
AN00217 (1.0.0)

Application Note: AN00217

High Resolution Delay Example
This example demonstrates how to use the microphone array library with the high resolution delay lines
to capture samples from the microphone array. The example is designed to show up to 8 channel array
processing.

Required tools and libraries

The code in this application note is known to work on version 14.2.0 of the xTIMEcomposer tools suite,
it may work on other versions.

The application depends on the following libraries:

• lib_mic_array

Required hardware

The example requires the XMOS microphone array reference design v1.

Prerequisites

• This document assumes familiarity with the XMOS xCORE architecture, the XMOS tool chain and the
xC language. Documentation related to these aspects which are not specific to this application note
are linked to in the references appendix.

• For descriptions of XMOS related terms found in this document please see the XMOS Glossary.
• The lib_mic_array user guide should be thoroughly read and understood.

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM010096



AN00217 (1.0.0)

1 Overview

This demo application shows how to interface to the microphone array in high resolution mode.

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM010096



AN00217 (1.0.0)

2 The high resolution delay example

The example in this note uses the microphone array library and shows a simple program that interfaces
to the PDM microphones, decimates the PDM and finally packs it into frames.

To start using the microphone array library you need to add lib_mic_array to your Makefile:

USED_MODULES = ... lib_mic_array ...

You can then access the microphone array library functions in your source code via the mic_array.h
header file:

#include "mic_array.h"

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM010096



AN00217 (1.0.0)

3 Demo Hardware Setup

1. Connect the xTAG-2 or xTAG-3 to Microphone Array Ref Design v1.
2. Connect the xTAG-2 or xTAG-3 USB connector to the USB connector on your development PC using

a USB cable.
3. Connect the Microphone Array Ref Design v1 to your development PC using another USB cable.

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM010096



AN00217 (1.0.0)

4 Launching the demo application

Once the application source code is imported into the tools you can then build the project which will
generate the binary file required to run the demo application.

Once the application has been built you need to download the application binary code onto the Micro-
phone Array Ref Design v1. Here you use the tools to load the application over JTAG onto the xCORE
multicore microcontroller.

Then click Run.

Alternatively, from the command line build the application, by doing a call to xmake, then run using
xrun app_high_resolution_delay_example.xe. Nothing will happen.

Copyright 2016 XMOS Ltd. 5 www.xmos.com
XM010096



AN00217 (1.0.0)

5 Task setup

The PDM microphones interface task, high resolution delay task and the decimators have to be connected
together and to the application (example()). There needs to be one decimate_to_pcm_4ch() task per
four channels that need processing. There needs to be one hires_delay task per eight channels. The
PDM interface task, pdm_rx() can process eight channels so only one is needed per eight channels. The
PDM interface needs to be connected to the high resolution interface via two streaming channels and
connected to the two decimators via streaming channels. Finally, the decimators have to be connected to
the application.This gives the following task diagram:

Div 8
Decimator

8 
ch

3.
07

2 
M

H
z

Div 4
Decimator

2x
4 

ch
 

38
4 

K
H

z

2x
4 

ch
96

 K
H

z

Select
DC offset
FIR comp
Gain comp

2x
4 

ch
8.

.4
8 

K
H

z

Overlapping
frames

WIndowing
Bit reverse

Div 4
Decimator

Voice
app

Div N
Decimator
N=2,4,6,8

or 12

Div N
Decimator
N=2,4,6,8

or 12

Select
DC offset
FIR comp
Gain comp

Overlapping
frames

WIndowing
Bit reverse

2x
1.

.4
 c

h
8.

.4
8 

K
H

z

2x
1.

.4
 c

h
8.

.4
8 

K
H

z

pdm_rx()

decimate_to_pcm_4ch()

High
Resolution

Delay

hires_delay()

8 
ch

3.
07

2 
M

H
z

Figure 1: Task diagram of the example

Or represented in code as:

streaming chan c_pdm_to_hires[2];
streaming chan c_hires_to_dec[2];
streaming chan c_ds_output[2];
streaming chan c_cmd;

par {
pdm_rx(p_pdm_mics, c_pdm_to_hires[0], c_pdm_to_hires[1]);
hires_delay(c_pdm_to_hires, c_hires_to_dec, 2, c_cmd);
decimate_to_pcm_4ch(c_hires_to_dec[0], c_ds_output[0]);
decimate_to_pcm_4ch(c_hires_to_dec[1], c_ds_output[1]);
example(c_ds_output, c_cmd);

Note that the decimators have to be on the same tile as the application due to shared frame memory.
Finally, there needs to be a channel between the hires_delay and the application in order to issue the
commands to change the taps on each delay line.

Copyright 2016 XMOS Ltd. 6 www.xmos.com
XM010096



AN00217 (1.0.0)

6 Frame memory

For each decimator an block of memory must be allocated for storing FIR data. The size of the data block
must be:

Number of channels for that decimator * THIRD_STAGE_COEFS_PER_STAGE * Decimation factor * sizeof(int)

bytes. The data must also be double word aligned. For example:

int data_0[4*THIRD_STAGE_COEFS_PER_STAGE*DF] = {0};
int data_1[4*THIRD_STAGE_COEFS_PER_STAGE*DF] = {0};

Also the frame memory must also be a double word aligned array of length of at least 2. Note that on the
xCORE-200 all global arrays are guaranteed to be double-word aligned.

Copyright 2016 XMOS Ltd. 7 www.xmos.com
XM010096



AN00217 (1.0.0)

7 Configuration

Configuration for the example is achieved through:

decimator_config_common dcc = {
0, // Frame size log 2 is set to 0, i.e. one sample per channel will be present in each frame
1, // DC offset elimination is turned on
0, // Index bit reversal is off
0, // No windowing function is being applied
DF,// The decimation factor is set to 6
g_third_stage_div_6_fir, // This corresponds to a 16kHz output hence this coef array is used
0, // Gain compensation is turned off
0, // FIR compensation is turned off
DECIMATOR_NO_FRAME_OVERLAP, // Frame overlapping is turned off
2 // There are 2 buffers in the audio array

};
decimator_config dc[2] = {

{
&dcc,
data_0, // The storage area for the output decimator
{INT_MAX, INT_MAX, INT_MAX, INT_MAX}, // Microphone gain compensation (turned off)
4 // Enabled channel count (currently must be 4)

},
{

&dcc,
data_1, // The storage area for the output decimator
{INT_MAX, INT_MAX, INT_MAX, INT_MAX}, // Microphone gain compensation (turned off)
4 // Enabled channel count (currently must be 4)

}
};
decimator_configure(c_ds_output, 2, dc);

All configuration options are enumerated in the Microphone array library. Once configured then the
decimators require initialization via:

decimator_init_audio_frame(c_ds_output, 2, buffer, audio, dcc);

The the decimators will start presenting samples in the form of frames that can be accessed with:

frame_audio *current = decimator_get_next_audio_frame(c_ds_output, 2, buffer, audio, dcc);

The return value of the above is a pointer to the frame that the application (hires_DAS_fixed()) is
allowed to access. The current structure contains the frame data in the data member. data is a 2D
array with the first index denoting the channel number and the second index denoting the frame index.
The frame index used 0 for the oldest samples and 2 to the power of dcc.frame_size_log2 minus one
as the newest samples.

Copyright 2016 XMOS Ltd. 8 www.xmos.com
XM010096



AN00217 (1.0.0)

8 Updating the delays

The high resolution delay task is initially set to delay by a zero 384kHz clock cycles. Each channel can be
delayed by up to HIRES_MAX_DELAY (default 32) samples at a sample rate of 384kHz. Setting of the taps
is done through the function hires_delay_set_taps(); which will do an atomic update of all the active
delay lines tap positions.

Copyright 2016 XMOS Ltd. 9 www.xmos.com
XM010096



AN00217 (1.0.0)

9 References

XMOS Tools User Guide

http://www.xmos.com/published/xtimecomposer-user-guide

XMOS xCORE Programming Guide

http://www.xmos.com/published/xmos-programming-guide

XMOS Microphone Array Library

http://www.xmos.com/support/libraries/lib_mic_array

Copyright 2016 XMOS Ltd. 10 www.xmos.com
XM010096

http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide
http://www.xmos.com/support/libraries/lib_mic_array


AN00217 (1.0.0)

10 Full source code listing

10.1 Source code for app_high_resolution_delay_example.xc

// Copyright (c) 2016, XMOS Ltd, All rights reserved
#include <platform.h>
#include <xs1.h>

#include "mic_array.h"

on tile[0]: in port p_pdm_clk = XS1_PORT_1E;
on tile[0]: in buffered port:32 p_pdm_mics = XS1_PORT_8B;
on tile[0]: in port p_mclk = XS1_PORT_1F;
on tile[0]: clock pdmclk = XS1_CLKBLK_2;

// This sets the FIR decimation factor.
// Note that the coefficient array passed into dcc must match this.
#define DF 6

int data_0[4*THIRD_STAGE_COEFS_PER_STAGE*DF] = {0};
int data_1[4*THIRD_STAGE_COEFS_PER_STAGE*DF] = {0};
frame_audio audio[2]; //double buffered

void example(streaming chanend c_ds_output[2], streaming chanend c_cmd) {

unsafe{
unsigned buffer;

decimator_config_common dcc = {
0, // Frame size log 2 is set to 0, i.e. one sample per channel will be present in each
↪→ frame

1, // DC offset elimination is turned on
0, // Index bit reversal is off
0, // No windowing function is being applied
DF,// The decimation factor is set to 6
g_third_stage_div_6_fir, // This corresponds to a 16kHz output hence this coef array is
↪→ used

0, // Gain compensation is turned off
0, // FIR compensation is turned off
DECIMATOR_NO_FRAME_OVERLAP, // Frame overlapping is turned off
2 // There are 2 buffers in the audio array

};
decimator_config dc[2] = {

{
&dcc,
data_0, // The storage area for the output decimator
{INT_MAX, INT_MAX, INT_MAX, INT_MAX}, // Microphone gain compensation (turned off
↪→ )

4 // Enabled channel count (currently must be 4)
},
{

&dcc,
data_1, // The storage area for the output decimator
{INT_MAX, INT_MAX, INT_MAX, INT_MAX}, // Microphone gain compensation (turned off)
4 // Enabled channel count (currently must be 4)

}
};
decimator_configure(c_ds_output, 2, dc);

decimator_init_audio_frame(c_ds_output, 2, buffer, audio, dcc);

while(1){
frame_audio *current = decimator_get_next_audio_frame(c_ds_output, 2, buffer, audio, dcc);

// Buffer and audio should never be accessed.

int ch0_sample0 = current->data[0][0];
int ch1_sample0 = current->data[1][0];

// Update the delays. Delay values must be in range 0..HIRES_MAX_DELAY
unsigned delays[7] = {0, 1, 2, 3, 4, 5, 6};
hires_delay_set_taps(c_cmd, delays, 7);

Copyright 2016 XMOS Ltd. 11 www.xmos.com
XM010096



AN00217 (1.0.0)

}
}

}

int main() {

par {
on tile[0]: {

configure_clock_src_divide(pdmclk, p_mclk, 4);
configure_port_clock_output(p_pdm_clk, pdmclk);
configure_in_port(p_pdm_mics, pdmclk);
start_clock(pdmclk);

streaming chan c_pdm_to_hires[2];
streaming chan c_hires_to_dec[2];
streaming chan c_ds_output[2];
streaming chan c_cmd;

par {
pdm_rx(p_pdm_mics, c_pdm_to_hires[0], c_pdm_to_hires[1]);
hires_delay(c_pdm_to_hires, c_hires_to_dec, 2, c_cmd);
decimate_to_pcm_4ch(c_hires_to_dec[0], c_ds_output[0]);
decimate_to_pcm_4ch(c_hires_to_dec[1], c_ds_output[1]);
example(c_ds_output, c_cmd);

}
}

}

return 0;
}

Copyright 2016 XMOS Ltd. 12 www.xmos.com
XM010096



AN00217 (1.0.0)

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 13 www.xmos.com
XM010096


	High Resolution Delay Example
	Overview
	The high resolution delay example
	Demo Hardware Setup
	Launching the demo application
	Task setup
	Frame memory
	Configuration
	Updating the delays
	References
	Full source code listing
	Source code for app_high_resolution_delay_example.xc


