pointer value and sets the original pointer to null:

void f() {
int * movable y;
int a[5] = {4,5,6,7,8};
int * movable x = &a[0];
y = move(x);

Publication Date: 2013/7/18 REV A

XMOS © 2013, All Rights Reserved

How to use movable pointers 2/3

if (x == null)
printf("x is now null.\n");

printf("The contents of y is %d\n", *y);

x = move(y);
}

When a pointer is moved the original pointer is set to null. So the pointer only
exists in one variable.

To avoid dangling pointers movable pointers must have their original value when
they go out of scope (so the pointer is not left dangling anywhere else):

int * movable y;
..
void g()
{
int * movable x = &a[0];
y = move(x);
...
x = move(y);
...
} <--- x must have its original value at this point

A runtime check enforces this restriction.

As a result of this, movable pointers need to be moved back into their original
variable location before that variable goes out of scope.

The move operator can also be used to move a pointer into or out of a function :

int * movable p_global;

void grab_pointer(int * movable x) {
// store x in a global
p_global = move(x);

}

int * movable retreive_pointer(void) {
// retreive x from a global
*p_global += 1;
return move(p_global);

}

void g(void) {
int i = 77;
int * movable x = &i;
grab_pointer(move(x));
if (x == null)

printf("x is now null.\n");
x = retreive_pointer ();

REV A

How to use movable pointers 3/3

printf("Contents of x is %d\n", *x);
}

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV A

