
XMOS SDRAM Component

REV A

Publication Date: 2012/10/19

XMOS © 2012, All Rights Reserved.

XMOS SDRAM Component 2/24

Table of Contents

1 Overview 3
1.1 SDRAM Controller Component . 3

1.1.1 SDRAM Component Features . 3
1.1.2 Memory requirements . 3
1.1.3 Resource requirements . 4
1.1.4 Performance . 4

1.2 SDRAM Memory Mapper . 4
1.2.1 Memory requirements . 4
1.2.2 Resource requirements . 5

2 Hardware Requirements 6
2.1 Recommended Hardware . 6

2.1.1 Slicekit . 6
2.2 Demonstration Applications . 6

2.2.1 Testbench Application . 6
2.2.2 Benchmark Application . 6
2.2.3 Demo Application . 6
2.2.4 Display Controller Application . 7

3 API 8
3.1 Configuration Defines . 8

3.1.1 Implementation Specific Defines . 8
3.1.2 SDRAM Geometry Defines . 9
3.1.3 SDRAM Commands Defines . 9
3.1.4 Port Config . 10

3.2 SDRAM API . 10
3.2.1 Server Functions . 10

3.3 C and XC Interface . 10
3.4 XC Interface . 10
3.5 C Interface . 12
3.6 SDRAM Memory Mapper API . 15

3.6.1 Server Functions . 15
3.7 XC Interface . 15
3.8 C Interface . 16

4 Programming Guide 17
4.1 SDRAM Default implementation . 17
4.2 Single SDRAM Support . 17
4.3 Multiple Homogeneous SDRAM Support . 17
4.4 Multiple Heterogeneous SDRAM Support . 18
4.5 Notes . 19
4.6 Source code structure . 19

4.6.1 Directory Structure . 19
4.6.2 Key Files . 19

4.7 Module Usage . 19

5 SDRAM Memory Mapper Programming Guide 21
5.1 Software Requirements . 21

REV A

XMOS SDRAM Component 3/24

6 Example Applications 22
6.1 app_sdram_demo . 22

6.1.1 Getting Started . 22
6.1.2 Notes . 22

6.2 app_sdram_regress . 23
6.2.1 Getting Started . 23

6.3 app_sdram_benchmark . 23
6.3.1 Getting Started . 23

REV A

1 Overview

IN THIS CHAPTER

· SDRAM Controller Component

· SDRAM Memory Mapper

1.1 SDRAM Controller Component

The SDRAM module is designed for 16 bit read and write access of arbitrary length
at up to 50MHz clock rates. It uses an optimised pinout with address and data
lines overlaid along with other pinout optimisations in order to implement 16 bit
read/write with up to 13 address lines in just 20 pins.

The module currently targets the ISSI 6400 SDRAM but is easily specialised for
the smaller and larger members of this family as well as single data rate SDRAM
memory from other manufacturers.

1.1.1 SDRAM Component Features

The SDRAM component has the following features:

· · SDRAM geometry,
· clock rate,
· refresh properties,
· server commands supported,
· port mapping of the SDRAM.

· · buffer read,
· buffer write,
· full row(page) read,
· full row(page) write,
· refresh handled by the SDRAM component itself.

· · The function sdram_server requires just one core, the client functions,
located in sdram.h are very low overhead and are called from the applica-
tion.

1.1.2 Memory requirements

Resource Usage

Stack 256 bytes

Program 10272 bytes

REV A

XMOS SDRAM Component 5/24

1.1.3 Resource requirements

Resource Usage

Channels 1

Timers 1

Clocks 1

Logical Cores 1

1.1.4 Performance

The achievable effective bandwidth varies according to the available XCore MIPS.
This information has been obtained by testing on real hardware.

XCore MIPS Cores System Clock Max Read (MB/s) Max Write (MB/s)

50 8 400MHz 66.84 70.75

57 7 400MHz 68.13 71.68

66 6 400MHz 69.83 73.41

80 5 400MHz 71.68 74.99

100 4 400MHz 71.89 75.22

100 3 400MHz 71.89 75.22

100 2 400MHz 71.89 75.22

62.5 8 500MHz 66.82 70.34

83 7 500MHz 68.08 71.47

100 6 500MHz 69.83 73.19

125 5 500MHz 71.68 74.76

125 4 500MHz 71.89 74.99

125 3 500MHz 71.89 74.99

125 2 500MHz 71.89 74.99

1.2 SDRAM Memory Mapper

A memory mapper module called module_sdram_memory_mapper may be used in
order to abstract the physical geometry of the SDRAM from the application. Its only
function is to map the physical geometry of the SDRAM to a virtual byte addresses
that the application can use.

1.2.1 Memory requirements

Resource Usage

Stack 0 bytes

Program 32 bytes

REV A

XMOS SDRAM Component 6/24

1.2.2 Resource requirements

Resource Usage

Channels 0

Timers 0

Clocks 0

Logical Cores 0

REV A

2 Hardware Requirements

IN THIS CHAPTER

· Recommended Hardware

· Demonstration Applications

2.1 Recommended Hardware

2.1.1 Slicekit

This module may be evaluated using the Slicekit Modular Development Platform,
available from digikey. Required board SKUs are:

· XP-SKC-L2 (Slicekit L2 Core Board) plus XA-SK-SDRAM plus XA-SK-XTAG2 (Slicekit
XTAG adaptor)

2.2 Demonstration Applications

2.2.1 Testbench Application

This application serves as a software regression to aid implementing new SDRAM
interfaces and verifying current ones. The demo runs a series of regression tests
of increasing difficulty, beginning from using a single core for the server and a
single core for the sdram_server progressing to all cores being loaded to simulate
an XCore under full load.

· Package: sc_sdram_burst

· Application: app_sdram_regress

2.2.2 Benchmark Application

This application benchmarks the performance of the module. It does no correctness
testing but instead tests the throughput of the SDRAM server.

· Package: sc_sdram_burst

· Application: app_sdram_benchmark

2.2.3 Demo Application

This application demonstrates how the module is used to accesses memory on the
SDRAM.

REV A

XMOS SDRAM Component 8/24

· Package: sc_sdram_burst

· Application: app_sdram_demo

2.2.4 Display Controller Application

This combination demo employs this module along with the module_lcd LCD driver
and the module_framebuffer framebuffer framework component to implement a
480x272 display controller.

Required board SKUs for this demo are:

· XP-SKC-L2 (Slicekit L2 Core Board) plus XA-SK-SDRAM plus XA-SK-LCD480 plus
XA-SK-XTAG2 (Slicekit XTAG adaptor)

· Package: sw_display_controller

· Application: app_graphics_demo

REV A

3 API

IN THIS CHAPTER

· Configuration Defines

· SDRAM API

· C and XC Interface

· XC Interface

· C Interface

· SDRAM Memory Mapper API

· XC Interface

· C Interface

3.1 Configuration Defines

The file sdram_conf.h must be provided in the application source code, and it must define:

SDRAM_DEFAULT_IMPLEMENTATION

It can also be used to override the default values specified in

· IMPL/sdram_config_IMPL.h

· IMPL/sdram_geometry_IMPL.h

· sdram_commands_IMPL.h

where IMPL is the SDRAM implementation to be overridden. These files can set the following
defines:

3.1.1 Implementation Specific Defines

When overriding one of these defines a suffix of _IMPL needs to be added. For example, to
override SDRAM_CLOCK_DIVIDER to 2 for the PINOUT_V1_IS42S16100F target add the line:

#define SDRAM_CLOCK_DIVIDER_PINOUT_V1_IS42S16100F 2

to sdram_conf.h.

SDRAM_REFRESH_MS
This specifies that during a period of SDRAM_REFRESH_MS milliseconds a total of
SDRAM_REFRESH_CYCLES refresh instructions must be issued to maintain the contents of the
SDRAM.

REV A

XMOS SDRAM Component 10/24

SDRAM_REFRESH_CYCLES
As above.

SDRAM_ACCEPTABLE_REFRESH_GAP
This define specifies how long the sdram_server can go between issuing bursts of refreshes.
The SDRAM server issues refreshes in bursts when it is not servicing a read/write command.
The number of refresh commands for a burst is automatically calculated, hence, if a read or
write command is being serviced when a refresh burst should start then it will wait until the
service is over then increase its burst size appropriately. If set above SDRAM_REFRESH_CYCLES
then the SDRAM will fail. The default is (SDRAM_REFRESH_CYCLES/8). The unit is given in
refresh periods. For example, the value would mean that the SDRAM is allowed to go
SDRAM_REFRESH_MS/SDRAM_REFRESH_CYCLES*N milliseconds before refreshing. The larger the
number (up to SDRAM_REFRESH_CYCLES) the smaller the constant time impact but the larger
the overall impact.

SDRAM_CMDS_PER_REFRESH
This defines the minimum time between refreshes in SDRAM Clk cycles. Must be in the range
from 2 to 4 inclusive.

SDRAM_EXTERNAL_MEMORY_ACCESSOR
This defines if the memory is accessed by another device(other than the XCore). If not defined
then faster code will be produced.

SDRAM_CLOCK_DIVIDER
Set SDRAM_CLOCK_DIVIDER to divide down the reference clock to get the desired SDRAM Clock.
The reference clock is divided by 2*SDRAM_CLOCK_DIVIDER.

SDRAM_MODE_REGISTER
This defines the configuration of the SDRAM. This is the value to be loaded into the mode
register.

3.1.2 SDRAM Geometry Defines

These are implementation specific.

SDRAM_ROW_ADDRESS_BITS
This defines the number of row address bits.

SDRAM_COL_ADDRESS_BITS
This defines the number of column address bits.

SDRAM_BANK_ADDRESS_BITS
This defines the number of bank address bits.

SDRAM_COL_BITS
This defines the number of bits per column, i.e. the data width. This should only be changed
if an SDRAM of bus width other than 16 is used.

3.1.3 SDRAM Commands Defines

These are non-implementation specific.

SDRAM_ENABLE_CMD_WAIT_UNTIL_IDLE
Enable/Disable the wait until idle command.

SDRAM_ENABLE_CMD_BUFFER_READ
Enable/Disable the buffer read command.

REV A

XMOS SDRAM Component 11/24

SDRAM_ENABLE_CMD_BUFFER_WRITE
Enable/Disable the buffer write command.

SDRAM_ENABLE_CMD_FULL_ROW_READ
Enable/Disable the full row read command.

SDRAM_ENABLE_CMD_FULL_ROW_WRITE
Enable/Disable the full row write command.

These defines switch commands on and off in the server and client. Set to 0 for disable, set to 1
for enable. Disabling unused commands will cause a code size decrease.

3.1.4 Port Config

The port config is given in \IMPL\sdram_ports_IMPL.h and is implementation specific.

3.2 SDRAM API

These are the functions that are called from the application and are included in sdram.h.

3.2.1 Server Functions

3.3 C and XC Interface
void sdram_server(chanend client,

struct sdram_ports_PINOUT_V1_IS42S16400F &ports)

The SDRAM server thread.

This function has the following parameters:

client The channel end connecting the application to the server

ports The structure carrying the SDRAM port details.

3.4 XC Interface

void sdram_wait_until_idle(chanend server, unsigned buffer[])
Function to wait until the SDRAM server is idle and ready to accept another com-
mand.

This function has the following parameters:

server The channel end connecting the application to the server

buffer[] The buffer where the data was written or read from in the previous
command.

void sdram_buffer_write(chanend server,
unsigned bank,

REV A

XMOS SDRAM Component 12/24

unsigned start_row,
unsigned start_col,
unsigned width_words,
unsigned buffer[])

Used to write an arbitrary sized buffer of data to the SDRAM.

Note: no buffer overrun checking is performed.

This function has the following parameters:

server The channel end connecting the application to the server.

bank The bank number in the SDRAM into which the buffer of data should
be written.

start_row The starting row number in the SDRAM into which the buffer of data
should be written.

start_col The starting column number in the SDRAM into which the buffer of
data should be written.

width_words The number of words to be written to the SDRAM.

buffer[] The buffer where the data will be read from.

void sdram_full_row_write(chanend server,
unsigned bank,
unsigned row,
unsigned buffer[])

Used write a full row of data from a buffer to the SDRAM.

Note: no buffer overrun checking is performed. Full row accesses are always begin
aligned to coloumn 0.

This function has the following parameters:

server The channel end connecting the application to the server

bank The bank number in the SDRAM into which the buffer of data should
be written

row The row number in the SDRAM into which the buffer of data should
be written.

buffer[] The buffer where the data will be read from.

void sdram_buffer_read(chanend server,
unsigned bank,
unsigned start_row,

REV A

XMOS SDRAM Component 13/24

unsigned start_col,
unsigned width_words,
unsigned buffer[])

Used to read to an arbitrary size buffer of data from the SDRAM.

Note: no buffer overrun checking is performed.

This function has the following parameters:

server The channel end connecting the application to the server

bank The bank number in the SDRAM from which the SDRAM data should
be read.

start_row The starting row number in the SDRAM from which the SDRAM data
should be read.

start_col The starting column number in the SDRAM from which the SDRAM
data should be read.

width_words The number of words to be read from the SDRAM.

buffer[] The buffer where the data will be written to.

void sdram_full_row_read(chanend server,
unsigned bank,
unsigned row,
unsigned buffer[])

Used read a full row of data from a buffer to the SDRAM.

Note: no buffer overrun checking is performed. Full row accesses are always begin
aligned to coloumn 0.

This function has the following parameters:

server The channel end connecting the application to the server.

bank The bank number in the SDRAM from which the SDRAM data should
be read.

row The row number in the SDRAM from which the SDRAM data should
be read.

buffer[] The buffer where the data will be written to.

3.5 C Interface

void sdram_wait_until_idle_p(chanend server, intptr_t buffer)

REV A

XMOS SDRAM Component 14/24

Function to wait until the SDRAM server is idle and ready to accept another com-
mand.

This function has the following parameters:

server The channel end connecting the application to the server

buffer A pointer to the buffer where the data was written or read from in
the previous command.

void sdram_buffer_write_p(chanend server,
unsigned bank,
unsigned start_row,
unsigned start_col,
unsigned width_words,
intptr_t buffer)

Used to write an arbitrary sized buffer of data to the SDRAM.

Note: no buffer overrun checking is performed.

This function has the following parameters:

server The channel end connecting the application to the server.

bank The bank number in the SDRAM into which the buffer of data should
be written.

start_row The starting row number in the SDRAM into which the buffer of data
should be written.

start_col The starting column number in the SDRAM into which the buffer of
data should be written.

width_words The number of words to be written to the SDRAM.

buffer[] The buffer where the data will be read from.

void sdram_full_row_write_p(chanend server,
unsigned bank,
unsigned row,
intptr_t buffer)

Used write a full row of data from a buffer to the SDRAM.

Note: no buffer overrun checking is performed. Full row accesses are always begin
aligned to coloumn 0.

This function has the following parameters:

server The channel end connecting the application to the server

REV A

XMOS SDRAM Component 15/24

bank The bank number in the SDRAM into which the buffer of data should
be written

row The row number in the SDRAM into which the buffer of data should
be written.

buffer A pointer to the buffer where the data will be read from.

void sdram_buffer_read_p(chanend server,
unsigned bank,
unsigned start_row,
unsigned start_col,
unsigned width_words,
intptr_t buffer)

Used to read to an arbitrary size buffer of data from the SDRAM.

Note: no buffer overrun checking is performed.

This function has the following parameters:

server The channel end connecting the application to the server

bank The bank number in the SDRAM from which the SDRAM data should
be read.

start_row The starting row number in the SDRAM from which the SDRAM data
should be read.

start_col The starting column number in the SDRAM from which the SDRAM
data should be read.

width_words The number of words to be read from the SDRAM.

buffer A pointer to the buffer where the data will be written to.

void sdram_full_row_read_p(chanend server,
unsigned bank,
unsigned row,
intptr_t buffer)

Used read a full row of data from a buffer to the SDRAM.

Note: no buffer overrun checking is performed. Full row accesses are always begin
aligned to coloumn 0.

This function has the following parameters:

server The channel end connecting the application to the server.

bank The bank number in the SDRAM from which the SDRAM data should
be read.

REV A

XMOS SDRAM Component 16/24

row The row number in the SDRAM from which the SDRAM data should
be read.

buffer A pointer to the buffer where the data will be written to.

3.6 SDRAM Memory Mapper API

These are the functions that are called from the application and are included in sdram_memory_mapper.h.

3.6.1 Server Functions

3.7 XC Interface
void mm_read_words(chanend server,

unsigned address,
unsigned words,
unsigned buffer[])

Reads words from the SDRAM server on the end of the channel provided.

This function has the following parameters:

server The channel end connecting to the SDRAM server.

address The virtual byte address of where the read will begin from.

words The count of words to be read

buffer[] The buffer where the data will be written to.

void mm_write_words(chanend server,
unsigned address,
unsigned words,
unsigned buffer[])

Writes words to the SDRAM server on the end of the channel provided.

This function has the following parameters:

server The channel end connecting to the SDRAM server.

address The virtual byte address of where the write will begin from.

words The count of words to be written.

buffer[] The buffer where the data will be written to.

void mm_wait_until_idle(chanend server, unsigned buffer[])
Returns when the SDRAM server is in the idle state.

This function has the following parameters:

REV A

XMOS SDRAM Component 17/24

server The channel end connecting to the SDRAM server.

buffer[] The buffer which the last command was performed on.

3.8 C Interface
void mm_read_words_p(chanend server,

unsigned address,
unsigned words,
intptr_t buffer)

Reads words from the SDRAM server on the end of the channel provided.

This function has the following parameters:

server The channel end connecting to the SDRAM server.

address The virtual byte address of where the read will begin from.

words The count of words to be read

buffer A pointer to the buffer where the data will be written to.

void mm_write_words_p(chanend server,
unsigned address,
unsigned words,
intptr_t buffer)

Writes words to the SDRAM server on the end of the channel provided.

This function has the following parameters:

server The channel end connecting to the SDRAM server.

address The virtual byte address of where the write will begin from.

words The count of words to be written.

buffer A pointer to the buffer where the data will be written to.

void mm_wait_until_idle_p(chanend server, intptr_t buffer)
Returns when the SDRAM server is in the idle state.

This function has the following parameters:

server The channel end connecting to the SDRAM server.

buffer A pointer to the buffer which the last command was performed on.

REV A

4 Programming Guide

IN THIS CHAPTER

· SDRAM Default implementation

· Single SDRAM Support

· Multiple Homogeneous SDRAM Support

· Multiple Heterogeneous SDRAM Support

· Notes

· Source code structure

· Module Usage

This section provides information on how to program applications using the SDRAM
module.

4.1 SDRAM Default implementation

· PINOUT_V1_IS42S16400F - This corresponds to the ISSI part IS42S16400F
in a 20 pin configuration.

· PINOUT_V1_IS42S16160D - This corresponds to the ISSI part IS42S16160D
in a 20 pin configuration.

· PINOUT_V0 - This is for a legacy 22 pin configuration.

4.2 Single SDRAM Support

For a application with a single SDRAM the default implementation should be set.
If it is not set then the explicit sdram_server and sdram_ports must be used. The
same applied for all the implementation specific defines.

4.3 Multiple Homogeneous SDRAM Support

For a application with a single SDRAM the default implementation should be set. For
example, to drive two IS42S16400F parts, set the SDRAM_DEFAULT_IMPLEMENTATION
to PINOUT_V1_IS42S16400F then the following will create the servers:

chan c,d;
par {

sdram_server(c, ports_0);
sdram_server(d, ports_1);
app_0(c);
app_1(d);

}

REV A

XMOS SDRAM Component 19/24

and the ports for the above would have been created by:

struct sdram_ports ports_0 = {
XS1_PORT_16A ,
XS1_PORT_1B ,
XS1_PORT_1G ,
XS1_PORT_1C ,
XS1_PORT_1F ,
XS1_CLKBLK_1

};
struct sdram_ports ports_1 = {

XS1_PORT_16B ,
XS1_PORT_1J ,
XS1_PORT_1I ,
XS1_PORT_1K ,
XS1_PORT_1L ,
XS1_CLKBLK_1

};

4.4 Multiple Heterogeneous SDRAM Support

It is possible for the application to drive multiple heterogeneous SDRAM devices
simultaneously. In this case each sdram_server and sdram_ports usage must be
explicit to the implementation. For example, to drive an IS42S16400F part and an
IS42S16160D part, then the following will create the servers:

chan c,d;
par {

sdram_server_PINOUT_V1_IS42S16400F(c, ports_0);
sdram_server_PINOUT_V1_IS42S16160D(d, ports_1);
app_0(c);
app_1(d);

}

and the ports for the above would have been created by:

struct sdram_ports_PINOUT_V1_IS42S16400F ports_0 = {
XS1_PORT_16A ,
XS1_PORT_1B ,
XS1_PORT_1G ,
XS1_PORT_1C ,
XS1_PORT_1F ,
XS1_CLKBLK_1

};
struct sdram_ports_PINOUT_V1_IS42S16160D ports_1 = {

XS1_PORT_16B ,
XS1_PORT_1J ,
XS1_PORT_1I ,
XS1_PORT_1K ,
XS1_PORT_1L ,
XS1_CLKBLK_1

REV A

XMOS SDRAM Component 20/24

};

4.5 Notes

The sdram_server and application must be on the same tile.

4.6 Source code structure

4.6.1 Directory Structure

A typical SDRAM application will have at least three top level directories. The
application will be contained in a directory starting with app_, the sdram module
source is in the module_sdram directory and the directory module_xcommon contains
files required to build the application.

app_[my_app_name]/
module_sdram/
module_xcommon/

Of course the application may use other modules which can also be directories at
this level. Which modules are compiled into the application is controlled by the
USED_MODULES define in the application Makefile.

4.6.2 Key Files

The following header file contains prototypes of all functions required to use use
the SDRAM module. The API is described in §3.

File Description

sdram.h SDRAM API header file

Figure 1:

Key Files

4.7 Module Usage

To use the SDRAM module first set up the directory structure as shown above.
Create a file in the app folder called sdram_conf.h and into it insert a define for
SDRAM_DEFAULT_IMPLEMENTATION. It should be defined as the implementation you
want to use, for example for the Slicekit the following would be correct:

#define SDRAM_DEFAULT_IMPLEMENTATION PINOUT_V1_IS42S16160D

Declare the sdram_ports structure used by the sdram_server. This will look like:

struct sdram_ports sdram_ports = {
XS1_PORT_16A ,
XS1_PORT_1B ,
XS1_PORT_1G ,

REV A

XMOS SDRAM Component 21/24

XS1_PORT_1C ,
XS1_PORT_1F ,
XS1_CLKBLK_1

};

Next create a main function with a par of both the sdram_server function and an
application function, these will require a channel to connect them. For example:

int main() {
chan sdram_c;
par {

sdram_server(sdram_c , sdram_ports);
application(sdram_c);

}
return 0;

}

Now the application function is able to use the SDRAM server.

REV A

5 SDRAM Memory Mapper Programming Guide

IN THIS CHAPTER

· Software Requirements

The SDRAM memory mapper has a simple interface where to the mm_read_words
and mm_write_words a virtual address is passes, this virtual address is mapped to
a physical address and the I/O is performed there. The mm_wait_until_idle exists
so that the application can run the I/O commands in a non-blocking manner then
confirm that the command has when the mm_wait_until_idle returns.

5.1 Software Requirements

The component is built on xTIMEcomposer Tools version 12.0. The component
can be used in version 12.0 or any higher version of xTIMEcomposer Tools.

REV A

6 Example Applications

IN THIS CHAPTER

· app_sdram_demo

· app_sdram_regress

· app_sdram_benchmark

This tutorial describes the demo applications included in the XMOS SDRAM software
component. §2.1 describes the required hardware setups to run the demos.

6.1 app_sdram_demo

This application demonstrates how the module is used to accesses memory on the
SDRAM. The purpose of this application is to show how data is written to and read
from the SDRAM in a safe manner.

6.1.1 Getting Started

1. Plug the XA-SK-SDRAM Slice Card into the ‘STAR’ slot of the Slicekit Core Board.

2. Plug the XA-SK-XTAG2 Card into the Slicekit Core Board.

3. Ensure the XMOS LINK switch on the XA-SK-XTAG2 is set to “off”.

4. Open app_sdram_demo.xc and build it.

5. run the program on the hardware.

The output produced should look like:

0 0
1 1
2 2
3 3
4 4
5 5
SDRAM demo complete.

6.1.2 Notes

· There are 4 SDRAM I/O commands: sdram_buffer_write, sdram_buffer_read,
sdram_full_page_write, sdram_full_page_read. They must all be followed by
a sdram_wait_until_idle before another I/O command may be issued. When

REV A

XMOS SDRAM Component 24/24

the sdram_wait_until_idle returns then the data is now at it destination. This
functionality allows the application to be getting on with something else whilst
the SDRAM server is busy with the I/O.

· There is no need to explictly refresh the SDRAM as this is managed by the
sdram_server.

6.2 app_sdram_regress

This application serves as a software regression to aid implementing new SDRAM
interfaces and verifying current ones. The demo runs a series of regression tests
of increasing difficulty, beginning from using a single core for the sdram_server
with one core loaded progressing to all cores being loaded to simulate an XCore
under full load.

6.2.1 Getting Started

1. Plug the XA-SK-SDRAM Slice Card into the ‘STAR’ slot of the Slicekit Core Board.

2. Plug the XA-SK-XTAG2 Card into the Slicekit Core Board.

3. Ensure the XMOS LINK switch on the XA-SK-XTAG2 is set to “off”.

4. Open app_sdram_regress.xc and build it.

5. run the program on the hardware.

The output produced should look like:

Test suite begin
8 threaded test suite start
Begin sanity_check
...

6.3 app_sdram_benchmark

This application benchmarks the performance of the module. It does no correctness
testing but instead tests the throughput of the SDRAM server.

6.3.1 Getting Started

1. Plug the XA-SK-SDRAM Slice Card into the ‘STAR’ slot of the Slicekit Core Board.

2. Plug the XA-SK-XTAG2 Card into the Slicekit Core Board.

3. Ensure the XMOS LINK switch on the XA-SK-XTAG2 is set to “off”.

4. Open app_sdram_benchmark.xc and build it.

5. run the program on the hardware.

REV A

XMOS SDRAM Component 25/24

The output produced should look like:

Cores active: 8
Max write: 70.34 MB/s
Max read : 66.82 MB/s
Cores active: 7
Max write: 71.47 MB/s
Max read : 68.08 MB/s
...

Copyright © 2012, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS and the XMOS logo are registered trademarks of Xmos Ltd. in the United Kingdom and other countries,
and may not be used without written permission. All other trademarks are property of their respective owners.
Where those designations appear in this book, and XMOS was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

REV A

	Overview
	SDRAM Controller Component
	SDRAM Component Features
	Memory requirements
	Resource requirements
	Performance

	SDRAM Memory Mapper
	Memory requirements
	Resource requirements

	Hardware Requirements
	Recommended Hardware
	Slicekit

	Demonstration Applications
	Testbench Application
	Benchmark Application
	Demo Application
	Display Controller Application

	API
	Configuration Defines
	Implementation Specific Defines
	SDRAM Geometry Defines
	SDRAM Commands Defines
	Port Config

	SDRAM API
	Server Functions

	C and XC Interface
	XC Interface
	C Interface
	SDRAM Memory Mapper API
	Server Functions

	XC Interface
	C Interface

	Programming Guide
	SDRAM Default implementation
	Single SDRAM Support
	Multiple Homogeneous SDRAM Support
	Multiple Heterogeneous SDRAM Support
	Notes
	Source code structure
	Directory Structure
	Key Files

	Module Usage

	SDRAM Memory Mapper Programming Guide
	Software Requirements

	Example Applications
	app_sdram_demo
	Getting Started
	Notes

	app_sdram_regress
	Getting Started

	app_sdram_benchmark
	Getting Started

