®
l MOS ANO00218 (1.0.1)

Application Note: AN00218

High Resolution Delay and Sum

Required tools and libraries

The code in this application note is known to work on version 14.1.1 of the xTIMEcomposer tools suite,
it may work on other versions.

The application depends on the following libraries:
lib_i2s
lib_mic_array_board_support

lib_mic_array
lib_i2c

Required hardware

The example code provided with the application has been implemented and tested on the Microphone
Array Ref Design v1.

Prerequisites

e This document assumes familiarity with the XMOS xCORE architecture, the XMOS tool chain and the
xC language. Documentation related to these aspects which are not specific to this application note
are linked to in the references appendix.

e The Tib_mic_array user guide should be thoroughly read and understood.

e For a description of XMOS related terms found in this document please see the XMOS Glossary'.

Thttp://www.xmos .com/published/glossary
. ____________________________________________________________________________________________________________________________________|

Copyright 2016 XMOS Ltd. 1 WWW.Xmos.com
XM010098



http://www.xmos.com/published/glossary

®
l MOS ANO00218 (1.0.1)

1 Overview

1.1 Introduction

This demo application shows a simple Delay and Sum (DAS) bemformer in high resolution mode. It shows
the setup of the I2S for audio output via the DAC and very simple processing of multi-channel audio
frames to produce a single channel output based on a simple single steering direction.

1.2 Block diagram

PDM Microphone

mic_array_hires_delay()

mic_array_decimate_to_pcm_4ch()

mic_array_decimate_to_pcm_4ch()

hires_DAS_fixed()

button_and_led_server()

i2c_master_single_port()

Audio DAC

Figure 1: Application block diagram

Copyright 2016 XMOS Ltd. 2 WWW.Xmos.com
XM010098




®
l MOS ANO00218 (1.0.1)

2 How to use lib_mic_array with high resolution delay lines

2.1 The Makefile

To start using the microphone array library with high resolution delay lines, you need to add
Tib_mic_array to you Makefile:

USED_MODULES = .. Tib_mic_array ...

This demo also uses the logging library (1ib_Tlogging) for the debug_printf function. This is a faster,
but more limited version of the C-Standard Library printf function. So the Makefile also includes:

USED_MODULES = .. Tib_logging ..

The logging library is configurable at compile-time allowing calls to debug_printf() to be easily enabled
or disabled. For the prints to be enabled it is necessary to add the following to the compile flags:

XCC_FLAGS = .. -DDEBUG_PRINT_ENABLE=1 ..

2.2 Includes

This application requires the system headers that defines XMOS xCORE specific defines for declaring and
initialising hardware:

#include <platform.h>
#include <xsl.h>
#include <string.h>
#include <xclib.h>

The microphone array library functions are defined in lib_mic_array.h. This header must be
included in your code to use the library. The support functions for the board are defined in
mic_array_board_support.h and the logging functions are provided by debug_print.h.

#include "mic_array.h"
#include "mic_array_board_support.h"
#include "debug_print.h"

Also required is support for 1S and I2C through the headers:

#include "1i2c.h"
#include "i2s.h"

2.3 Allocating hardware resources

A PDM microphone requires a clock and a data pin. For eight PDM mocrophones a single clock can be
shared between all microphones and the data can be sampled on a single 8 bit port. On an xCORE the
pins are controlled by ports. The application therefore declares one 1-bit port and one 8-bit port:

XS1_PORT_1E;
XS1_PORT_8B;

on tile[0]: in port p_pdm_clk
on tile[0]: in buffered port:32 p_pdm_mics

To generate the PDM clock a 24.576MHz master clock is divided by 8 using a clock block. These two
hardware resources are declared with:

Copyright 2016 XMOS Ltd. 3 WWW.Xmos.com
XM010098




®
l MOS ANO00218 (1.0.1)

XS1_PORT_1F;
XS1_CLKBLK_1;

on tile[0]: in port p_mclk
on tile[0]: clock pdmclk

and are configured with:

configure_clock_src_divide(pdmclk, p_mclk, MASTER_TO_PDM_CLOCK_DIVIDER);
configure_port_clock_output(p_pdm_clk, pdmclk);
configure_in_port(p_pdm_mics, pdmclk);

start_clock(pdmclk);

The result begin a 3.072MHz PDM clock is used for clocking the microphone data into the xCORE. Addi-
tionally, the leds and buttons are declared by

on tile[0]:p_Teds leds = DEFAULT_INIT;
on tile[0]:in port p_buttons = XS1_PORT_4A;

And the IS is declared with:

out buffered port:32 p_i2s_dout[1]
in port p_mclk_inl

out buffered port:32 p_bclk

out buffered port:32 p_lrclk

on tile[1]: {XS1_PORT_1P};
on tile[1]: XS1_PORT_10;
on tile[1]: XS1_PORT_1M;
on tile[1l]: XS1_PORT_1N;

port p_i2c on tile[1]: XS1_PORT_4E; // Bit 0: SCLK, Bit 1: SDA

port p_rst_shared on tile[1]: XS1_PORT_4F; // Bit 0: DAC_RST_N, Bit 1: ETH_RST_N
clock mclk on tile[1]: XS1_CLKBLK_3;

clock bclk on tile[1]: XS1_CLKBLK_4;

Copyright 2016 XMOS Ltd. 4 WWW.Xmos.com
XM010098




®
l MOS ANO00218 (1.0.1)

3 Demo Hardware Setup

To run the demo, connect a USB cable to power the Microphone Array Ref Design v1 and plug the XxTAG to
the board and connect the XTAG USB cable to your development machine. You will also need to connect
headphones to the audio jack.

Figure 2: Hardware setup

Copyright 2016 XMOS Ltd. 5 WWW.Xmos.com
XM010098




®
l MOS ANO00218 (1.0.1)

4 Launching the demo application

Once the demo example has been built either from the command line using xmake or via the build
mechanism of xTIMEcomposer studio it can be executed on the Microphone Array Ref Design v1.

Once built there will be a bin/ directory within the project which contains the binary for the xCORE device.
The xCORE binary has a XMOS standard .xe extension.

4.1 Launching from the command line

From the command line you use the xrun tool to download and run the code on the xCORE device:

Xrun --xscope bin/app_hires_DAS_fixed.xe
Once this command has executed the application will be running on the Microphone Array Ref Design v1.

4.2 Launching from xTIMEcomposer Studio

From XxTIMEcomposer Studio use the run mechanism to download code to xCORE device. Select the
xCORE binary from the bin/ directory, right click and go to Run Configurations. Double click on xCORE
application to create a new run configuration, enable the xSCOPE I/O mode in the dialog box and then
select Run.

Once this command has executed the application will be running on the Microphone Array Ref Design v1.
4.3 Running the application
Once the application is started using either of the above methods there will be the output of the micro-

phones through the headphones.

Buttons A and D rotate the direction of the beam which is indicated by the LEDs. Buttons B and C decrease
and increase the gain on the output signal respectively.

Copyright 2016 XMOS Ltd. 6 WWW.Xmos.com
XM010098




®
l MOS ANO00218 (1.0.1)

5 Task setup

The PDM microphones interface task, high resolution delay task and the decimators have to
be connected together and to the application (hires_DAS_fixed()). There needs to be one
mic_array_decimate_to_pcm_4ch() task per four channels that need processing. There needs
to be only one mic_array_hires_delay task for up to 16 channels. The PDM interface task,
mic_array_pdm_rx() can process eight channels so only one is needed for this application. The
PDM interface needs to be connected to the high resolution interface via two streaming channels and
connected to the two decimators via streaming channels. Finally, the decimators have to be connected to
the application.

Note that the decimators have to be on the same tile as the application due to shared frame memory.
Also, there needs to be a channel between the mic_array_hires_delay and the application in order to
issue the commands to change the taps on each delay line.

Copyright 2016 XMOS Ltd. 7 WWW.Xmos.com
XM010098




®
l MOS ANO00218 (1.0.1)

6 Frame memory

For each decimator an block of memory must be allocated for storing FIR data. The size of the data block
must be:

Number of channels for that decimator * THIRD_STAGE_COEFS_PER_STAGE * Decimation factor * sizeof(int)
bytes. The data must also be double word aligned. For example:

int data[8] [THIRD_STAGE_COEFS_PER_STAGE*DECIMATION_FACTOR];

Note that on the xCORE-200 all global arrays are guaranteed to be double-word aligned.

Copyright 2016 XMOS Ltd. 8 WWW.Xmos.com
XM010098




®
l MOS ANO00218 (1.0.1)

7 Configuration

Configuration of the microphone array for the example is achieved through:

mic_array_decimator_conf_common_t dcc = {0, 1, 0, O, DECIMATION_FACTOR,
g_third_stage_div_2_fir, 0, FIR_COMPENSATOR_DIV_2,
DECIMATOR_NO_FRAME_OVERLAP, FRAME_BUFFER_COUNT};

mic_array_decimator_config_t dc[2] = {

{&dcc, data[0], {INT_MAX, INT_MAX, INT_MAX, INT_MAX}, 4},

{&dcc, data[4], {INT_MAX, INT_MAX, INT_MAX, INT_MAX}, 4}

if;

mic_array_decimator_configure(c_ds_output, DECIMATOR_COUNT, dc);

All configuration options are described in the Microphone array library guide. Once configured then the
decimators require initialization via:

mic_array_init_time_domain_frame(c_ds_output, DECIMATOR_COUNT, buffer, audio, dc);

The the decimators will start presenting samples in the form of frames that can be accessed with:

mic_array_frame_time_domain * current =
mic_array_get_next_time_domain_frame(c_ds_output, DECIMATOR_COUNT, buffer, audio, dc);

The return value of mic_array_get_next_time_domain_frame() is a pointer to the frame that the
application is allowed to access. The current frame contains the frame data in the data member. data
is a 2D array with the first index denoting the channel number and the second index denoting the frame
index. The frame index used 0 for the oldest samples and increasing indicies for newer samples.

Copyright 2016 XMOS Ltd. 9 WWW.Xmos.com
XM010098




®
l MOS ANO00218 (1.0.1)

8 Updating the delays

The high resolution delay task is initially set to delay all channels by a zero 384kHz clock cycles. Each
channel can be delayed by up to MIC_ARRAY_HIRES_MAX_DELAY (default 256) samples at a sample rate of
384kHz. Setting of the taps is done through the function mic_array_hires_delay_set_taps(); which
will do an atomic update of all the active delay lines tap positions at once.

Copyright 2016 XMOS Ltd. 10 WWW.Xmos.com
XM010098




®
l MOS ANO00218 (1.0.1)

9 Delay taps

The delays on the microphones are calculated in a spread sheet included at the root folder of the applica-
tion, mic_array_das_beamformer_calcs.x1s. The beam is focused to a point of one meter away at an
angle of thirty degrees from the plane of the microphone array in the direction indicated by the LEDs.

Copyright 2016 XMOS Ltd. 11 WWW.Xmos.com
XM010098




®
l MOS ANO00218 (1.0.1)

10 References

XMOS Tools User Guide
http://www.xmos.com/published/xtimecomposer-user-guide
XMOS xCORE Programming Guide
http://www.xmos.com/published/xmos-programming-guide
XMOS Microphone Array Library
http://www.xmos.com/support/libraries/lib_mic_array
XMOS 12C Library
http://www.xmos.com/support/libraries/1ib_i2c

XMOS IS Library
http://www.xmos.com/support/libraries/1lib_i2s

Copyright 2016 XMOS Ltd. 12 WWW.Xmos.com
XM010098



http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide
http://www.xmos.com/support/libraries/lib_mic_array
http://www.xmos.com/support/libraries/lib_i2c
http://www.xmos.com/support/libraries/lib_i2s

XMOS

AN00218 (1.0.1)

11 Full source code listing

11.1 Source code for app_hires_DAS_fixed.xc

// Copyright (c) 2016, XMOS Ltd, Al1 rights reserved

#include
#include
#include
#include

#include
#include
#include

#include
#include

//If the

#define DECIMATION_FACTOR 2 //Corresponds to a 48kHz output sample rate
#define DECIMATOR_COUNT 2 //8 channels requires 2 decimators

#define FRAME_BUFFER_COUNT 2 //The minimum of 2 will suffice for this example

<platform.h>
<xsl.h>
<string.h>
<xclib.h>

"mic_array.h"
"mic_array_board_support.h"
"debug_print.h"

"j2c.h"
"i2s.h"

decimation factor is changed the the coefs array of decimator_config must also be changed.

on tile[0]:p_leds leds = DEFAULT_INIT;
on tile[0]:in port p_buttons = XS1_PORT_4A;

on tile[0]: in port p_pdm_clk = XS1_PORT_1E;
on tile[0]: in buffered port:32 p_pdm_mics = XS1_PORT_8B;
on tile[0]: in port p_mclk = XS1_PORT_1F;
on tile[0]: clock pdmcTk = XS1_CLKBLK_1;

out buffered port:32 p_i2s_dout[1]
in port p_mclk_inl

out buffered port:32 p_bclk

out buffered port:32 p_Trclk

on tile[1]: {XS1_PORT_1P};
on tile[1]: XS1_PORT_10;
on tile[1]: XS1_PORT_1M;
on tile[1]: XS1_PORT_1N;

port p_i2c

port p_rst_shared

clock mclk on tile[1]: XS1_CLKBLK_3;
clock bclk on tile[1]: XS1_CLKBLK_4;
// Based on the spreadsheet mic_array_das_beamformer_calcs.xls,

// which

static const one_meter_thirty_degrees[6] = {0, 23, 66, 87, 66, 23};

can be found in the root directory of this app

static void set_dir(client interface led_button_if 1b,

unsigned dir, unsigned delay[]) {

for(unsigned i=0;1i<13;1++)
Tb.set_led_brightness(i, 0);
delay[0] = 43;
for(unsigned i=0;1i<6;1i++)
delay[i+1] = one_meter_thirty_degrees[(i - dir + 3 +6)%6];

switch(dir){

case 0:
Tb.set_led_brightness(0, 255);
Tb.set_led_brightness(1l, 255);
break;

case

1:

Tb.set_led_brightness(2, 255);
Tb.set_led_brightness(3, 255);
break;

case 2:
Tb.set_led_brightness(4, 255);
1b.set_led_brightness(5, 255);
break;

case

3:

Tb.set_led_brightness(6, 255);
1b.set_led_brightness(7, 255);
break;

case 4:
1b.set_led_brightness(8, 255);
1b.set_led_brightness(9, 255);
break;

on tile[1]: XSI1_PORT_4E; // Bit 0: SCLK, Bit 1: SDA
on tile[1]: XS1_PORT_4F; // Bit 0: DAC_RST_N, Bit 1:

ETH_RST_N

Copyright 2016 XMOS Ltd. 13

WWW.XmMOos.com
XM010098



®
l MOS ANO00218 (1.0.1)

case 5:
Tb.set_led_brightness(10, 255);
1b.set_led_brightness(11, 255);
break;

}
int data[8] [THIRD_STAGE_COEFS_PER_STAGE=DECIMATION_FACTOR];

void hires_DAS_fixed(streaming chanend c_ds_output[2],
streaming chanend c_cmd,
client interface led_button_if 1b, chanend c_audio) {
unsafe {
mic_array_frame_time_domain audio[FRAME_BUFFER_COUNT];
unsigned buffer;
memset(data, 0, 8+*THIRD_STAGE_COEFS_PER_STAGE*DECIMATION_FACTOR*sizeof(int));

unsigned gain = 8;
unsigned delay[7];
unsigned dir = 0;
set_dir(lb, dir, delay);

mic_array_decimator_conf_common_t dcc = {0, 1, 0, O, DECIMATION_FACTOR,
g_third_stage_div_2_fir, 0, FIR_COMPENSATOR_DIV_2,
DECIMATOR_NO_FRAME_OVERLAP, FRAME_BUFFER_COUNT};

mic_array_decimator_config_t dc[2] = {

{&dcc, data[0], {INT_MAX, INT_MAX, INT_MAX, INT_MAX}, 4},

{&dcc, data[4], {INT_MAX, INT_MAX, INT_MAX, INT_MAX}, 4}

I3

mic_array_decimator_configure(c_ds_output, DECIMATOR_COUNT, dc);
mic_array_init_time_domain_frame(c_ds_output, DECIMATOR_COUNT, buffer, audio, dc);
while(1l) {

mic_array_frame_time_domain * current =
mic_array_get_next_time_domain_frame(c_ds_output, DECIMATOR_COUNT, buffer,
— audio, dc);

// Tlight the LED for the current directionction

int t;
select {
case 1b.button_event(): {
unsigned button;
e_button_state pressed;
Tb.get_button_event(button, pressed);
if (pressed == BUTTON_PRESSED) {
switch(button) {
case 0:
dir--;
if(dir == -1)
dir = 5;
set_dir(lb, dir, delay);

debug_printf("dir %d\n", dir+l);
for(unsigned i=0;1i<7;i++)

debug_printf("delay[%d] = %d\n", i, delay[i]);
debug_printf("\n");

mic_array_hires_delay_set_taps(c_cmd, delay, 7);
break;

case 1:
if (gain > 0)
gain--;
debug_printf("gain: %d\n", gain);
break;

case 2:
gain++;
debug_printf("gain: %d\n", gain);
break;

Copyright 2016 XMOS Ltd. 14 WWW.Xmos.com
XM010098




®
l MOS ANO00218 (1.0.1)

case 3:
dir++;
if(dir == 6)
dir = 0;
set_dir(lb, dir, delay);

debug_printf("dir %d\n", dir+l);
for(unsigned i=0;1i<7;i++)

debug_printf("delay[%d] = %d\n", i, delay[il);
debug_printf("\n");

mic_array_hires_delay_set_taps(c_cmd, delay, 7);
break;
}
}
break;
}
default:break;
}
int output = 0;
for(unsigned i=0;1i<7;i++)
output += (current->datal[i][0]>>3);
output *= gain;

// Update the center LED with a volume indicator
unsigned value = output >> 20;

unsigned magnitude = (value * value) >> 8;
Tb.set_led_brightness(12, magnitude);

c_audio <: output;
c_audio <: output;

}

void init_cs2100(client i2c_master_if i2c){
#define CS2100_DEVICE_CONFIG_1 0x03
#define CS2100_GLOBAL_CONFIG 0x05
#define CS2100_FUNC_CONFIG_1 0x16
#define CS2100_FUNC_CONFIG_2 0x17
i2c.write_reg(0x9c>>1, CS2100_DEVICE_CONFIG_1, 0);
i2c.write_reg(0x9c>>1, CS2100_GLOBAL_CONFIG, 0);
i2c.write_reg(0x9c>>1, CS2100_FUNC_CONFIG_1, 0);
i2c.write_reg(0x9c>>1, CS2100_FUNC_CONFIG_2, 0);

}

#define MASTER_TO_PDM_CLOCK_DIVIDER 4

#define MASTER_CLOCK_FREQUENCY 24576000

#define PDM_CLOCK_FREQUENCY (MASTER_CLOCK_FREQUENCY/(2+MASTER_TO_PDM_CLOCK_DIVIDER))
#define OUTPUT_SAMPLE_RATE (PDM_CLOCK_FREQUENCY/(32*DECIMATION_FACTOR))

[[distributable]]
void i2s_handler(server i2s_callback_if i2s,
client i2c_master_if i2c, chanend c_audio) {
p_rst_shared <: OxF;

init_cs2100(i2c);

i2c_regop_res_t res;

int i = Ox4A;

uint8_t data = i2c.read_reg(i, 1, res);

data = i2c.read_reg(i, 0x02, res);
data |= 1;
res = i2c.write_reg(i, 0x02, data); // Power down

// Setting MCLKDIV2 high if using 24.576MHz.
data = i2c.read_reg(i, 0x03, res);

data |= 1;

res = i2c.write_reg(i, 0x03, data);

data = 0b01110000;
res = i2c.write_reg(i, 0x10, data);

data = i2c.read_reg(i, 0x02, res);
data &= ~1;

Copyright 2016 XMOS Ltd. 15 WWW.Xmos.com
XM010098




®
l MOS ANO00218 (1.0.1)

res = i2c.write_reg(i, 0x02, data); // Power up

while (1) {
select {
case i2s.init(i2s_config_t &?i2s_config, tdm_config_t &?tdm_config):
i2s_config.mode = I2S_MODE_LEFT_JUSTIFIED;
i2s_config.mclk_bclk_ratio = (MASTER_CLOCK_FREQUENCY/OUTPUT_SAMPLE_RATE)/64;
break;

case i2s.restart_check() -> i2s_restart_t restart:
restart = I2S_NO_RESTART;
break;

case i2s.receive(size_t index, int32_t sample):
break;

case i2s.send(size_t index) -> int32_t sample:
c_audio:> sample;
break;
}
}
}

int main() {

i2s_callback_if i_i2s;
i2c_master_if i_i2c[1];
chan c_audio;
par {
on tile[1]: {
configure_clock_src(mclk, p_mclk_inl);
start_clock(mclk);
i2s_master(i_i2s, p_i2s_dout, 1, null, 0, p_bclk, p_Trclk, bclk, mclk);
}

on tile[1]: [[distribute]]i2c_master_single_port(i_i2c, 1, p_i2c, 100, 0, 1, 0);
on tile[1]: [[distribute]]i2s_handler(i_i2s, i_i2c[0], c_audio);

on tile[0]: {
configure_clock_src_divide(pdmclk, p_mclk, MASTER_TO_PDM_CLOCK_DIVIDER);
configure_port_clock_output(p_pdm_clk, pdmclk);
configure_in_port(p_pdm_mics, pdmclk);
start_clock(pdmcik);

streaming chan c_pdm_to_hires[2];
streaming chan c_hires_to_dec[2];
streaming chan c_ds_output[2];
streaming chan c_cmd;

interface led_button_if 1b[1];

par {
button_and_Tled_server(lb, 1, Teds, p_buttons);

mic_array_pdm_rx(p_pdm_mics, c_pdm_to_hires[0], c_pdm_to_hires[1]);
mic_array_hires_delay(c_pdm_to_hires, c_hires_to_dec, 2, c_cmd);
mic_array_decimate_to_pcm_4ch(c_hires_to_dec[0], c_ds_output[0]);
mic_array_decimate_to_pcm_4ch(c_hires_to_dec[1], c_ds_output[1l]);
hires_DAS_fixed(c_ds_output, c_cmd, 1b[0], c_audio);

}

stop_clock(pdmclk) ;

}

return 0;

Copyright 2016 XMOS Ltd. 16 WWW.Xmos.com
XM010098




®
l MOS ANO00218 (1.0.1)

XMOS

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 17 WWW.Xmos.com
XM010098



	High Resolution Delay and Sum
	Overview
	Introduction
	Block diagram

	How to use lib_mic_array with high resolution delay lines
	The Makefile
	Includes
	Allocating hardware resources

	Demo Hardware Setup
	Launching the demo application
	Launching from the command line
	Launching from xTIMEcomposer Studio
	Running the application

	Task setup
	Frame memory
	Configuration
	Updating the delays
	Delay taps
	References
	Full source code listing
	Source code for app_hires_DAS_fixed.xc


