
How to communicate between tasks with interfaces

version 1.0.0

scope Example. This code is provided as example code for a user to base
their code on.

description How to communicate between tasks with interfaces

boards Unless otherwise specified, this example runs on the SliceKIT Core
Board, but can easily be run on any XMOS device by using a different
XN file.

Interfaces provide the most structured and flexible method of inter-task communi-
cation. An interface defines the kind of messages that can be passed and the data
is passed with them. For example, the following interface declaration defines two
message types:

interface my_interface {
void msgA(int x, int y);
void msgB(float x);

};

Messages can take the same arguments that any C function can. The arguments
define what data is sent with the message. If an array argument is given for an
intra-tile communication, the array is not copied but the compiler will optimize it
to just pass a reference to the array, allowing the recipient to access the array in
memory.

Message passing is done over unidirectional connections obeying an interface
protocol. One end of the connection is declared as the client end and sends
messages, and one end is the server end which receives messages.

To send messages, a task can take an argument which is the client end of an
interface connection and use that variable to send messages:

void task1(interface my_interface client c)
{

// c is the client end of the connection ,
// let 's send a message to the other end.
c.msgA(5, 10);

}

Code can wait to receive messages at the server end with the select construct.
The select will wait until a message arrives:

void task2(interface my_interface server c)

Publication Date: 2013/7/23 REV A

XMOS © 2013, All Rights Reserved



How to communicate between tasks with interfaces 2/2

{
// wait for either msgA or msgB over connection c.
select {
case c.msgA(int x, int y):

printf("Received msgA: %d, %d\n", x, y);
break;

case c.msgB(float x):
// handle the message
printf("Received msgB: %f\n", x);
break;

}
}

Note how the select lets you handle several different types of message. The
language extension also lets the compiler allocate local variables for the incoming
data that the message handler can access.

Code can wait for many different types of messages (using different interface types)
from many different sources. Once one of the messages has been received and the
select has handled the event, the code will continue on.

When tasks are run, you can join them together by declaring an instance of an
interface and passing it as an argument to both tasks:

int main(void)
{

interface my_interface c;
par {

task1(c);
task2(c);

}
return 0;

}

The types of the functions tell the tools which end is the server and which is the
client. The compiler also checks that each connection gets exactly one server and
one client end.

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV A


