®
l MOS ANO00177 (1.0.0)

Application Note: AN0O0177

A startKIT ADC demo

This applications provides a very simple example of using the ADC module. It uses the on-chip ADC in
one shot mode (a trigger is called every 200ms from a timer) and then reads the 4 values after conversion
complete notification received. It also shows an example of a select (wait on multiple events) because it
also listens to the button, and lights additional LEDs when that is pressed.

Required tools and libraries

e XTIMEcomposer Tools - Version 14.0
e startKIT support library (lib_startkit_support) - Version 1.0.0

Required hardware

This application note is designed to run on the XMOS startKIT.

Prerequisites

e This document assumes familiarity with the XMOS xCORE architecture, the XMOS GPIO library,
the XMOS tool chain and the xC language. Documentation related to these aspects which are
not specific to this application note are linked to in the references appendix.

e For descriptions of XMOS related terms found in this document please see the XMOS Glossary'.

Thttp://www.xmos .com/published/glossary
. ____________________________________________________________________________________________________________________________________|

Copyright 2015 XMOS Ltd. 1 WWW.Xmos.com
XM008200



http://www.xmos.com/published/glossary

®
l MOS ANO00177 (1.0.0)

1 Overview

1.1 Introduction

startKIT is a low-cost development board for the configurable xCORE multicore microcontroller prod-
ucts from XMOS. It’s easy to use and provides lots of advanced features on a small, extremely low cost
platform.

XCORE lets you software-configure the interfaces that you need for your system; so with startKIT you
can configure the board to your match your exact requirements. Its 500MIPS xCORE multicore microcon-
troller has eight 32bit logical cores that perform deterministically, making startKIT an ideal platform for
functions ranging from robotics and motion control to networking and digital audio.

startKIT also connects easily to your Raspberry Pi, allowing you to add real-time 1/0 and communication
features to this popular computing platform, and to try out advanced applications for xCORE.

Copyright 2015 XMOS Ltd. 2 WWW.Xmos.com
XM008200




®
l MOS ANO00177 (1.0.0)

2 A simple ADC example

The example in this application note shows off using the 1/0 on the startKIT and the use of an XMOS
library (in particular the startKIT support library).

The example consists of a single application task which connects to a GPIO driver task supplied by the
startKIT support library and the ADC task (also supplied by the startKIT support library). The ADC task
connects to a special hardware servce to access the ADC.

| startkit_adc_if channel

startkit_led_if

startKIT

startkit_button_if driver

Figure 1: Glowing LEDs task diagram

2.1 The Makefile

The Makefile needs to target the startKIT. So has the line:

TARGET = STARTKIT

The startKIT support library also needs to be added to the USED_MODULES part of the Makefile:
USED_MODULE = Tib_startkit_support

This will ensure that the startKIT support code is built into the application.

2.2 Application resource declaration

The resource used in the example are the ports used by the startKIT support library to access the I/0 on
the device. These are allocated in a structure and are always ports 32A, 4A, 4B and a single clock block:

startkit_gpio_ports gpio_ports =
{XS1_PORT_32A, XS1_PORT_4A, XS1_PORT_4B, XS1_CLKBLK_1};

The variable gpio_ports is then used when calling the startKIT gpio driver task.

Copyright 2015 XMOS Ltd. 3 WWW.Xmos.com
XM008200




®
l MOS ANO00177 (1.0.0)

2.3 The application main() function

The main() function sets up three tasks running in parallel:

e app will be the main application.
e startkit_gpio_driver is the driver task provided by the startKIT support library.
e adc_task is the ADC driver task provided by the startKIT support library.

Note that the startkit_adc call in the top-level main of the program is not a software task but a hardware
service that communicates over a channel. It also access to the ADC hardware on-chip.

These tasks are connected by three interfaces that allow the application to communicate with the startkKIT
GPIO driver task. Details of these interfaces can be found in the startKIT support library user guide. The
hardware service is connected to the ADC task via a channel.

int main(Q
{
// These interface connections Tink the application to the GPIO task and ADC driver task
startkit_led_if i_Tled; //For setting LEDs
startkit_button_if i_button; //For reading the button
startkit_adc_if i_adc; //For triggering/reading ADC
chan c_adc; //Used by ADC driver to connect to ADC hardware
par {
on tile[0].core[0]: startkit_gpio_driver(i_led, i_button,//Run GPIO task for Teds/button
null, null,
gpio_ports);
on tile[0].core[0]: adc_task(i_adc, c_adc, 0); //Run ADC server task (on same core as GPIO!)
startkit_adc(c_adc); //Declare the ADC service (this is the ADC
//hardware, not a task)
on tile[0]: app(i_led, i_button, i_adc); //Run the app
return 0;

Copyright 2015 XMOS Ltd. 4 WWW.Xmos.com
XM008200




®
l MOS ANO00177 (1.0.0)

2.4 The application task

The application logic is implemented in the app task.

void app(client startkit_led_if i_leds, client startkit_button_if i_button, client startkit_adc_if i_adc)

timer t_loop; //Loop timer
int Toop_time; //Loop time comparison variable

unsigned short adc_val[4] = {0, 0, 0, 0};//ADC vals

printstrin("App started");

t_Toop :> loop_time; //Take the initial timestamp of the 100Mhz timer
loop_time += LOOP_PERIOD; //Set comparison to future time
while (1) {

select {

case i_button.changed(): //Button event

if (i_button.get_value() == BUTTON_DOWN) {
printstrin("Button pressed!");
i_leds.set(2, 2, LED_ON);
i_leds.set(1l, 2, LED_ON);
i_leds.set(0, 2, LED_ON);

else {
printstrin("Button released!");
i_leds.set(2, 2, LED_OFF);
i_leds.set(1l, 2, LED_OFF);
i_leds.set(0, 2, LED_OFF);
}
break;
//Loop timeout event
case t_loop when timerafter(loop_time) :> void:

i_adc.trigger(Q); //Fire the ADC!
Toop_time += LOOP_PERIOD; //Setup future time event
break;
case i_adc.complete(): //Notification from ADC server when aquisition complete
i_adc.read(adc_val); //Get the values (and clear the notfication)

for(int i = 0; i < 4; i++){
printstr("ADC chan ");
printint(i);
printstr(" = ");
printint(adc_val[i]);
if (i < 3) printstr(", ");
switch (i){ //Map ADC channels to align with LEDs on startKIT
case 0:
i_leds.set(1, 1, adc_val[il);
break;
case 1:
i_leds.set(2, 0, adc_val[il);
break;
case 2:
i_leds.set(0, 1, adc_val[il);
break;
case 3:
i_leds.set(1, 0, adc_val[il);
break;

}

}
printchar('\n"');
break;

}//select
}//while 1
}

The task consists of an infinite loop that repeated reacts to three events via the xC select statement.
The first case reacts to a button press, the second to a periodic timer and the third case reacts to the
completion of the ADC reading a sample.

Copyright 2015 XMOS Ltd. 5 WWW.Xmos.com
XM008200




®
l MOS ANO00177 (1.0.0)

Other notes that can be seen with respect to the code are:

e The i_button.changed event is a notification from the GPIO driver tasks to indicate a button
change. It is defined as part of the starkit_button_if interface.

e The i_adc.complete event is a notification from the ADC driver tasks to indicate that the ADC has
completed reading a sample. The call i_adc.read gets the sample value.

e The Ted.set call tells teh GPIO driver task to set the output PWM level of an LED in the startKIT 3x3
LED grid. It is a function defined in the startkit_Ted_if interface.

e The case t_loop when ... event fires when the timer reaches the Toop_time timeout. Every time
it fires it will update the timeout making a periodic call. Each time this periodic event fires is will
trigger the ADC via the i_adc interface.

Copyright 2015 XMOS Ltd. 6 WWW.Xmos.com
XM008200




®
l MOS ANO00177 (1.0.0)

APPENDIX A - Launching the demo application

Once the demo example has been built either from the command line using xmake or via the build
mechanism of xTIMEcomposer studio we can execute the application on the startKIT.

Once built there will be a bin directory within the project which contains the binary for the xCORE device.
The xCORE binary has a XMOS standard .xe extension.

A.1 Launching from the command line

From the command line we use the xrun tool to download code to both the xCORE devices. If we change
into the bin directory of the project we can execute the code on the xCORE microcontroller as follows:

> Xxrun --xscope AN00177_startKIT_adc_demo.xe <-- Download and execute the xCORE code

Once this command has executed the application will be running on the startKIT. Touch the ADCO0..ADC3
pads/pins in the bottom left hand corner to light the LEDs. The values are also printed to the console.

A.2 Launching from xTIMEcomposer Studio

From xTIMEcomposer Studio we use the run mechanism to download code to xCORE device. Select the
XxCORE binary from the bin directory, right click and go to Run Configurations. Double click on xCORE
application to create a new run configuration, enable xXSCOPE 1/0 and then select Run.

Once this command has executed the application will be running on the startKIT. Touch the ADCO0..ADC3
pads/pins in the bottom left hand corner to light the LEDs. The values are also printed to the console.

Copyright 2015 XMOS Ltd. 7 WWW.Xmos.com
XM008200




®
l MOS ANO00177 (1.0.0)

APPENDIX B - References

XMOS Tools User Guide
http://www.xmos.com/published/xtimecomposer-user-guide
XMOS xCORE Programming Guide

http://www.xmos.com/published/xmos-programming-guide

Copyright 2015 XMOS Ltd. 8 WWW.Xmos.com
XM008200



http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide

®
l MOS ANO00177 (1.0.0)

APPENDIX C - Full source code listing

C.1 Source code for main.xc

// Copyright (c) 2015, XMOS Ltd, A1l rights reserved
#include <xsl.h>

#include <platform.h>

#include <print.h>

#include <xscope.h>

#include <stdlib.h>

#include "startkit_gpio.h"

#include "startkit_adc.h"

#define LOOP_PERIOD 20000000 //Trigger ADC and print results every 200ms

startkit_gpio_ports gpio_ports = {XS1_PORT_32A, XS1_PORT_4A, XS1_PORT_4B, XS1_CLKBLK_1}; //LEDs/SW, sliders,
— clock

void app(client startkit_led_if i_leds, client startkit_button_if i_button, client startkit_adc_if i_adc)

timer t_loop; //Loop timer
int Toop_time; //Loop time comparison variable

unsigned short adc_val[4] = {0, 0, 0, 0};//ADC vals

printstrin("App started");

t_loop :> Toop_time; //Take the initial timestamp of the 100Mhz timer
loop_time += LOOP_PERIOD; //Set comparison to future time
while (1) {

select {

case i_button.changed(): //Button event

if (i_button.get_value() == BUTTON_DOWN) {
printstrin("Button pressed!");
i_leds.set(2, 2, LED_ON);
i_leds.set(1l, 2, LED_ON);
i_leds.set(0, 2, LED_ON);

}

else {
printstrin("Button released!");
i_leds.set(2, 2, LED_OFF);
i_leds.set(1l, 2, LED_OFF);
i_leds.set(0, 2, LED_OFF);

}

break;

//Loop timeout event
case t_loop when timerafter(loop_time) :> void:

i_adc.trigger(Q); //Fire the ADC!
loop_time += LOOP_PERIOD; //Setup future time event
break;
case i_adc.complete(): //Notification from ADC server when aquisition complete
i_adc.read(adc_val); //Get the values (and clear the notfication)

for(int i = 0; 1 < 4; i++){
printstr("ADC chan ");
printint(i);
printstr(" = ");
printint(adc_val[i]);
if (i < 3) printstr(", ");
switch (i){ //Map ADC channels to align with LEDs on startKIT
case 0:
i_leds.set(1, 1, adc_val[il);
break;
case 1:
i_leds.set(2, 0, adc_val[il);
break;
case 2:
i_leds.set(0, 1, adc_val[il);
break;
case 3:
i_leds.set(1, 0, adc_val[il);

Copyright 2015 XMOS Ltd. 9 WWW.Xmos.com
XM008200




®
l MOS ANO00177 (1.0.0)

break;

}

}
printchar('\n"');
break;

}//select
}//while 1

int main(Q)

// These interface connections Tink the application to the GPIO task and ADC driver task

startkit_Tled_if i_led; //For setting LEDs
startkit_button_if i_button; //For reading the button
startkit_adc_if i_adc; //For triggering/reading ADC
chan c_adc; //Used by ADC driver to connect to ADC hardware
par {
on tile[0].core[0]: startkit_gpio_driver(i_led, i_button,//Run GPIO task for Tleds/button
null, null,
gpio_ports);
on tile[0].core[0]: adc_task(i_adc, c_adc, 0); //Run ADC server task (on same core as GPIO!)
startkit_adc(c_adc); //Declare the ADC service (this is the ADC
//hardware, not a task)
on tile[0]: app(i_led, i_button, i_adc); //Run the app
}
return 0;
}
. ____________________________________________________________________________________________________________________________________|
Copyright 2015 XMOS Ltd. 10 WWW.Xmos.com

XM008200



®
l MOS ANO00177 (1.0.0)

XMOS

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2015 XMOS Ltd. 11 WWW.Xmos.com
XM008200



	A startKIT ADC demo
	Overview
	Introduction

	A simple ADC example
	The Makefile
	Application resource declaration
	The application main() function
	The application task

	Launching the demo application
	Launching from the command line
	Launching from xTIMEcomposer Studio

	References
	Full source code listing
	Source code for main.xc


