
AN00182 (1.0.0)

Application Note: AN00182

USB HID Class - Extended on xCORE-200 Ex-
plorer
This application note shows how to create a USB device compliant to the standard USB Human Interface
Device (HID) class on an XMOS multicore microcontroller.

The code associated with this application note provides an enhancement to AN00129 for extending the
USB HID device to interface with hardware which can provide input for a USB mouse.

This example uses the ADC on the XMOS xCORE-USB device to interface to a mixed signal sliceCARD and
provide a joystick interface which allows the USB HID to be controlled.

The application operates as a simple mouse which when running moves the mouse pointer on the host
machine. This demonstrates the simple way in which PC peripheral devices can easily be deployed using
an xCORE device.

Note: This application note provides a standard USB HID class device and as a result does not require
drivers to run on Windows, Mac or Linux.

This application note describes extending XMOS application note AN00129 for the xCORE-200 explorerKIT
platform. The demo application is extended using the functionality described in AN00181 for accesing
the accelerometer on the xCORE-200 explorerKIT.

Required tools and libraries

• xTIMEcomposer Tools - Version 14.0.0
• XMOS USB library - Version 2.0.0
• XMOS I2C library - Version 2.0.0

Required hardware

This application note is designed to run on an XMOS xCORE-200 series device.

The example code provided with the application has been implemented and tested on the xCORE-200
explorerKIT but there is no dependancy on this board and it can be modified to run on any development
board which uses an xCORE-200 series device.

Prerequisites

• This document assumes familiarity with the XMOS xCORE architecture, the Universal Serial Bus
2.0 Specification (and related specifications, the XMOS tool chain and the xC language. Docu-
mentation related to these aspects which are not specific to this application note are linked to
in the references in the appendix.

• For descriptions of XMOS related terms found in this document please see the XMOS Glossary1.
• Application notes AN00129 (USB HID) and AN00181 (Accelerometer)
• For the full API listing of the XMOS USB Device (XUD) Library please see thedocument XMOS USB

Device (XUD) Library2.
• For information on designing USB devices using the XUD library please see the XMOS USB Device

1http://www.xmos.com/published/glossary
2http://www.xmos.com/published/xuddg

Copyright 2015 XMOS Ltd. 1 www.xmos.com
XM008207

http://www.xmos.com/published/glossary
http://www.xmos.com/published/xuddg


AN00182 (1.0.0)

Design Guide for reference3.

3http://www.xmos.com/published/xmos-usb-device-design-guide

Copyright 2015 XMOS Ltd. 2 www.xmos.com
XM008207

http://www.xmos.com/published/xmos-usb-device-design-guide


AN00182 (1.0.0)

1 Overview

1.1 Introduction

The HID class consists primarily of devices that are used by humans to control the operation of computer
systems. Typical examples of HID class include:

• Keyboards and pointing devices, for example, standard mouse devices, trackballs, and joysticks.
• Front-panel controls, for example: knobs, switches, buttons, and sliders.
• Controls that might be found on devices such as telephones, VCR remote controls, games or simu-

lation devices, for example: data gloves, throttles, steering wheels, and rudder pedals.
• Devices that may not require human interaction but provide data in a similar format to HID class

devices, for example, bar-code readers, thermometers, or voltmeters.

Many typical HID class devices include indicators, specialized displays, audio feedback, and force or tactile
feedback. Therefore, the HID class definition includes support for various types of output directed to the
end user.

The USB specification provides a standard device class for the implementation of HID class devices.

(http://www.usb.org/developers/devclass_docs/HID1_11.pdf)

1.2 Block diagram

Figure 1: Block diagram of extended USB HID application example

Copyright 2015 XMOS Ltd. 3 www.xmos.com
XM008207

http://www.usb.org/developers/devclass_docs/HID1_11.pdf


AN00182 (1.0.0)

2 USB HID Class - Application note AN00129

This application note takes the majority of its source code from AN00129 to implement the HID class
application used for the example. The details of this and the explanation of the associated source code
is provided in that application note. This example provides a simple description of how that application
note has been extended to support interfacing hardware to the host machine via a HID endpoint.

The original HID mouse application code has been replaced with an extended function which now uses
the accelerometer on the xCORE-200 explorerKIT to generate the HID control data. The accelerometer is
interfaced using the XMOS I2C library.

The implementation of the accelerometer interface is not detailed specifically in this application note,
for reference, a detailed description of using the I2C interface to access the xCORE-200 explorerKIT
accelerometer can be found in application note AN00181.

Copyright 2015 XMOS Ltd. 4 www.xmos.com
XM008207



AN00182 (1.0.0)

3 USB HID Class Extended on xCORE-200 Explorer - Application note

The example in this application note uses the XMOS USB device library and shows a simple program that
creates a basic mouse device which controls the mouse pointer on the host PC.

For the USB HID device class application example, the system comprises three tasks running on separate
logical cores of a xCORE-USB multicore microcontroller.

The tasks perform the following operations.

• A task containing the USB library functionality to communicate over USB
• A task implementing Endpoint0 responding both standard and HID class USB requests
• A task implementing the application code for the custom HID interface
• A task implementing the I2C interface to the accelerometer

These tasks communicate via the use of xCONNECT channels which allow data to be passed between
application code running on separate logical cores.

The following diagram shows the task and communication structure for this USB HID device class applica-
tion example.

Figure 2: Task diagram of USB HID application example

In this example we take the simple USB HID mouse endpoint and replace it with a version which interfaces
to the accelerometer on the xCORE-200 explorerKit.

This allows the example to be extended to produce a USB mouse where movement is controlled by user
input. This demonstrates how a USB HID can be customized to interface to the custom control required
by the application.

3.1 Makefile additions for this example

There are additions to the Makefile provided with AN00129, these relate to using the I2C library.

To start using the i2c library, you need to add lib_i2c to your Makefile:

USED_MODULES = ... lib_i2c ...

Copyright 2015 XMOS Ltd. 5 www.xmos.com
XM008207



AN00182 (1.0.0)

You can then access the I2C functions in your source code via the i2c.h header file:

#include <i2c.h>

Additionally the USB interface is moved onto xCORE tile 1 from xCORE tile 0 by using the following define:

-DUSB_TILE=tile[1]

3.2 Accelerometer I2C port declaration

In order to use the accelerometer device, port resources need to be declared to be used by the I2C library.
These are defined in the code below,

// I2C interface ports
on tile[0]: port p_scl = XS1_PORT_1E;
on tile[0]: port p_sda = XS1_PORT_1F;

3.3 HID mouse endpoint with acccelerometer control

In order to replace the HID mouse endpoint in AN00129 using the accelerometer device a replacement
function has been written. This is contained within the file hid_mouse_extended.xc and is prototyped
as follows,

void hid_mouse_extended(chanend chan_ep_hid, client interface i2c_master_if i2c)

This function takes the I2C interface as a parameter to allow the HID endpoint code to read and write to
the I2C device. The I2C accelerometer on the xCORE-200 explorerKIT is configured in this function. For
more detail on the accelerometer and communicating via I2C refer to AN00181.

// Configure FXOS8700EQ
result = i2c.write_reg(FXOS8700EQ_I2C_ADDR, FXOS8700EQ_XYZ_DATA_CFG_REG, 0x01);
if (result != I2C_REGOP_SUCCESS) {
return;

}

// Enable FXOS8700EQ
result = i2c.write_reg(FXOS8700EQ_I2C_ADDR, FXOS8700EQ_CTRL_REG_1, 0x01);
if (result != I2C_REGOP_SUCCESS) {
return;

}

As described in AN00129 there is a global buffer g_reportBuffer which is used to signal HID report
data to endpoint0. The code below initialises this buffer via a pointer for this USB mouse endpoint.

// Initialise the HID
p_reportBuffer[1] = 0;
p_reportBuffer[2] = 0;

The main loop of the HID endpoint operates within a while (1) loop, within this loop there is a loop to
check for valid data becoming available from the I2C device. When valid data is available the x and y axis
values are read from the accelerometer. The code for performing these operations is as follows,

Copyright 2015 XMOS Ltd. 6 www.xmos.com
XM008207



AN00182 (1.0.0)

// Wait for valid accelerometer data
do {
status_data = i2c.read_reg(FXOS8700EQ_I2C_ADDR, FXOS8700EQ_DR_STATUS, result);

} while (!status_data & 0x08);

// Read x and y axis values
x = read_acceleration(i2c, FXOS8700EQ_OUT_X_MSB);
y = read_acceleration(i2c, FXOS8700EQ_OUT_Y_MSB);

The data for the x coordinate is processed by the following code to transform the value so that it is
suitable for reporting back to the host as the HID device report.

// Set up HID x axis value report
if (x > 50) {
p_reportBuffer[1] = 10;

} else if (x < -50) {
p_reportBuffer[1] = -10;

}

The data for the y coordinate is processed by the following code to transform the value so that it is
suitable for reporting back to the host as the HID device report.

// Set up HID y axis value report
if (y > 50) {
p_reportBuffer[2] = -10;

} else if (y < -50) {
p_reportBuffer[2] = 10;

}

Once the data processing is complete the HID report is sent back to the USB host using the XMOS USB
library function XUD_SetBuffer().

/* Send the buffer off to the host. Note this will return when complete */
XUD_SetBuffer(ep_hid, (char *) p_reportBuffer, 4);

The function hid_mouse_extended continues to operate in an infinite loop reporting data values back to
the USB host as a HID report by reading from accelerometer.

Copyright 2015 XMOS Ltd. 7 www.xmos.com
XM008207



AN00182 (1.0.0)

3.4 Changes to the main() function of AN00129

The code below shows the changes required to main() in application note AN00129 in order to enable the
new extended HID mouse endpoint. This is a small change which will set up the I2C interface and call the
new function provided with this application note.

int main()
{

i2c_master_if i2c[1];
chan c_ep_out[XUD_EP_COUNT_OUT], c_ep_in[XUD_EP_COUNT_IN];

par
{
on tile[1]: xud(c_ep_out, XUD_EP_COUNT_OUT, c_ep_in, XUD_EP_COUNT_IN,

null, XUD_SPEED_HS, XUD_PWR_SELF);

on tile[1]: Endpoint0(c_ep_out[0], c_ep_in[0]);

on tile[1]: hid_mouse_extended(c_ep_in[1], i2c[0]);

on tile[0]: i2c_master(i2c, 1, p_scl, p_sda, 10);
}

return 0;
}

3.5 Setting up the I2C interface in the application main()

The I2C device is accessed from main() using an interface, this is declared as follows,

i2c_master_if i2c[1];

The interface is initialised in main via the following call,

on tile[0]: i2c_master(i2c, 1, p_scl, p_sda, 10);

The interface i2c is passed to the new extended hid mouse function in main() as follows,

on tile[1]: hid_mouse_extended(c_ep_in[1], i2c[0]);

3.6 Adding the extended HID mouse endpoint to main()

In order to access the function hid_mouse_extended() from main() the following header file needs to be
added to main.xc of the application.

#include "hid_mouse_extended.h"

Copyright 2015 XMOS Ltd. 8 www.xmos.com
XM008207



AN00182 (1.0.0)

APPENDIX A - Demo Hardware Setup

To run the demo, connect the xCORE-200 explorerKIT power to a USB socket, plug the XTAG into the
board and connect the xTAG USB cable to your development machine

Figure 3: XMOS xCORE-200 explorerKIT

The hardware should be configured as displayed above for this demo:

• The XTAG debug adapter should be connected to the XSYS connector and the XTAG USB cable should
be connected to the host machine

• The xCORE-200 explorerKIT should have the power cable connected
• The board should be connected to a USB host via the HS USB connector

Copyright 2015 XMOS Ltd. 9 www.xmos.com
XM008207



AN00182 (1.0.0)

APPENDIX B - Launching the demo application

Once the demo example has been built either from the command line using xmake or via the build
mechanism of xTIMEcomposer studio we can execute the application on the xCORE-200 explorerKIT.

Once built there will be a bin directory within the project which contains the binary for the xCORE device.
The xCORE binary has a XMOS standard .xe extension.

B.1 Launching from the command line

From the command line we use the xrun tool to download code to both the xCORE devices. If we change
into the bin directory of the project we can execute the code on the xCORE microcontroller as follows:

> xrun app_hid_mouse_demo.xe <-- Download and execute the xCORE code

Once this command has executed the HID mouse device will have enumerated on your host machine.

B.2 Launching from xTIMEcomposer Studio

From xTIMEcomposer Studio we use the run mechanism to download code to xCORE device. Select the
xCORE binary from the bin directory, right click and then run as xCORE application will execute the code
on the xCORE device.

Once this command has executed the HID mouse device will have enumerated on your host machine.

B.3 Running the HID mouse demo

The USB mouse device once enumerated will start acting as if you have plugged a new USB mouse into
your host machine.

By tilting the board in the x and y axis you will be able to control the mouse pointer on your USB host
machine.

Copyright 2015 XMOS Ltd. 10 www.xmos.com
XM008207



AN00182 (1.0.0)

APPENDIX C - References

XMOS Tools User Guide

http://www.xmos.com/published/xtimecomposer-user-guide

XMOS xCORE Programming Guide

http://www.xmos.com/published/xmos-programming-guide

XMOS xCORE-USB Device Library:

http://www.xmos.com/published/xuddg

XMOS USB Device Design Guide:

http://www.xmos.com/published/xmos-usb-device-design-guide

USB HID Class Specification, USB.org:

http://www.usb.org/developers/devclass_docs/HID1_11.pdf

USB 2.0 Specification

http://www.usb.org/developers/docs/usb20_docs/usb_20_081114.zip

Copyright 2015 XMOS Ltd. 11 www.xmos.com
XM008207

http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide
http://www.xmos.com/published/xuddg
http://www.xmos.com/published/xmos-usb-device-design-guide
http://www.usb.org/developers/devclass_docs/HID1_11.pdf
http://www.usb.org/developers/docs/usb20_docs/usb_20_081114.zip


AN00182 (1.0.0)

APPENDIX D - Full source code listing

D.1 Source code for main.xc

// Copyright (c) 2015, XMOS Ltd, All rights reserved
#include "usb.h"
#include "i2c.h"
#include "hid_mouse_extended.h"

/* Prototype for Endpoint0 function in endpoint0.xc */
void Endpoint0(chanend c_ep0_out, chanend c_ep0_in);

/* Global report buffer, global since used by Endpoint0 core */
unsigned char g_reportBuffer[4] = {0, 0, 0, 0};

#define XUD_EP_COUNT_OUT 1
#define XUD_EP_COUNT_IN 2

// I2C interface ports
on tile[0]: port p_scl = XS1_PORT_1E;
on tile[0]: port p_sda = XS1_PORT_1F;

/*
* The main function runs three cores on tile[1] : the XUD manager, Endpoint 0, and a HID endpoint.
* An array of * channels is used for both IN and OUT endpoints, endpoint zero requires both, HID requires
* just an IN endpoint to send HID reports to the host. On tile[0] the interface to the I2C device
* uses another core.
*/
int main()
{

i2c_master_if i2c[1];
chan c_ep_out[XUD_EP_COUNT_OUT], c_ep_in[XUD_EP_COUNT_IN];

par
{
on tile[1]: xud(c_ep_out, XUD_EP_COUNT_OUT, c_ep_in, XUD_EP_COUNT_IN,

null, XUD_SPEED_HS, XUD_PWR_SELF);

on tile[1]: Endpoint0(c_ep_out[0], c_ep_in[0]);

on tile[1]: hid_mouse_extended(c_ep_in[1], i2c[0]);

on tile[0]: i2c_master(i2c, 1, p_scl, p_sda, 10);
}

return 0;
}

D.2 Source code for hid_mouse_extended.xc

// Copyright (c) 2015, XMOS Ltd, All rights reserved
#include <xs1.h>
#include "i2c.h"
#include "usb.h"

extern unsigned char g_reportBuffer[4];

// FXOS8700EQ register address defines
#define FXOS8700EQ_I2C_ADDR 0x1E
#define FXOS8700EQ_XYZ_DATA_CFG_REG 0x0E
#define FXOS8700EQ_CTRL_REG_1 0x2A
#define FXOS8700EQ_DR_STATUS 0x0
#define FXOS8700EQ_OUT_X_MSB 0x1
#define FXOS8700EQ_OUT_X_LSB 0x2
#define FXOS8700EQ_OUT_Y_MSB 0x3
#define FXOS8700EQ_OUT_Y_LSB 0x4
#define FXOS8700EQ_OUT_Z_MSB 0x5
#define FXOS8700EQ_OUT_Z_LSB 0x6

int read_acceleration(client interface i2c_master_if i2c, int reg) {

Copyright 2015 XMOS Ltd. 12 www.xmos.com
XM008207



AN00182 (1.0.0)

i2c_regop_res_t result;
int accel_val = 0;
unsigned char data = 0;

// Read MSB data
data = i2c.read_reg(FXOS8700EQ_I2C_ADDR, reg, result);
if (result != I2C_REGOP_SUCCESS) {
return 0;

}

accel_val = data << 2;

// Read LSB data
data = i2c.read_reg(FXOS8700EQ_I2C_ADDR, reg+1, result);
if (result != I2C_REGOP_SUCCESS) {
return 0;

}

accel_val |= (data >> 6);

if (accel_val & 0x200) {
accel_val -= 1023;

}

return accel_val;
}

/*
* This function responds to the HID requests
*/
void hid_mouse_extended(chanend chan_ep_hid, client interface i2c_master_if i2c)
{

i2c_regop_res_t result;
char status_data = 0;

// Configure FXOS8700EQ
result = i2c.write_reg(FXOS8700EQ_I2C_ADDR, FXOS8700EQ_XYZ_DATA_CFG_REG, 0x01);
if (result != I2C_REGOP_SUCCESS) {
return;

}

// Enable FXOS8700EQ
result = i2c.write_reg(FXOS8700EQ_I2C_ADDR, FXOS8700EQ_CTRL_REG_1, 0x01);
if (result != I2C_REGOP_SUCCESS) {
return;

}

XUD_ep ep_hid = XUD_InitEp(chan_ep_hid, XUD_EPTYPE_INT);

while (1)
{
/* Unsafe region so we can use shared memory. */
unsafe {
char * unsafe p_reportBuffer = g_reportBuffer;
int x, y;

// Initialise the HID
p_reportBuffer[1] = 0;
p_reportBuffer[2] = 0;

// Wait for valid accelerometer data
do {
status_data = i2c.read_reg(FXOS8700EQ_I2C_ADDR, FXOS8700EQ_DR_STATUS, result);

} while (!status_data & 0x08);

// Read x and y axis values
x = read_acceleration(i2c, FXOS8700EQ_OUT_X_MSB);
y = read_acceleration(i2c, FXOS8700EQ_OUT_Y_MSB);

// Set up HID x axis value report
if (x > 50) {
p_reportBuffer[1] = 10;

} else if (x < -50) {
p_reportBuffer[1] = -10;

}

Copyright 2015 XMOS Ltd. 13 www.xmos.com
XM008207



AN00182 (1.0.0)

// Set up HID y axis value report
if (y > 50) {
p_reportBuffer[2] = -10;

} else if (y < -50) {
p_reportBuffer[2] = 10;

}

/* Send the buffer off to the host. Note this will return when complete */
XUD_SetBuffer(ep_hid, (char *) p_reportBuffer, 4);

}
}

}

D.3 Source code for hid_mouse_extended.h

// Copyright (c) 2015, XMOS Ltd, All rights reserved
#ifndef HID_MOUSE_EXTENDED_H_
#define HID_MOUSE_EXTENDED_H_

#include <i2c.h>

void hid_mouse_extended(chanend chan_ep_hid, client interface i2c_master_if i2c);

#endif /* HID_MOUSE_EXTENDED_H_ */

Copyright 2015 XMOS Ltd. 14 www.xmos.com
XM008207



AN00182 (1.0.0)

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2015 XMOS Ltd. 15 www.xmos.com
XM008207


	USB HID Class - Extended on xCORE-200 Explorer
	Overview
	Introduction
	Block diagram

	USB HID Class - Application note AN00129
	USB HID Class Extended on xCORE-200 Explorer - Application note
	Makefile additions for this example
	Accelerometer I2C port declaration
	HID mouse endpoint with acccelerometer control
	Changes to the main() function of AN00129
	Setting up the I2C interface in the application main()
	Adding the extended HID mouse endpoint to main()

	Demo Hardware Setup
	Launching the demo application
	Launching from the command line
	Launching from xTIMEcomposer Studio
	Running the HID mouse demo

	References
	Full source code listing
	Source code for main.xc
	Source code for hid_mouse_extended.xc
	Source code for hid_mouse_extended.h


