
XMOS Layer 2 Ethernet MAC Component

REV A

Publication Date: 2012/10/15

XMOS © 2012, All Rights Reserved.

XMOS Layer 2 Ethernet MAC Component 2/28

Table of Contents

1 Ethernet Layer 2 MAC Overview 3
1.1 Component Summary . 3

2 Ethernet Mac Description 4
2.1 FULL Implementation . 4

2.1.1 Buffers and Queues . 4
2.1.2 Filtering . 5
2.1.3 Timestamping . 5

2.2 LITE implementation . 6
2.3 MAC Address Storage . 6

3 Ethernet Programming Guide 7
3.1 Getting started . 7

3.1.1 Installation . 7
3.2 Source code structure . 7

3.2.1 Key Files . 7
3.3 A Sample Ethernet Application (tutorial) . 7

3.3.1 Makefile . 8
3.3.2 ethernet_conf.h . 9
3.3.3 mac_custom_filter . 9
3.3.4 Top level program structure . 10
3.3.5 Ethernet packet processing . 11
3.3.6 Running the application . 12

4 Ethernet API 13
4.1 Configuration Defines . 13
4.2 Configuration Defines for FULL implementation . 13
4.3 Configuration defines for LITE implementation . 15
4.4 Custom Filter Function . 15
4.5 Data Structures . 15
4.6 MAC Server API . 17
4.7 RX Client API . 17

4.7.1 Packet Receive Functions . 17
4.7.2 Configuration Functions . 20

4.8 TX Client API . 21
4.8.1 Packet Transmit Functions . 21
4.8.2 Configuration Functions . 22

5 SMI Component API 24
5.1 Configuration Defines . 24
5.2 Data Structures . 24
5.3 Phy API . 25

6 XMOS Development Board Support Component 27
6.1 sliceKIT Core Board . 27

REV A

1 Ethernet Layer 2 MAC Overview

IN THIS CHAPTER

· Component Summary

The layer 2 MAC component implements a layer 2 ethernet MAC. It provides both
MII communication to the PHY and MAC transport layer for ethernet packets and
enables several clients to connect to it and send and receive packets.

Two independent implementations are available. The FULL implementation runs
on 5 logical cores, allows multiple clients with independent buffering per client
and supports accurate packet timestamping, priority queuing, and 802.1Qav traffic
shaping. The LITE implementation runs on two logical cores but is restricted to a
single receive and trasnmit client and does not support any advanced features.

1.1 Component Summary

Functionality

Provides MII ethernet interface and MAC with customizable filtering and accurate
packet timestamping.

Supported Standards

Ethernet IEEE 802.3u (MII)

Supported Devices

XMOS Devices XS1-G4

XS1-L2

XS1-L1

Requirements

XMOS Desktop Tools v12.0 or later

Ethernet MII compatible 100Mbit PHY

Licensing and Support

Component code provided without charge from XMOS. Component code is
maintained by XMOS.

REV A

2 Ethernet Mac Description

IN THIS CHAPTER

· FULL Implementation

· LITE implementation

· MAC Address Storage

The ethernet MAC runs on two or five logical cores depending on the chosen
implementation and communicates to client tasks over channels. The server can
connect to several clients and each channel connection to the server is for either RX
(receiving packets from the MAC) or TX (transmitting packets to the MAC) operation.

from
client
threads

to
client
threads

MAC
router

packet
filter

h/w
interface

tx
arbiter

h/w
interface

h/w
timestamper

h/w
timestamper

PHY

1 port 100Mbit MAC

M
II

 R
x

M
II

T
x

Figure 1:

MAC
component

(FULL imple-
mentation)

2.1 FULL Implementation

2.1.1 Buffers and Queues

The MAC maintains a two sets of buffers: one for incoming packets and one for
outgoing packets. These buffers are arranged into several queues.

Incoming buffers move around the different queues as follows:

· Empty buffers are in the incoming queue awaiting a packet coming in from the
MII interfaces

REV A

XMOS Layer 2 Ethernet MAC Component 5/28

· Buffers received from the MII interface are filtered (see below) and if they need
to be kept then are moved into a forwarding queue.

· Buffers in the forwarding queue are moved into a client queue depending on
which client registered for that type of packet.

· Once the data from a buffer has been sent to a client the buffer is moved back
into the incoming queue.

Outgoing buffers move around the different queues as follows:

· Empty buffers are an empty queue awaiting a packet coming in from a client.

· Once the data is received the buffer is moved into a transmit queue awaiting
output on the MII interface.

· Once the data is transmitted, the buffer is released back to the empty queue.

The number of buffers available can be set in the ethernet_conf.h configuration
file (see §4.1).

2.1.2 Filtering

After incoming packets are received they are filtered. An initial filter is done where
the packet is dropped unless:

1. The packet is destined for the host’s MAC address or

2. The packet is destined for a MAC address with the broadcast bit set

After this initial filter, a user filter is supplied. To maintain the maximum amount
of flexibility and efficiency the application must supply custom code to perform
this filtering.

The user must supply a definition of the function mac_custom_filter(). This function
can inspect incoming packets in any manner suitable for applications and then
returns either 0 if the packet is to be dropped or a number which the clients can
then use to determine which packets they wish to receive (using the client function
mac_set_custom_filter().

2.1.3 Timestamping

On receipt of a ethernet frame over MII a timestamp is taken of the 100Mhz
reference timer on the core that the ethernet server is running on. The timestamp
is taken at the end of the preamble immediately before the frame itself. This
timestamp will be accurate to within 40ns. The timestamp is stored with the buffer
data and can be retrieved by the client by using the mac_rx_timed() function.

On transmission of a ethernet frame over MII a timestamp is also taken. The
timestamp is also taken at the end of the preamble immediately before the frame
itself and is accurate to within 40ns. The client can retreive the timestamp using

REV A

XMOS Layer 2 Ethernet MAC Component 6/28

the mac_tx_timed() function. In this case the timestamp is stored on transmission
and placed in a queue to be sent back to the client thread.

2.2 LITE implementation

The LITE implementation does not support timestamping or multiple queues/buffer-
ing. The MAC will filter packets based on MAC address and the broadcast bit of the
incoming MAC address. Any further filtering must be done by the single receive
client of the ethernet server.

2.3 MAC Address Storage

The MAC address used for the server is set on instantiation of the server (as an
argument to the ethernet_server() function). This address should be unique for each
device. For all XMOS develop boards, a unique mac address is stored in the one
time programmable rom (OTP). To retreive this address otp_board_info_get_mac
function is provided in the module module_otp_board_info.

For information on programming MAC addresses into OTP please contact XMOS
for detalis.

REV A

3 Ethernet Programming Guide

IN THIS CHAPTER

· Getting started

· Source code structure

· A Sample Ethernet Application (tutorial)

This section provides information on how to program applications using the
ethernet MAC component.

3.1 Getting started

3.1.1 Installation

You can import the layer 2 MAC component and example applications from the
xSOFTip browser in the xTIMEcomposer tool.

3.2 Source code structure

Source code can be found across several modules:

· module_ethernet contains the main MAC code

· module_ethernet_smi contains the code for controlling an ethernet phy via the
SMI configuration protocol

· module_ethernet_board_support contains header files for common XMOS devel-
opment boards allowing easy initialization of port structures.

Which modules are compiled into the application is controlled by the USED_MODULES
define in your application Makefile.

3.2.1 Key Files

The following header files contain prototypes of all functions required to use the
ethernet component. The API is described in §4.

3.3 A Sample Ethernet Application (tutorial)

This tutorial describes a demo included in the xmos ethernet package. The demo
can be found in the directory app_ethernet_demo and provides a simple ethernet
application that responds to ICMP ping requests. It assumes a basic knowledge of

REV A

XMOS Layer 2 Ethernet MAC Component 8/28

File Description

ethernet.h Ethernet main header file (includes other headers)

ethernet_server.h Ethernet Server API header file

ethernet_rx_client.h Ethernet Client API header file (RX)

ethernet_tx_client.h Ethernet Client API header file (TX)

Figure 2:

Key Files

XC programming. For information on XMOS programming, you can find reference
material at the XMOS website1.

To write an ethernet enabled application for an XMOS device requires several
things:

1. Write a Makefile for our application

2. Provide an ethernet_conf.h configuration file

3. Provide a custom filter function

4. Write the application code that uses the component

3.3.1 Makefile

The Makefile is found in the top level directory of the application. It uses the
general XMOS makefile in module_xmos_common which compiles all the source
files in the application and the modules that the application uses. We only have to
add a couple of configuration options.

Firstly, this application is for a sliceKIT Core Board (the SLICEKIT-L2 target) so the
TARGET variable needs to be set in the Makefile.

The TARGET variable determines what target system the application is
compiled for. It either refers to an XN file in the source directories
or a valid argument for the --target option when compiling.

TARGET = SLICEKIT -L2

Secondly, the application will use the ethernet module (and the locks module which
is required by the ethernet module). So we state that the application uses these.

The USED_MODULES variable lists other module used by the application.

USED_MODULES = module_ethernet module_ethernet_board_support \
module_otp_board_info module_slicekit_support

1http://www.xmos.com/support/documentation

REV A

http://www.xmos.com/support/documentation

XMOS Layer 2 Ethernet MAC Component 9/28

Given this information, the common Makefiles will build all the files in the required
modules when building the application. This works from the command line (using
xmake) or from Eclipse.

3.3.2 ethernet_conf.h

The ethernet_conf.h file is found in the src/ directory of the application. This
file contains a series of #defines that configure the ethernet stack. The possible
#defines that can be set are described in §4.1.

Within this application we set the maximum packet size we can receive to be the
maximum possible allowed in the ethernet standard and set the number of buffers
to be 5 packets for incoming packets and 5 for outgoing.

The maximum number of ethernet clients (chanends we can connect to the ethernet
server) is set to 4 (even though we only have one client in this example).

// Copyright (c) 2011, XMOS Ltd , All rights reserved
// This software is freely distributable under a derivative of the
// University of Illinois/NCSA Open Source License posted in
// LICENSE.txt and at <http :// github.xcore.com/>

#ifdef CONFIG_FULL

#define ETHERNET_DEFAULT_IMPLEMENTATION full

#define MAX_ETHERNET_PACKET_SIZE (1518)

#define MAX_ETHERNET_CLIENTS (4)

#else

#define ETHERNET_DEFAULT_IMPLEMENTATION lite

#endif

This application has two build configurations - one for the full implementation and
one for the lite.

3.3.3 mac_custom_filter

The mac_custom_filter function allows use to decide which packets get passed
through the MAC. To do this, we have to provide the mac_custom_filter.h header
file and a definition of the mac_custom_filter function itself.

The header file in this example just prototypes the mac_custom_filter function
itself.

// Copyright (c) 2011, XMOS Ltd , All rights reserved
// This software is freely distributable under a derivative of the
// University of Illinois/NCSA Open Source License posted in
// LICENSE.txt and at <http :// github.xcore.com/>

extern int mac_custom_filter(unsigned int data []);

REV A

XMOS Layer 2 Ethernet MAC Component 10/28

The module requires the application to provide the header to cater for the case
where the function is describe as an inline function for performance. In this case it
is just prototyped and the definition of mac_custom_filter is in our main application
code file demo.xc

int mac_custom_filter(unsigned int data []){
if (is_ethertype ((data ,char []), ethertype_arp)){

return 1;
}else if (is_ethertype ((data ,char []), ethertype_ip)){

return 1;
}

return 0;
}

This function returns 0 if we do not want to handle the packet and non-zero
otherwise. The non-zero value is used later to distribute to different clients. In this
case we detect ARP packets and ICMP packets which match our own mac address
as a destination. In this case the function returns 1. The defintions os is_broadcast,
is_ethertype and is_mac_addr are in demo.xc

3.3.4 Top level program structure

Now that we have the basic ethernet building blocks, we can build our application.
This application is contained in demo.xc. Within this file is the main() function
which declares some variables (primarily XC channels). It also contains a top level
par construct which sets the various functional units running that make up the
program.

We run the ethernet server (this is set to run on the tile ETHERNET_DEFAULT_TILE
which is supplied by the board support module). First, the function
otp_board_info_get_mac() reads the device mac address from ROM. The
functions eth_phy_reset(), smi_config() and eth_phy_config() initialize the phy
and then the main function ethernet_server() runs the ethernet component. The
server communicates with other tasks via the rx and tx channel arrays.

on ETHERNET_DEFAULT_TILE:
{

char mac_address [6];
otp_board_info_get_mac(otp_ports , 0, mac_address);
eth_phy_reset(eth_rst);
smi_init(smi);
eth_phy_config (1, smi);
ethernet_server(mii ,

null ,
mac_address ,
rx , 1,
tx , 1);

}

REV A

XMOS Layer 2 Ethernet MAC Component 11/28

On tile 0 we run the demo() function as a task which takes ethernet packets and
responds to ICMP ping requests. This function is described in the next section.

on ETHERNET_DEFAULT_TILE : demo(tx[0], rx[0]);

3.3.5 Ethernet packet processing

The demo() function does the actual ethernet packet processing. First the applica-
tion gets the device mac address from the ethernet server.

mac_get_macaddr(tx, own_mac_addr);

Then the packet filter is set up. The mask value passed to mac_set_custom_filter()
is used within the mac. After the custom_mac_filter function is run, if the result is
non-zero then the result is and-ed against the mask. If this is non-zero then the
packet is forwarded to the client.

So in this case, the mask is 1 so all packets that get a result of 1 from cus-
tom_mac_filter function will get passed to this client.

#ifdef CONFIG_FULL
mac_set_custom_filter(rx , 0x1);
#endif

Note that this is only for build configuration that uses the FULL configuration. If
we are using the LITE configuration the filtering is done after the client recieves
the packet later on.

After we are set up to receive the correct packets we can go into the main loop that
responds to ARP and ICMP packets.

The first task in the loop is to receive a packet into the rxbuf buffer using the
mac_rx() function.

while (1)
{

unsigned int src_port;
unsigned int nbytes;
mac_rx(rx, (rxbuf ,char []), nbytes , src_port);

#ifdef CONFIG_LITE
if (! is_broadcast ((rxbuf ,char [])) && !is_mac_addr ((rxbuf ,char []),
↩ own_mac_addr))
continue;

if (mac_custom_filter(rxbuf) != 0x1)
continue;

#endif

Here we can see the filtering that needs to be done for the LITE configuration.

When the packet is received it may be an ARP or IP packet since both get past our
filter. First we check if it is an ARP packet, if so then we build the response (in

REV A

XMOS Layer 2 Ethernet MAC Component 12/28

the txbuf array) and send it out over ethernet using the mac_tx() function. The
functions is_valid_arp_packet and build_arp_response are defined demo.xc.

if (is_valid_arp_packet ((rxbuf ,char []), nbytes))
{

build_arp_response ((rxbuf ,char []), txbuf , own_mac_addr);
mac_tx(tx, txbuf , nbytes , ETH_BROADCAST);
printstr("ARP response sent\n");

}

If the packet is not an ARP packet we check if it is an ICMP packet and in the same
way build a response and send it out.

else if (is_valid_icmp_packet ((rxbuf ,char []), nbytes))
{

build_icmp_response ((rxbuf ,char []), (txbuf , unsigned char []),
↩ own_mac_addr);

mac_tx(tx, txbuf , nbytes , ETH_BROADCAST);
printstr("ICMP response sent\n");

}

3.3.6 Running the application

To test the application the following define in demo.xc needs to be set to an IP
address that is routable in the network that the application is to be tested on.

// NOTE: YOU MAY NEED TO REDEFINE THIS TO AN IP ADDRESS THAT WORKS
// FOR YOUR NETWORK
#define OWN_IP_ADDRESS {192, 168, 1, 178}

Once this is done, the demo can be compiled and the XC-2 connected to a PC.
Pinging the IP address defined should now get a response e.g.:

PING 192.168.0.3 (192.168.0.3) 56(84) bytes of data.
64 bytes from 192.168.0.3: icmp_seq =1 ttl =64 time =2.97 ms
64 bytes from 192.168.0.3: icmp_seq =2 ttl =64 time =2.93 ms
64 bytes from 192.168.0.3: icmp_seq =3 ttl =64 time =2.91 ms
64 bytes from 192.168.0.3: icmp_seq =4 ttl =64 time =2.96 ms
...

REV A

4 Ethernet API

IN THIS CHAPTER

· Configuration Defines

· Configuration Defines for FULL implementation

· Configuration defines for LITE implementation

· Custom Filter Function

· Data Structures

· MAC Server API

· RX Client API

· TX Client API

4.1 Configuration Defines

The file ethernet_conf.h may be provided in the application source code. This file can set the
following defines:

ETHERNET_DEFAULT_IMPLEMENTATION

This define can be set to full or lite and determines which implementation is chosen by
default when the application makes calls to ethernet_server etc.

4.2 Configuration Defines for FULL implementation

MAX_ETHERNET_PACKET_SIZE

This define sets the largest packet size in bytes that the ethernet mac will receive. The default
is the largest possible ethernet packet size (1518 bytes). Setting this to a smaller value will
save memory but restrict the type of packets you can receieve.

NUM_MII_RX_BUF

Number of incoming packets that will be buffered within the MAC.

NUM_MII_TX_BUF

Number of outgoing packets that will be buffered within the MAC.

MAX_ETHERNET_CLIENTS

The maximum number of clients that can be connected to the ethernet_server() function via
the rx and tx channel arrays.

REV A

XMOS Layer 2 Ethernet MAC Component 14/28

NUM_ETHERNET_PORTS

The number of ethernet ports to support. Maximum value is 2 in the current implementation.

ETHERNET_TX_HP_QUEUE

Define this constant to include the high priority transmit queueing mechanism. This enables
frames which have an ethernet VLAN priority tag to be queued in a high priority queue, which
in turn can be managed with the 802.1qav transmit traffic shaper.

ETHERNET_RX_HP_QUEUE

Define this constant to include high priority reception of ethernet VLAN priority tagged traffic.
This traffic will be queued into a fast queue and delivered to the clients ahead of non-tagged
traffic.

ETHERNET_TRAFFIC_SHAPER

If high priority transmit queueing is in use (see ETHERNET_TX_HP_QUEUE) then this enables
the 802.1qav traffic shaping algorithm.

MII_RX_BUFSIZE_HIGH_PRIORITY

The number of quadlets (4 byte integers) of space in the high priority receive buffer. The
buffer will actually be two full packets longer than this to avoid the need to be circular. This
constant applies when the high priority receive queue is in use.

MII_RX_BUFSIZE_LOW_PRIORITY

The number of quadlets (4 byte integers) of space in the low priority receive buffer. The
buffer will actually be two full packets longer than this to avoid the need to be circular. This
constant applies when the high priority receive is in use.

MII_RX_BUFSIZE

The number of quadlets (4 byte integers) of space in the low priority receive buffer. The
buffer will actually be two full packets longer than this to avoid the need to be circular. This
constant applies when the high priority receive is not in use.

MII_TX_BUFSIZE

The number of quadlets (4 byte integers) of space in the low priority transmit buffer. The
buffer will actually be two full packets longer than this to avoid the need to be circular.

MII_TX_BUFSIZE_HIGH_PRIORITY

The number of quadlets (4 byte integers) of space in the high priority transmit buffer. The
buffer will actually be two full packets longer than this to avoid the need to be circular. This
constant applies when the high priority receive is in use.

ENABLE_ETHERNET_SOURCE_ADDRESS_WRITE

By defining this preprocessor symbol, the source MAC address will be automatically filled in
with the MAC address passed to the port during initialization.

REV A

XMOS Layer 2 Ethernet MAC Component 15/28

4.3 Configuration defines for LITE implementation

4.4 Custom Filter Function

For the FULL implementation, every application is required to provide this function. It also needs
to be prototyped (or defined as an inline definition) in the header file mac_custom_filter.h.

int mac_custom_filter(unsigned int data[])
This function examines an ethernet packet and returns a filter number to allow
different clients to obtain different types of packet. The function must run within
6us to allow 100Mbit filtering of packets.

This function has the following parameters:

data This array contains the ethernet packet. It does not include the
preamble but does include the layer 2 header or the packet.

This function returns:

0 if the packet is not wanted by the application or a number that can be registed
by mac_set_custom_filter() by a client. Clients register a mask so the number is
usually made up of a bit per unique client destination for the packet.

4.5 Data Structures

Depending on the implementation you must supply a different port structure. The type mii_interface_t
will be set to one of this structures depending on the ETHERNET_DEFAULT_IMPLEMENTATION define.

mii_interface_full_t

Structure containing resources required for the MII ethernet interface.

This structure contains resources required to make up an MII interface. It consists
of 7 ports and 2 clock blocks.

The clock blocks can be any available clock blocks and will be clocked of incoming
rx/tx clock pins.

This structure has the following members:

clock clk_mii_rx
MII RX Clock Block.

clock clk_mii_tx
MII TX Clock Block.

in port p_mii_rxclk
MII RX clock wire.

in port p_mii_rxer
MII RX error wire.

REV A

XMOS Layer 2 Ethernet MAC Component 16/28

in buffered port
MII RX data wire.

in port p_mii_rxdv
MII RX data valid wire.

in port p_mii_txclk
MII TX clock wire.

out port p_mii_txen
MII TX enable wire.

out buffered port
MII TX data wire.

mii_interface_lite_t

This structure has the following members:

clock clk_mii_rx
MII RX Clock Block.

clock clk_mii_tx
MII TX Clock Block.

in port p_mii_rxclk
MII RX clock wire.

in port p_mii_rxer
MII RX error wire.

in buffered port
MII RX data wire.

in port p_mii_rxdv
MII RX data valid wire.

in port p_mii_txclk
MII TX clock wire.

out port p_mii_txen
MII TX enable wire.

out buffered port
MII TX data wire.

in port p_mii_timing
A port that is not used for anything, used by the LLD for timing
purposes.

Must be clocked of the reference clock

REV A

XMOS Layer 2 Ethernet MAC Component 17/28

4.6 MAC Server API
void ethernet_server(mii_interface_t &mii,

smi_interface_t & ?smi,
char mac_address[],
chanend rx[],
int num_rx,
chanend tx[],
int num_tx)

Single MII port MAC/ethernet server.

This function provides both MII layer and MAC layer functionality. It runs in 5
threads and communicates to clients over the channel array parameters.

The clients connected via the rx/tx channels can communicate with the server
using the APIs found in ethernet_rx_client.h and ethernet_tx_client.h

This function has the following parameters:

mii The mii interface resources that the server will connect to

mac_address The mac_address the server will use. This should be a two-word
array that stores the 6-byte macaddr in a little endian manner (so
reinterpreting the array as a char array is as one would expect)

rx An array of chanends to connect to clients of the server who wish
to receive packets.

num_rx The number of clients connected to the rx array

tx An array of chanends to connect to clients of the server who wish
to transmit packets.

num_tx The number of clients connected to the txx array

smi An optional parameter of resources to connect to a PHY (via SMI) to
check when the link is up.

4.7 RX Client API

4.7.1 Packet Receive Functions
void mac_rx(chanend c_mac,

unsigned char buffer[],
unsigned int &len,
unsigned int &src_port)

This function receives a complete frame (i.e.

src/dest MAC address, type & payload), excluding pre-amble, SoF & CRC32 from
the ethernet server.

This function is selectable i.e. it can be used as a case in a select e.g.

REV A

XMOS Layer 2 Ethernet MAC Component 18/28

select {
...
case mac_rx (...):

break;
...

}

This function has the following parameters:

c_mac A chanend connected to the ethernet server

buffer The buffer to fill with the incoming packet

src_port A reference parameter to be filled with the ethernet port the packet
came from.

len A reference parameter to be filled with the length of the received
packet in bytes.

void mac_rx_timed(chanend c_mac,
unsigned char buffer[],
unsigned int &len,
unsigned int &time,
unsigned int &src_port)

This function receives a complete frame (i.e.

src/dest MAC address, type & payload), excluding pre-amble, SoF & CRC32. It also
timestamps the arrival of the frame.

This function is selectable.

This function has the following parameters:

c_mac A chanend connected to the ethernet server

buffer The buffer to fill with the incoming packet

time A reference parameter to be filled with the timestamp of the packet

len A reference parameter to be filled with the length of the received
packet in bytes.

src_port A reference parameter to be filled with the ethernet port the packet
came from.

void safe_mac_rx(chanend c_mac,
unsigned char buffer[],
unsigned int &len,
unsigned int &src_port,

REV A

XMOS Layer 2 Ethernet MAC Component 19/28

int n)

This function receives a complete frame (i.e.

src/dest MAC address, type & payload), excluding pre-amble, SoF & CRC32. In
addition it will only fill the given buffer up to a specified length.

This function is selectable.

This function has the following parameters:

c_mac A chanend connected to the ethernet server

buffer The buffer to fill with the incoming packet

len A reference parameter to be filled with the length of the received
packet in bytes.

src_port A reference parameter to be filled with the ethernet port the packet
came from.

n The maximum number of bytes to fill the supplied buffer with.

void safe_mac_rx_timed(chanend c_mac,
unsigned char buffer[],
unsigned int &len,
unsigned int &time,
unsigned int &src_port,
int n)

This function receives a complete frame (i.e.

src/dest MAC address, type & payload), excluding pre-amble, SoF & CRC32 from
the ethernet server. In addition it will only fill the given buffer up to a specified
length.

This function is selectable i.e. it can be used as a case in a select.

This function has the following parameters:

c_mac A chanend connected to the ethernet server

buffer The buffer to fill with the incoming packet

src_port A reference parameter to be filled with the ethernet port the packet
came from.

len A reference parameter to be filled with the length of the received
packet in bytes.

n The maximum number of bytes to fill the supplied buffer with.

REV A

XMOS Layer 2 Ethernet MAC Component 20/28

void mac_rx_offset2(chanend c_mac,
unsigned char buffer[],
unsigned int &len,
unsigned int &src_port)

Receive a packet starting at the second byte of a buffer.

This is useful when the contents of the packet should be aligned on a different
boundary.

This function has the following parameters:

c_mac chanend of receive server.

buffer The buffer to fill with the incoming packet

len A reference parameter to be filled with the length of the received
packet in bytes.

src_port A reference parameter to be filled with the ethernet port the packet
came from.

4.7.2 Configuration Functions

void mac_set_drop_packets(chanend c_mac_svr, int x)
Setup whether a link should drop packets or block if the link is not ready.

NOTE: setting no dropped packets does not mean no packets will be dropped. If
packets are not dropped at the mac layer, it will block the mii fifo. The Mii fifo
could possibly overflow and frames for other links could be dropped.

This function has the following parameters:

c_mac_svr chanend of receive server.

x boolean value as to whether packets should be dropped at mac
layer.

void mac_set_queue_size(chanend c_mac_svr, int x)
Setup the size of the buffer queue within the mac attached to this link.

This function has the following parameters:

c_mac_svr chanend connected to the mac

x the required size of the queue

void mac_set_custom_filter(chanend c_mac_svr, int x)
Setup the custom filter up on a link.

For each packet, the filter value is &-ed against the result of the mac_custom_filter
function. If the result is non-zero then the packet is transmitted down the link.

REV A

XMOS Layer 2 Ethernet MAC Component 21/28

This function has the following parameters:

c_mac_svr chanend of receive server.

x filter value

4.8 TX Client API

4.8.1 Packet Transmit Functions

void mac_tx(chanend c_mac, unsigned int buffer[], int nbytes, int ifnum)
Sends an ethernet frame.

Frame includes dest/src MAC address(s), type and payload.

This function has the following parameters:

c_mac channel end to tx server.

buffer[] byte array containing the ethernet frame. This must be word aligned

nbytes number of bytes in buffer

ifnum the number of the eth interface to transmit to (use ETH_BROADCAST
transmits to all ports)

void mac_tx_timed(chanend c_mac,
unsigned int buffer[],
int nbytes,
unsigned int &time,
int ifnum)

Sends an ethernet frame and gets the timestamp of the send.

Frame includes dest/src MAC address(s), type and payload.

This is a blocking call and returns the actual time the frame is sent to PHY according
to the XCore 100Mhz 32-bit timer on the core the ethernet server is running.

NOTE: This function will block until the packet is sent to PHY.

This function has the following parameters:

c_mac channel end connected to ethernet server.

buffer[] byte array containing the ethernet frame. This must be word aligned

nbytes number of bytes in buffer

ifnum the number of the eth interface to transmit to (use ETH_BROADCAST
transmits to all ports)

REV A

XMOS Layer 2 Ethernet MAC Component 22/28

time A reference paramater that is set to the time the packet is sent to
the phy

void mac_tx_offset2(chanend c_mac,
unsigned int buffer[],
int nbytes,
int ifnum)

Sends an ethernet frame.

Frame includes dest/src MAC address(s), type and payload.

The packet should start at offset 2 in the buffer. This allows the packet to be
constructed with alignment on a different boundary, allowing for more efficient
construction where many word values are not naturally aligned on word boundaries.

This function has the following parameters:

c_mac channel end to tx server.

buffer[] byte array containing the ethernet frame. This must be word aligned

nbytes number of bytes in buffer

ifnum the number of the eth interface to transmit to (use ETH_BROADCAST
transmits to all ports)

Figure 3: Ethernet function synonyms

Synonym Function

ethernet_send_frame ethernet_send_frame

ethernet_send_frame_getTime ethernet_send_frame_getTime

ethernet_send_frame_offset2 mac_tx_offset2

ethernet_get_my_mac_adrs mac_get_macaddr

4.8.2 Configuration Functions

int mac_get_macaddr(chanend c_mac, unsigned char macaddr[])
Get the device MAC address.

This function gets the MAC address of the device (the address passed into the
ethernet_server() function.

This function has the following parameters:

c_mac chanend end connected to ethernet server

macaddr[] an array of type char where the MAC address is placed (in network
order).

REV A

XMOS Layer 2 Ethernet MAC Component 23/28

This function returns:

zero on success and non-zero on failure.

REV A

5 SMI Component API

IN THIS CHAPTER

· Configuration Defines

· Data Structures

· Phy API

The module module_ethernet_smi is written to support SMI independently of the MII interface.
Typically, Ethernet PHYs are configured on reset automatically, but the SMI interface may be useful
for setting and testing register values dynamically.

There are two ways to interface SMI: using a pair of 1-bit ports, or using a single multi-bit port.

5.1 Configuration Defines

These defines can either be set in ethernet_conf.h or smi_conf.h from within your application
directory.

SMI_COMBINE_MDC_MDIO

This define should be set to 1 if you want to combine MDC and MDIO onto a single bit port.

SMI_MDC_BIT

This defines the bit number on the shared port where the MDC line is. Only define this if you
have a port that drives both MDC and MDIO.

SMI_MDIO_BIT

This defines the bit number on the shared port where the MDIO line is. Only define this if you
have a port that drives both MDC and MDIO.

5.2 Data Structures

smi_interface_t
Structure containing resources required for the SMI ethernet phy interface.

This structure can be filled in two ways. One indicate that the SMI interface is
connected using two 1-bit port, the other indicates that the interface is connected
using a single multi-bit port.

If used with two 1-bit ports, set the phy_address, p_smi_mdio and p_smi_mdc as
normal.

REV A

XMOS Layer 2 Ethernet MAC Component 25/28

If SMI_COMBINE_MDC_MDIO is 1 then p_smi_mdio is ommited and p_mdc is as-
sumbed to multibit port containing both mdio and mdc.

This structure has the following members:

int phy_address
Address of PHY, typically 0 or 0x1F.

port p_smi_mdio
MDIO port.

port p_smi_mdc
MDC port.

5.3 Phy API

void smi_init(smi_interface_t &smi)
Function that configures the SMI ports.

No clock block is needed. Note that there is no deinit function.

This function has the following parameters:

smi structure containing the clock and data ports for SMI.

void eth_phy_config(int eth100, smi_interface_t &smi)
Function that configures the Ethernet PHY explicitly to set to autonegotiate.

This function has the following parameters:

If eth100 is non-zero, 100BaseT is advertised to the link peer Full
duplex is always advertised

smi structure that defines the ports to use for SMI

void eth_phy_config_noauto(int eth100, smi_interface_t &smi)
Function that configures the Ethernet PHY to not autonegotiate.

This function has the following parameters:

If eth100 is non-zero, it is set to 100, else to 10 Mbits/s

smi structure that defines the ports to use for SMI

void eth_phy_loopback(int enable, smi_interface_t &smi)
Function that can enable or disable loopback in the phy.

This function has the following parameters:

enable boolean; set to 1 to enable loopback, or 0 to disable loopback.

REV A

XMOS Layer 2 Ethernet MAC Component 26/28

smi structure containing the ports

int eth_phy_id(smi_interface_t &smi)
Function that returns the PHY identification.

This function has the following parameters:

smi structure containing the ports

This function returns:

the 32-bit identifier.

int smi_check_link_state(smi_interface_t &smi)
Function that polls whether the link is alive.

This function has the following parameters:

smi structure containing the ports

This function returns:

non-zero if the link is alive; zero otherwise.

REV A

6 XMOS Development Board Support Component

IN THIS CHAPTER

· sliceKIT Core Board

The module module_ethernet_board_support provides defines to allow you to
easily use an XMOS development board. To use the module include the following
header:

#include "ethernet_board_support.h"

The contents of this header varies depending on the TARGET defined in your
Makefile.

With this header included you can intialize ethernet port structures using the
following defines:

smi_interface_t smi = ETHERNET_DEFAULT_SMI_INIT;
mii_interface_t mii = ETHERNET_DEFAULT_MII_INIT;
ethernet_reset_interface_t eth_rst = ETHERNET_DEFAULT_RESET_INTERFACE_INIT;

You can also use the define ETHERNET_DEFAULT_TILE to refer to the tile that the
ethernet ports are on.

6.1 sliceKIT Core Board

For the sliceKIT Core Board the ethernet slice could be in any of the four slots. To
choose which slot the defines refer to you can set the define one of the following
defines to be 1 in ethernet_conf.h:

· ETHERNET_USE_CIRCLE_SLOT

· ETHERNET_USE_SQUARE_SLOT

· ETHERNET_USE_STAR_SLOT (Not compatible with the 1v1 Core Board)

· ETHERNET_USE_TRIANGLE_SLOT (Not compatible with the 1v1 Core Board)

REV A

XMOS Layer 2 Ethernet MAC Component 28/28

Copyright © 2012, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS and the XMOS logo are registered trademarks of Xmos Ltd. in the United Kingdom and other countries,
and may not be used without written permission. All other trademarks are property of their respective owners.
Where those designations appear in this book, and XMOS was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

REV A

	Ethernet Layer 2 MAC Overview
	Component Summary

	Ethernet Mac Description
	FULL Implementation
	Buffers and Queues
	Filtering
	Timestamping

	LITE implementation
	MAC Address Storage

	Ethernet Programming Guide
	Getting started
	Installation

	Source code structure
	Key Files

	A Sample Ethernet Application (tutorial)
	Makefile
	ethernet_conf.h
	mac_custom_filter
	Top level program structure
	Ethernet packet processing
	Running the application

	Ethernet API
	Configuration Defines
	Configuration Defines for FULL implementation
	Configuration defines for LITE implementation
	Custom Filter Function
	Data Structures
	MAC Server API
	RX Client API
	Packet Receive Functions
	Configuration Functions

	TX Client API
	Packet Transmit Functions
	Configuration Functions

	SMI Component API
	Configuration Defines
	Data Structures
	Phy API

	XMOS Development Board Support Component
	sliceKIT Core Board

