
AN01024 (1.0.0)

Application Note: AN01024

xCONNECT dynamic configuration demo
xCONNECT is a proprietary interconnect technology that facilitates data communication across different
xCORE to create a fully scalable system. It is possible to achieve high bandwidth communication of up to
400 Mbits/sec for each xCONNECT link making it suitable for things like light weight industrial back-plane
busses. No additional hardware is required for the xCONNECT communication.

Using xCONNECT over longer distances can introduce bit errors due to noise, xCONNECT is dependent
on the application layer to recover from such communication errors. This application note demonstrates
handling of transmit timeouts, receive timeouts and receive exceptions (e.g. unexpected control tokens)
using software to ensure robustness of the communication.

Required tools and libraries

• xTIMEcomposer Tools - Version 14.0.0 and above
• XMOS try_catch exception handling module - Version 1.0.5 and above

Required hardware

This application note is designed to run on an XMOS xCORE General Purpose (L-series) device.

The example code provided with the application has been implemented and tested on the xCORE L-series
sliceKIT core board 1V2 (XP-SKC-L2) but there is no dependency on this board and it can be modified
to run on any development board which uses an xCORE General Purpose (L-series), xCORE-USB series or
xCORE-Analog series device.

Prerequisites

• This document assumes familiarity with the XMOS xCORE architecture, xCONNECT interconnect
communication, the XMOS tool chain and the xC language. Documentation that is not specific to
this application note is listed in the references appendix.

• For descriptions of XMOS related terms found in this document please see the XMOS Glossary1.

1http://www.xmos.com/published/glossary

Copyright 2015 XMOS Ltd. 1 www.xmos.com
XM008667

http://www.xmos.com/published/glossary


AN01024 (1.0.0)

1 Overview

1.1 Introduction

Each xCORE device has an xCONNECT infrastructure to provide scalable interconnect between cores and
tiles. A transfer rate of up to 400Mbits/sec is achievable over a given xCONNECT link using a suitable
communication mode.Such a communication link is useful in applications such as

• industrial back-plane communication where the protocol requires a simple and light weight link and
network layer handling unlike protocols such as EtherCAT, PROFINET

• off chip communication extenders between xCORE devices, xCORE and FPGA based host peripherals
etc.

Refer to xCONNECT architecture and XS1-L system specification for more information.

1.2 Block diagram

xCONNECT consists of links and switches to transfer packets across xCORE tiles:

• cores communicate over channels
• Plinks provide intra-tile communication as well as connection between channel ends and device

switch (called sswitch)
• xCONNECT (XMOS links) provide inter-tile and off-chip communication.

Figure 1: Block diagram of an xCORE tile

Copyright 2015 XMOS Ltd. 2 www.xmos.com
XM008667



AN01024 (1.0.0)

2 xCONNECT demo application

This application demonstrates the following features:

• Handle xCONNECT token errors, preventing exception caused by an invalid token and recovering
• Implement plug and unplug detection of the device in the communication bus using non-routed

links
• Handle the transmit and receive communication timeout so that the task is not blocked if the data

is not consumed on the other side of the channel

In order to ensure data consistency, error correction and control may be added to the software. Refer to
FAQs section for more details on how this might be achieved.

The demo code is split into two application images. Each of them boots from JTAG independently, at
different start up times. An application (called the transmit application) sends a continuous stream of
data to another xCORE tile using xCONNECT links. Another application (called the receive application
executing on another hardware board) receives this xCONNECT data using a channel.

An application (called a transmit application) sends a continuous stream of data to another xCORE tile
using xCONNECT links. Another application (called a receive application available on a different xCORE
tile) receives this xCONNECT data using a channel. A reporting task uses this data to report the commu-
nication parameters like the link bandwidth, token errors, and number of timeouts.

Figure 2: Demo application tasks

Copyright 2015 XMOS Ltd. 3 www.xmos.com
XM008667



AN01024 (1.0.0)

2.1 The transmit application main() function

Below is the source code for the main function of this application, which is taken from the source file
main.xc

int main(void)
{
par {
on tile[0] : transmit_link();
on tile[0] : re_enable_tx_link();

}
return 0;

}

Looking at this in more detail you can see the following:

• The par statement describes running two separate tasks in parallel
• transmit_link task attaches an exception handler and invokes transmit_handler
• transmit_handler is the application task which operates in while (1), sends data tokens over the

xCONNECT and maintains the transmit state of the task. Its functionality is explained in the below
sections

• re_enable_tx_link operates in a loop and periodically unblock the xLINK used by transmit_handler

2.2 Configuring links in non-routed static mode

A bi-directional XMOS link needs to be setup for the physical and link layer communication. xCONNECT
assumes that the signal is correct. Any fake edge will cause extra bits to appear. Any such extra edge
will cause extra bits and the END-OF-MESSAGE is destroyed, or randomly introduced causing header
corruption. It will then be randomly routed resulting in communication errors.

The best way to use an xCONNECT in such cases is to avoid routing and perform error detection using a
software protocol. In the statically routed links, no header is required and routing is not attempted. This
setup requires node register and link direction configured manually (in the application code).

case 0: //setup link direction
int reg_val = 0;
int direction = 0x1;
reg_val = XS1_LINK_DIRECTION_SET(reg_val, direction);
write_node_config_reg(tile[0], XS1_SSWITCH_SLINK_0_NUM + LINK_NUM, reg_val);
comm_state = 1;

Once this link and the direction is setup, the task sends the data using a channel end resource. In the
code below, c is delcared unsafe; gets a channel end resource and it is passed to chan_setd(). The
traffic on the link is then configured to deliver to a fixed destination channel end. Setup the destination
node_id, its channel resource number and its type in the correct format as mentioned in the register
setting (Node=0x8003, chanend number=00, resource type=02(chanend))

case 1: //channel setup
unsafe {
c = chan_getr();
chan_setd(c, 0x80030002);

}
comm_state = 2;

Note that if the code is to be run on a different tile, modify the node_id according to the
receive application tile id, as printed from the receive application’s console.

Copyright 2015 XMOS Ltd. 4 www.xmos.com
XM008667



AN01024 (1.0.0)

Setup the chosen link to use static routing in the system switch configuration register.

int ret = write_sswitch_reg(get_local_tile_id(), XS1_L_SSWITCH_XSTATIC_0_NUM + LINK_NUM, 0x80000000ul);
delay_milliseconds(50);
comm_state = 4;

2.3 Hot-plug detection and handling

The link layer governs when the data is transmitted, and how the configured links start communicating.
For hot-plug detection, xLINKs are initialised on the fly. The application layer sends transmit credit
requests by sending hello tokens and waits to receive the credit token that is sent from the other side of
the link.

do {
link_reset(LINK_NUM);
link_hello(LINK_NUM);
delay_microseconds(100);

} while (!link_got_credit(LINK_NUM));
printf("Got credit\n");
err_ctr = 0;
comm_state = 5;

2.4 Transmit data

Once the credits are available, tx_handler routine streams out data tokens using the channels.

unsafe { c <: 'a'; }

Application task inserts periodic control tokens, which are useful for setting up known synchronisation
points to recover from the communication errors.

if (err_ctr++ == SEND_CTRL_TOKEN) {
err_ctr = 0;
unsafe {
outct((chanend)c, XS1_CT_ACK); //Send a control token as app sync point

}
}

2.5 Transmit timeout handling

Transmit task may be blocked due to a paused out instruction and the application is required to handle
the transmit timeout. This is handled by performing disable, re-enable, and reset of the link. This example
uses a separate re_enable_tx_link task to periodically re-enable the links as follows:

void re_enable_tx_link()
{
while (1) {
delay_seconds(RE_ENABLE_TX_PERIOD);
SET_SHARED_GLOBAL(g_comm_state, 1);
printf("Re-enable transmit link. Waiting for credit..\n");
link_disable(LINK_NUM);
link_enable(LINK_NUM);

} //while (1)

Instead of using a separate core, timeout handling may use a timer interrupt to jump to an interrupt
handler (setjmp/getjmp) to disable, re-enable and reset the link.

Copyright 2015 XMOS Ltd. 5 www.xmos.com
XM008667



AN01024 (1.0.0)

2.6 Exception handling

Trap handlers implemented in try-catch module perform a recovery needed for the application layer to
proceed; nature of recovery depend on the type and place at which exception happened; in this example,
recovery does re-enable and reset the link.

exception_t exception;

TRY {
printf("Demo started...tile id: %x\n",get_local_tile_id());
transmit_handler(0);

} CATCH (exception) {
printf("Got exception.\n");
transmit_handler(4);

2.7 The receive application main() function

Below is the source code for the main function of the receive application, which is taken from the source
file main.xc

int main(void)
{
par {
on tile[DEMO_TILE] : receive_link();
on tile[DEMO_TILE] : reporting_task();

}
return 0;

}

Looking at this in more detail you can see the following:

• The par statement describes running two separate tasks in parallel
• recieve_link task attaches an exception handler to rx_handler
• rx_handler is the application task which operates in while (1) resposnding to xCONNECT data events.

Its functionality is dealt in more detail in the following sections
• reporting_task periodically wakes up, reads the total data bytes received and reports them in the

console

Steps for configuring and setting up the link for the receive side application is the same as described in
the transmit task sections above.

2.8 Receive data

The receiver continuously loops to collect the xCONNECT data using the channel end. This takes care of
control token errors by handling the case where a control or data token is unexpected.

Copyright 2015 XMOS Ltd. 6 www.xmos.com
XM008667



AN01024 (1.0.0)

void test_ct(unsafe streaming chanend c, int &j)
{
char r = 'z';
unsafe {
if (testct((chanend)c)) {
r = inct((chanend) c);
j++;

}
else {
c :> r;
unsafe {
volatile int * unsafe p = &g_data_tokens;

*p = *p + 1;
}

}
}

Received tokens are updated in the global variables so that the reporting task can use them. In general,
the receiver handles interspersing of data and user defined control tokens. This can be useful at the
receiver to check for these user defined control tokens which act as a known synchronisation points.

2.9 Receive timeout handling

A timer (configured as timeout) event in the select handler breaks the task’s continuous wait when the
incoming data stream is not available. This event breaks the receive loop and resets it back to the credit
exchange state as follows.

case rx_loop_tmr when timerafter(t + RX_TIME_OUT_TICKS) :> void:
SET_SHARED_GLOBAL(g_ctrl_tokens, ctrl_tkn_ctr);
SET_SHARED_GLOBAL(g_timeout_cnts, tm_out_ctr);
printf("\nTimed out...\n\n");
rx_loop = 0;
comm_state = 3;

It waits for the credit from the other side before resuming further receive of the input stream.

Copyright 2015 XMOS Ltd. 7 www.xmos.com
XM008667



AN01024 (1.0.0)

APPENDIX A - Demo hardware setup

In order to set up 2-wire xCONNECT connection between two sliceKIT boards using direct cable wires,
select two xLINK B pins and connect them as follows:

Figure 3: 2-wire XMOS xCORE-L16 sliceKIT set up for off-chip xCONNECT communication

Copyright 2015 XMOS Ltd. 8 www.xmos.com
XM008667



AN01024 (1.0.0)

To run the demo,

1. Connect xTAG-2 debug adapter to sliceKIT board 1
2. Connect the xTAG-2 to your development PC
3. Set the XMOS LINK to OFF on xTAG-2 debug adapter
4. Switch on the power supply to the sliceKIT core board
5. Repeat the above steps for sliceKIT board 2
6. Set the jumpers between the two sliceKITs as follows

Board Tile Slot 2w-pin1 2w-pin2 2w-pin3 2w-pin4 GND

sliceKIT 1 tile[0] STAR D16 D17 D18 D19 J4

sliceKIT 2 tile[0] STAR D19 D18 D17 D16 J4

Copyright 2015 XMOS Ltd. 9 www.xmos.com
XM008667



AN01024 (1.0.0)

APPENDIX B - Launching the demo device

Once the demo example has been built either from the command line using xmake or via the build
mechanism of xTIMEcomposer studio you can execute the application on the sliceKIT core board.

Once built there will be a bin directory within the project which contains the binary for the xCORE device.
The xCORE binary has a XMOS standard .xe extension.

B.1 Launching from the command line

From the command line, use the xrun tool to download code to the xCORE device. Navigate to the bin
directory of the project and execute the code on the xCORE microcontroller as follows:

> xrun --id 1 --io app_link_tests_b1.xe <-- Download and execute the xCORE code on the board 1
> xrun --id 0 --io app_link_tests_b2.xe <-- Download and execute the xCORE code on the board 2

Once this command is executed, you will see the following text in the receive application’s console
window:

Demo started...tile id: 8001

Got credit

Communication rate: 1652937 bytes per sec ==> 13 Mbit/sec
Communication rate: 4629628 bytes per sec ==> 37 Mbit/sec
Communication rate: 4629628 bytes per sec ==> 37 Mbit/sec
Communication rate: 4629628 bytes per sec ==> 37 Mbit/sec
Communication rate: 4629628 bytes per sec ==> 37 Mbit/sec
Communication rate: 4629629 bytes per sec ==> 37 Mbit/sec

Application control token count: 849
Receive timeouts: 157

Timed out...

Got credit

B.2 Launching from xTIMEcomposer Studio

From xTIMEcomposer Studio, use the run mechanism to download code to xCORE device. Select the
xCORE binary from the bin directory, right click and then follow the instructions below:

• Select Run Configuration.
• Click Apply and then Run.

Copyright 2015 XMOS Ltd. 10 www.xmos.com
XM008667



AN01024 (1.0.0)

When the processor has finished booting you will see the following text in the xTIMEcomposer console
window corresponding to the receive application:

Demo started...tile id: 8001

Got credit

Communication rate: 1652937 bytes per sec ==> 13 Mbit/sec
Communication rate: 4629628 bytes per sec ==> 37 Mbit/sec
Communication rate: 4629628 bytes per sec ==> 37 Mbit/sec
Communication rate: 4629628 bytes per sec ==> 37 Mbit/sec
Communication rate: 4629628 bytes per sec ==> 37 Mbit/sec
Communication rate: 4629629 bytes per sec ==> 37 Mbit/sec

Application control token count: 849
Receive timeouts: 157

Timed out...

Got credit

While the demo is running, remove the cables connected between the two boards. The communication
rate drops to 0 bits/sec:

Communication rate: 0 bytes per sec ==> 0 Mbit/sec
Communication rate: 0 bytes per sec ==> 0 Mbit/sec
Communication rate: 0 bytes per sec ==> 0 Mbit/sec

Reconnect the cables between the links in order to resume the communication. Note that after a recon-
nection, there could still be 0 bits/sec transfer rate; it may be attributed to the transmit link waiting for
its credit. Once it receives the transmit credit, peak communication rate is resumed.

Copyright 2015 XMOS Ltd. 11 www.xmos.com
XM008667



AN01024 (1.0.0)

APPENDIX C - FAQs

C.1 What is the desired functionality of an application layer ?

The application layer will need to be tolerant of packet loss, because re-transmission at the transport
layer can?t be implemented at the required data rate. All packet routing will be done by the xLINK app
server logical core. More details on the application server task implementation to route packets to the
participating nodes will be available in a separate application note.

C.2 Why to use static links instead of dynamic links?

xCONNECT assumes that the signal is correct, any fake edge will cause two extra bits to appear and will
cause trouble. For 5-bit mode, every extra edge will cause four extra bits; the END-OF-MESSAGE will be
destroyed, or randomly introduced then the next header will be random. It will be randomly routed. The
best way to use an xCONNECT is to: - not allow it to route and - run a software protocol on it that has
both a CRC (for error detection) and a time-out (in case it flattened a few transitions)

Where as using a statically routed link, no header is required as the routing is not attempted, and all the
traffic on this link will always go to a fixed channel end. Another protocol (application) task at both ends
monitors the data, manages a small protocol on top, and then resets-disconnects-reconnects the link on
an error.

C.3 What are the advantages of xCONNECT?

No additional hardware is needed for either the physical layer or the link layer. In the case of static
routing, the concept of a global network is no more. In order to get the BER down, use xCONNECT over a
differential pair.

C.4 A few design parameters to be considered while evaluating xCONNECT

A 2-wire xCONNECT with 7.5ns symbol delay can achieve 106 MBit/s. A 7.5ns symbol delay corresponds
to a toggle rate of 133 MHz. In order to design a more robust electrical link, and based on the required
length of the traces, an LVDS transceiver may be needed.

In general, the following should assessed:

• throughput required
• what is the latency needed
• What is the acceptable number of lines
• What is the preferred Physical layer (LVDS, CMOS, and Ethernet)
• suitability of a CAN if the bw is ok
• suitability of a custom RS485

C.5 Modifying the application timeout parameters

This section describes a few parameters in the code and impact of changing them in the code.

• Try changing the rx_loop timeout to a value more than tx task timeout and observe what happens?
when the tx loses its credit, it waits for the rx loop time out so that it gets additional credit in
order for the transmission to resume. When the reception is active, receive timeout should not
happen as the timer is loaded by the receive loop; in this demo, a periodic timeout is used to avoid
any additional instructions on the receiver loop to avoid any impact on the receive bandwidth. For
optimal demo operation, keep rx timeout lesser than tx timeout.

• As per the XS1 Link performance specification, the acheivable bandwidth should be higher than

Copyright 2015 XMOS Ltd. 12 www.xmos.com
XM008667



AN01024 (1.0.0)

the one observed in this demo application. By removing exlicit control token tests as available in
the test_ct() function in the receive application, and using a trap handler based exception handling
improve performance.

• Refer to a separate application demo which implement an application layer server to route the data
traffic to the nodes operating at a higher bandwidth.

C.6 Modifying the application to run on a different tile or target

In the receive application code, modify the below macro and re-build the application:

#define DEMO_TILE 0

Identify the appropriate link pins for the modified slot and tile and connect them as detailed in the setup
section. In the receive application, ensure to update the channel identifier for the modified tile on which
the application is running.Similarly if the target is different from xCORE-L16 sliceKIT board, modify the
link pins accordingly.

C.7 How to run the application using RJ45-type LVDS sliceCARD connectors

A RJ45-type sliceCARD is built in order to run the application using Ethernet connector cables. The
sliceCARD uses RJ45 type connector and uses LVDS signalling. This sliceCARD uses 2-wire Link A instead
of Link B as specified in the above demo. Hence modify both the transmit and receive applications to
reflect this change and re-build the applications.

Existing applications use link B:

#define LINK_NUM 3

Modify it to use link A:

#define LINK_NUM 2

To set up 2-wire xCONNECT connection between using these sliceCARDs, connection is detailed below:

To setup the hardware,

1. Connect xTAG-2 debug adapter to sliceKIT board 1
2. Connect the xTAG-2 to your development PC
3. Set the XMOS LINK to OFF on xTAG-2 debug adapter
4. Switch on the power supply to the sliceKIT core board
5. Repeat the above steps for sliceKIT board 2
6. Connect a cross-over cable between the two sliceCARDs

In order to run the demo, follow the instructions as available in the Launching the demo device section
above.

Copyright 2015 XMOS Ltd. 13 www.xmos.com
XM008667



AN01024 (1.0.0)

Figure 4: Two-wire xCONNECT communication set up using RJ45-type LVDS sliceCARD connected to
xCORE-L16 sliceKITs

Copyright 2015 XMOS Ltd. 14 www.xmos.com
XM008667



AN01024 (1.0.0)

APPENDIX D - References

xTIMEcomposer User Guide

http://www.xmos.com/published/xtimecomposer-user-guide

xCONNECT Architecture

https://www.xmos.com/download/private/xCONNECT-Architecture%281.0%29.pdf

XS1 Link Performance and Design Guidelines

https://www.xmos.com/download/public/XS1-L-Link-Performance-Design-Guidelines%282.0%29.pdf

XS1-L System Specification

https://www.xmos.com/download/public/XS1-L-System-Specification(X1151D).pdf

sliceKIT hardware manual

https://www.xmos.com/download/private/sliceKIT-Hardware-Manual%281.0%29.pdf

XS1-L16A-128-FB324 Datasheet

https://www.xmos.com/download/private/XS1-L16A-128-FB324-Datasheet%281.1%29.pdf

XMOS xCORE Programming Guide

http://www.xmos.com/published/xmos-programming-guide

Copyright 2015 XMOS Ltd. 15 www.xmos.com
XM008667

http://www.xmos.com/published/xtimecomposer-user-guide
https://www.xmos.com/download/private/xCONNECT-Architecture%281.0%29.pdf
https://www.xmos.com/download/public/XS1-L-Link-Performance-Design-Guidelines%282.0%29.pdf
https://www.xmos.com/download/public/XS1-L-System-Specification(X1151D).pdf
https://www.xmos.com/download/private/sliceKIT-Hardware-Manual%281.0%29.pdf
https://www.xmos.com/download/private/XS1-L16A-128-FB324-Datasheet%281.1%29.pdf
http://www.xmos.com/published/xmos-programming-guide


AN01024 (1.0.0)

APPENDIX E - Full source code listing

E.1 Source code for transmit main.xc

// Copyright (c) 2015, XMOS Ltd, All rights reserved
#include <platform.h>
#include <stdio.h>
#include <timer.h>
#include "link.h"
#include "chan.h"
#include "trycatch.h"

#define GET_SHARED_GLOBAL(x, g) asm volatile("ldw %0, dp[" #g "]":"=r"(x)::"memory")
#define SET_SHARED_GLOBAL(g, v) asm volatile("stw %0, dp[" #g "]"::"r"(v):"memory")

#define LINK_NUM 3
#define RE_ENABLE_TX_PERIOD 6
#define SEND_CTRL_TOKEN 2500000

int g_comm_state;

void re_enable_tx_link()
{
while (1) {
delay_seconds(RE_ENABLE_TX_PERIOD);
SET_SHARED_GLOBAL(g_comm_state, 1);
printf("Re-enable transmit link. Waiting for credit..\n");
link_disable(LINK_NUM);
link_enable(LINK_NUM);

} //while (1)
}

void transmit_handler(int comm_state)
{
unsafe streaming chanend c;
int temp_state = 0;
int err_ctr = 0;

while (1) {
GET_SHARED_GLOBAL(temp_state, g_comm_state);
if (temp_state) {
SET_SHARED_GLOBAL(g_comm_state, 0);
comm_state = 4;

}
switch(comm_state) {
case 0: //setup link direction
int reg_val = 0;
int direction = 0x1;
reg_val = XS1_LINK_DIRECTION_SET(reg_val, direction);
write_node_config_reg(tile[0], XS1_SSWITCH_SLINK_0_NUM + LINK_NUM, reg_val);
comm_state = 1;
break;

case 1: //channel setup
unsafe {
c = chan_getr();
chan_setd(c, 0x80030002);

}
comm_state = 2;
break;

case 2: /* reconfigure links, leaving only one open */
for (int i=0; i<8; i++)
link_disable(i);

link_enable(LINK_NUM);
comm_state = 3;
break;

case 3: /* Setup a static routing configuration */
int ret = write_sswitch_reg(get_local_tile_id(), XS1_L_SSWITCH_XSTATIC_0_NUM + LINK_NUM, 0x80000000ul)
↪→ ;

delay_milliseconds(50);
comm_state = 4;
break;

case 4: /* wait for transmit credits */
do {

Copyright 2015 XMOS Ltd. 16 www.xmos.com
XM008667



AN01024 (1.0.0)

link_reset(LINK_NUM);
link_hello(LINK_NUM);
delay_microseconds(100);

} while (!link_got_credit(LINK_NUM));
printf("Got credit\n");
err_ctr = 0;
comm_state = 5;
break;

case 5: /* send data tokens */
/*if (!link_got_credit(LINK_NUM)) {
comm_state = 4;
break;

}*/
unsafe { c <: 'a'; }
if (err_ctr++ == SEND_CTRL_TOKEN) {
err_ctr = 0;
unsafe {
outct((chanend)c, XS1_CT_ACK); //Send a control token as app sync point

}
}
break;

case 6: /* not used since this is a continuous running demo */
chan_freer(c);
link_disable(LINK_NUM);
comm_state = 2;
break;

default:
comm_state = 4;
break;

} //switch(comm_state)
} //while (1)

}

void transmit_link()
{
exception_t exception;

TRY {
printf("Demo started...tile id: %x\n",get_local_tile_id());
transmit_handler(0);

} CATCH (exception) {
printf("Got exception.\n");
transmit_handler(4);

}
}

int main(void)
{
par {
on tile[0] : transmit_link();
on tile[0] : re_enable_tx_link();

}
return 0;

}

E.2 Source code for receive main.xc

// Copyright (c) 2015, XMOS Ltd, All rights reserved
#include <platform.h>
#include <stdio.h>
#include <assert.h>
#include <timer.h>
#include "link.h"
#include "chan.h"

#define LINK_NUM 3
#define RX_TIME_OUT_TICKS 500000000

#define DEMO_TILE 0

#if (DEMO_TILE == 0)
#define CHANEND_TILE_ID 0x80010002
#else

Copyright 2015 XMOS Ltd. 17 www.xmos.com
XM008667



AN01024 (1.0.0)

#define CHANEND_TILE_ID 0x80030002
#endif

#define GET_SHARED_GLOBAL(x, g) asm volatile("ldw %0, dp[" #g "]":"=r"(x)::"memory")
#define SET_SHARED_GLOBAL(g, v) asm volatile("stw %0, dp[" #g "]"::"r"(v):"memory")

int g_data_tokens;
int g_ctrl_tokens;
int g_timeout_cnts;

void reporting_task()
{
timer bw_tmr;
int bw_t;
int i = 0;
int j = 0;
int k = 0;
int full_rep_cnt = 0;

bw_tmr :> bw_t;

while (1) {
select {
case bw_tmr when timerafter(bw_t + 100000000) :> void:
GET_SHARED_GLOBAL(i, g_data_tokens);
GET_SHARED_GLOBAL(j, g_ctrl_tokens);
GET_SHARED_GLOBAL(k, g_timeout_cnts);
printf("Communication rate: %d bytes per sec \t\t\t ==>\t %d Mbit/sec\n", i, ((i*8)/1000000));
if (!(full_rep_cnt++ % 10)) {
printf("\nApplication control token count: \t\t%d \n", j);
printf("Receive timeouts: \t\t\t\t%d \n\n", k);

}
SET_SHARED_GLOBAL(g_data_tokens, 0);
bw_tmr :> bw_t;
break;

}
}

}

#pragma select handler
void test_ct(unsafe streaming chanend c, int &j)
{
char r = 'z';
unsafe {
if (testct((chanend)c)) {
r = inct((chanend) c);
j++;

}
else {
c :> r;
unsafe {
volatile int * unsafe p = &g_data_tokens;
*p = *p + 1;

}
}

}
} //end of test_ct

void receive_link()
{
unsafe streaming chanend c;
timer rx_loop_tmr;
int t;
int ctrl_tkn_ctr = 0;
int tm_out_ctr = 0;
int rx_loop = 0;
int comm_state = 0;

rx_loop_tmr :> t;

printf("Demo started...tile id: %x\n",get_local_tile_id());
while (1) {
switch (comm_state) {
case 0: //setup link direction
int reg_val = 0;

Copyright 2015 XMOS Ltd. 18 www.xmos.com
XM008667



AN01024 (1.0.0)

int direction = 0x0;
reg_val = XS1_LINK_DIRECTION_SET(reg_val, direction);
write_node_config_reg(tile[1], XS1_SSWITCH_SLINK_0_NUM + LINK_NUM, reg_val);
comm_state = 1;
break;

case 1: //channel alloc
unsafe {
c = chan_getr();
//printf("Allocated chanend: %x\n", c); //debug print, if the tile is changed
assert((int)c == CHANEND_TILE_ID);

}
comm_state = 2;
break;

case 2: //reconf links, leaving only one open
for (int i=0; i<8; i++)

link_disable(i);
link_enable(LINK_NUM);
/* setup static link for the communicating link */
int ret = write_sswitch_reg(get_local_tile_id(), XS1_L_SSWITCH_XSTATIC_0_NUM + LINK_NUM, 0x80030000ul)
↪→ ;//TODO:

delay_milliseconds(50);
comm_state = 3;
break;

case 3: //wait for transmit credits
do {
link_reset(LINK_NUM);
link_hello(LINK_NUM);
delay_microseconds(100);

} while (!link_got_credit(LINK_NUM));
printf("\nGot credit\n\n");
/* setup local control variables */
rx_loop = 1;
tm_out_ctr++;
rx_loop_tmr :> t;
comm_state = 4;
break;

case 4: //receive data loop
char r = 'z';
while (rx_loop) {
unsafe {
select {
case test_ct(c, ctrl_tkn_ctr):
rx_loop_tmr :> t;
break;

//case c :> j: break; // breaks at unexpected control tokens
case rx_loop_tmr when timerafter(t + RX_TIME_OUT_TICKS) :> void:
SET_SHARED_GLOBAL(g_ctrl_tokens, ctrl_tkn_ctr);
SET_SHARED_GLOBAL(g_timeout_cnts, tm_out_ctr);
printf("\nTimed out...\n\n");
rx_loop = 0;
comm_state = 3;
break;

}
}

} //while (rx_loop)
break;

case 6: //end of communication; not used in this demo since its a continuous run
chan_freer(c);
link_disable(LINK_NUM);
comm_state = 1;
break;

default:
break;

} //switch (comm_state)
} // while (1)

}

int main(void)
{
par {
on tile[DEMO_TILE] : receive_link();
on tile[DEMO_TILE] : reporting_task();

}
return 0;

}

Copyright 2015 XMOS Ltd. 19 www.xmos.com
XM008667



AN01024 (1.0.0)

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2015 XMOS Ltd. 20 www.xmos.com
XM008667


	xCONNECT dynamic configuration demo
	Overview
	Introduction
	Block diagram

	xCONNECT demo application
	The transmit application main() function
	Configuring links in non-routed static mode
	Hot-plug detection and handling
	Transmit data
	Transmit timeout handling
	Exception handling
	The receive application main() function
	Receive data
	Receive timeout handling

	Demo hardware setup
	Launching the demo device
	Launching from the command line
	Launching from xTIMEcomposer Studio

	FAQs
	What is the desired functionality of an application layer ?
	Why to use static links instead of dynamic links?
	What are the advantages of xCONNECT?
	A few design parameters to be considered while evaluating xCONNECT
	Modifying the application timeout parameters
	Modifying the application to run on a different tile or target
	How to run the application using RJ45-type LVDS sliceCARD connectors

	References
	Full source code listing
	Source code for transmit main.xc
	Source code for receive main.xc


