®
l MOS ANOO0181 (1.0.0)

Application Note: ANOO181
XCORE-200 explorer - Accelerometer

This application note show how to the accelerometer on an xCORE-200 explorer development kit. The kit
itself has a Freescale FXOS8700CQ 6-Axis sensor with interated linear accelerometer and magnetometer.

The example uses the XMOS 12C library to demonstrate how 12C devices can be accessed in an easy and
efficient manner. It shows how to access the registers of an 12C device connected to the GPIO of an XMOS
multicore micro controller.

The code in the example builds a simple application which configures the FXOS8700CQ accelerometer
and reports X,y and z acceleration values to the user. Data is output to the development console using
xSCOPE and the accelerometer state is also reported via the RGB LED on the xCORE-200 explorer board.

Required tools and libraries

e XTIMEcomposer Tools - Version 14.0
e XMOS 12C library - Version 2.0.0

Required hardware

This application note is designed to run on any XMOS multicore microcontroller.

The example code provided with the application has been implemented and tested on the xCORE-200
explorer kit. The dependancy on this board is due to the FXOS8700CQ accelerometer being connected to
the specific GPIO ports defined in the example. The same device could easily be added to another XMOS
development platform.

Prerequisites

e This document assumes familiarity with the XMOS xCORE architecture, the XMOS GPIO library,
the XMOS tool chain and the xC language. Documentation related to these aspects which are
not specific to this application note are linked to in the references appendix.

e For descriptions of XMOS related terms found in this document please see the XMOS Glossary'.

e For the information relating to the 12C library, please see the document XMOS GPIO Library?.

e For the Freescale FXOS8700CQ device see the published datasheet3.

Thttp://www.xmos.com/published/glossary
2http://www.xmos .com/published/xmos-gpio-Tib
3http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FX0S8700CQ

Copyright 2015 XMOS Ltd. 1 WWW.Xmos.com
XMO007870



http://www.xmos.com/published/glossary
http://www.xmos.com/published/xmos-gpio-lib
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FXOS8700CQ

) MOS® ANOO0181 (1.0.0)

1 Overview

1.1 Introduction

XxCORE-200 explorerKIT contains everything you need to start developing applications on the powerful
XCORE-200 multicore microcontroller products from XMOS. It’s easy to use and provides lots of advanced
features on a small, low cost platform.

The xCORE-200 explorerKIT features our XE216-512 xCORE-200 multicore microcontroller. This device
has sixteen 32bit logical cores that deliver up to 2000MIPS completely deterministically. The combina-
tion of 100/1000 Mbps Ethernet, high speed USB and 53 high performance GPIO make the xCORE-200
explorerKIT an ideal platform for functions ranging from robotics and motion control to networking and
digital audio.

The xCORE-200 explorerKIT also features a 3D accelerometer, a 3-axis gyroscope and six servo interfaces
for rapid prototyping of motor and motion control projects.

The FXOS8700CQ 6-axis sensor combines industry leading accelerometer and magnetometer sensors in
a small 3 x 3 x 1.2 mm QFN plastic package. The 14-bit accelerometer and 16-bit magnetometer are
combined with a high-performance ASIC to enable an eCompass solution capable of a typical orientation
resolution of 0.1 degrees and sub 5 degree compass heading accuracy for most applications.

This application note demonstrates how to interface the FXOS8700CQ device with an XMOS multicore
microcontroller via an 12C interface.

1.2 Block diagram

/

o XTIME

Hardware response ports scheduler

xCORE logical core xCORE logical core PLL

xCORE logical core xCORE logical core

JTAG

xCORE logim xCORE logical core
xCOREEgical core xCORE logical core USB
xCORE logical core xCORE logical core
xCOREEgical core xCORE Iogi_cal core
xCORE logim xCORE logi_cal core

xCORE logical core xCORE logical core

-

Figure 1: Block diagram of XE216-512 device on xXCORE-200 explorerKIT

Copyright 2015 XMOS Ltd. 2 WWW.Xmos.com
XMO007870




®
l MOS ANOO181 (1.0.0)

2 Accelerometer application note

The example in this application note uses the XMOS I12C library and shows a simple program that config-
ures and reads accelerometer data from the attached FXOS8700CQ device.

For the accelerometer application example, the system comprises of single task running on an xCORE-
200 multicore microcontroller to provide the 12C master interface and another task running to provide
the application which handles the data from the accelerometer.

The tasks perform the following operations.

e A task to handle the 12C master interface
e A task to handle configuring and accessing the accelerometer in the FXOS8700CQ device

The following diagram shows the task and communication structure for this accelerometer example

i2c[1] R accelero-
meter

Figure 2: Task diagram of the accelerometer example

Copyright 2015 XMOS Ltd. 3 WWW.Xmos.com
XMO007870




®
l MOS ANOO0181 (1.0.0)

2.1 Makefile additions for this example

To start using the 12C library, you need to add Tib_i2c to your Makefile:

USED_MODULES = ... 1lib_i2c ...

You can then access the I2C functions in your source code via the i2c.h header file:

#include <i2c.h>

2.2 Application resource declaration

The following code declares the XMOS ports used for the 12C master interface connected to the accelerom-
eter device.

// I2C interface ports

port p_scl = XS1_PORT_1E;
port p_sda = XS1_PORT_1F;
port p_led = XS1_PORT_4F;

These declare ports XS1_PORT_1E and XS1_PORT_1F for the 12C interface and port XS1_PORT_4F for the
RBG LED interface.

There are a number of device specific defines declared in the source code, these are as follow and have
been taken from the datasheet for the FXOS8700CQ device which has been referenced on the front page
of the application note.

// FXO0S8700EQ register address defines
#define FX0S8700EQ_I2C_ADDR Ox1E
#define FX0S8700EQ_XYZ_DATA_CFG_REG OxOE
#define FX0S8700EQ_CTRL_REG_1 Ox2A
#define FX0S8700EQ_DR_STATUS 0x0
#define FX0S8700EQ_OUT_X_MSB 0x1
#define FX0S8700EQ_OUT_X_LSB 0x2
#define FX0S8700EQ_OUT_Y_MSB 0x3
#define FX0S8700EQ_OUT_Y_LSB 0x4
#define FX0S8700EQ_OUT_Z_MSB 0x5
#define FX0S8700EQ_OUT_Z_LSB 0x6

2.3 The application main() function

Below is the source code for the main function of this application, which is taken from the source file
main.xc

int main(void) {
i2c_master_if i2c[1];
par {
i2c_master(i2c, 1, p_scl, p_sda, 10);
accelerometer(i2c[0]);

3

return 0;

3

Looking at this in a more detail you can see the following:

e Ai2c_master_if typed interface is declared to access the connected 12C device
e The par functionality describes running separate tasks in parallel

Copyright 2015 XMOS Ltd. 4 WWW.Xmos.com
XM007870




®
l MOS ANOO0181 (1.0.0)

The i2c_master task is combined with the accelerometer routine by the compiler
There is a function call to configure the I2C master interface i2c_master()

There is a function to deal with handling the accelerometer data accelerometer()
In this example all tasks run on the tile tiTle[0]

2.4 Configuring the FXOS8700EQ accelerometer device

The task accelerometer() is used to handle the configuration of the device attached via the 12C master
interface. There are 2 configuration registers needed to be written to enable the accelerometer and start
it producing data that can be read. These can be seen in the following code.

// Configure FX0S8700EQ

result = i2c.write_reg(FX0S8700EQ_I2C_ADDR, FX0S8700EQ_XYZ_DATA_CFG_REG, 0x01);
if (result != I2C_REGOP_SUCCESS) {

printf("I2C write reg failed\n");
}

// Enable FX0S8700EQ

result = i2c.write_reg(FX0S8700EQ_I2C_ADDR, FX0S8700EQ_CTRL_REG_1, 0x01);
if (result != I2C_REGOP_SUCCESS) {

printf("I2C write reg failed\n");
}

The first register write configures the mode of the device and the second write enables it. The functionality
that can be accessed via these registers can be found in the FXOS8700EQ datasheet.

2.5 The accelerometer data processing main loop

Once the FXOS8700EQ device is configured it is possible to read and process the data it provides for
acceleration in the X,Y and Z axis. The code for the data processing main loop is as follows.

while (1) {
// Wait for data ready from FX0S8700EQ
do {

status_data = i2c.read_reg(FX0S8700EQ_I2C_ADDR, FX0S8700EQ_DR_STATUS, result);
} while (!status_data & 0x08);
int x,y,z;
x = read_acceleration(i2c, FX0S8700EQ_OUT_X_MSB);
y = read_acceleration(i2c, FX0S8700EQ_OUT_Y_MSB);
z = read_acceleration(i2c, FX0S8700EQ_OUT_Z_MSB);

output_accelerometer_values(x,y,z);

3

From this you can see the following.

The application checks for data ready by reading the FXOS8700EQ status register

When the device signals that data is availble the code starts reading data values

Data values for each of the axis is read via the read_acceleration() function

The device register that is going to be read is passed to read_acceleration()

Once all 3 axis have been read the data values returned are passed to output_accelerometer_values()

Copyright 2015 XMOS Ltd. 5 WWW.Xmos.com
XMO007870




®
l MOS ANOO0181 (1.0.0)

2.6 Reading acceleration data

The function read_acceleration() is used to access the FXOS8700EQ device and read data acceleration
values.

The code for this function is as follow.

int read_acceleration(client interface i2c_master_if i2c, int reg) {
i2c_regop_res_t result;
int accel_val = 0;
unsigned char data = 0;

// Read MSB data
data = i2c.read_reg(FX0S8700EQ_I2C_ADDR, reg, result);
if (result != I2C_REGOP_SUCCESS) {

printf("I2C read reg failed\n");

return 0;

3

accel_val = data << 2;

// Read LSB data
data = i2c.read_reg(FX0S8700EQ_I2C_ADDR, reg+l, result);
if (result != I2C_REGOP_SUCCESS) {

printf("I2C read reg failed\n");

return 0;

}
accel_val |= (data >> 6);

if (accel_val & 0x200) {
accel_val -= 1023;
}

return accel_val;

3

You can see the following in the code

e The axis to be read is passed into the function in the reg parameter
e There is an I12C read from the MSB register into the variable data

e The data value is processed into the return value accel_val

e There is an 12C read from the LSB register into the variable data

e The LSB data value is combined with the MSB data value in the variable accel_val
e The function processes and returns the value of the requested axis

2.7 Outputting accelerometer data

The data processing main loop calls the function output_accelerometer_values() to send data to the
development console via xSCOPE and to display state on the RGB LED.

The code for this function is as follows.

Copyright 2015 XMOS Ltd. 6 WWW.Xmos.com
XM007870




®
l MOS ANOO0181 (1.0.0)

void output_accelerometer_values(int x, int y, int z) {
int rgb_led_value = 0;

if (x > 0) {
rgb_led_value |= 0x2;

}

if (y > 0) {
rgb_led_value |= 0x4;

}

if (z > 0) {
rgb_led_value |= 0x8;

}

p_led <: rgb_led_value;

printf("X = %d, Y = %d, Z = %d \r", x, vy, z);
}

To output the accelerometer values the code does the following.

If the x axis value is positive it sets the red led on, otherwise it turns it off.

If the y axis value is positive it sets the green led on, otherwise it turns it off.
If the z axis value is positive it sets the blue led on, otherwise it turns it off.
The value of the RGDB led is output to the port p_led

printf() is used to send the x,y and z values to the development console.

Copyright 2015 XMOS Ltd. 7 WWW.Xmos.com
XM007870




®
l MOS ANOO181 (1.0.0)

APPENDIX A - Demo Hardware Setup

To run the demo, connect the xCORE-200 explorerKIT power to a USB socket, plug the XTAG into the
board and connect the xTAG USB cable to your development machine

Connect xTAG to
X5YS connector
on board

Connect power
cable to 5V in on
board

LED’s used for
accelerometer
application

Figure 3: XMOS xCORE-200 explorerKIT

The hardware should be configured as displayed above for this demo:

e The XTAG debug adapter should be connected to the XSYS connector and the XTAG USB cable should

be connected to the host machine
e The xCORE-200 explorerKIT should have the power cable connected

Copyright 2015 XMOS Ltd. 8 WWW.Xmos.com
XMO007870




®
l MOS ANOO0181 (1.0.0)

APPENDIX B - Launching the demo application

Once the demo example has been built either from the command line using xmake or via the build
mechanism of xTIMEcomposer studio we can execute the application on the xCORE-USB sliceKIT.

Once built there will be a bin directory within the project which contains the binary for the xCORE device.
The xCORE binary has a XMOS standard .xe extension.

B.1 Launching from the command line

From the command line we use the xrun tool to download code to both the xCORE devices. If we change
into the bin directory of the project we can execute the code on the xCORE microcontroller as follows:

> Xrun --xscope app_acccelerometer_demo.xe <-- Download and execute the xCORE code

Once this command has executed the application will be running on the xCORE-200 explorerKIT

B.2 Launching from xTIMEcomposer Studio

From xTIMEcomposer Studio we use the run mechanism to download code to xXCORE device. Select the
xCORE binary from the bin directory, right click and go to Run Configurations. Double click on xCORE
application to create a new run configuration, enable the xSCOPE I/0O mode in the dialog box and then
select Run.

Once this command has executed the application will be running on the xCORE-200 explorerKIT

B.3 Running the accelerometer demo

Once the application is started via either of the above methods there should be output printed to the
console showing the x,y and z axis values and as you move the development board these will change
along with the RGB LED on the development board.

Copyright 2015 XMOS Ltd. 9 WWW.Xmos.com
XMO007870




®
l MOS ANOO0181 (1.0.0)

APPENDIX C - References

XMOS Tools User Guide
http://www.xmos.com/published/xtimecomposer-user-guide
XMOS xCORE Programming Guide
http://www.xmos.com/published/xmos-programming-guide
XMOS 12C Library
http://www.xmos.com/published/xmos-i2c-Tib

Freescale FXOS8700CQ device information and datasheet

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FX0S8700CQ

Copyright 2015 XMOS Ltd. 10 WWW.Xmos.com
XMO007870



http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide
http://www.xmos.com/published/xmos-i2c-lib
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FXOS8700CQ

4

MOS

ANOO0181 (1.0.0)

APPENDIX D - Full source code listing

D.1

// Copyright (c) 2015, XMOS Ltd, A1l rights reserved

Source code for main.xc

#include <xsl.h>
#include <stdio.h>
#include "i2c.h"
#include <xscope.h>

// I2C interface ports

port p_scl = XS1_PORT_1E;
port p_sda = XS1_PORT_1F;
port p_led = XS1_PORT_4F;

// FX0S8700EQ register address defines
#define FX0S8700EQ_I2C_ADDR Ox1E
#define FX0S8700EQ_XYZ_DATA_CFG_REG OxOE
#define FXO0S8700EQ_CTRL_REG_1 Ox2A
#define FX0S8700EQ_DR_STATUS 0x0
#define FX0S8700EQ_OUT_X_MSB 0x1
#define FXO0S8700EQ_OUT_X_LSB 0x2
#define FX0S8700EQ_OUT_Y_MSB 0x3
#define FXO0S8700EQ_OUT_Y_LSB 0x4
#define FX0S8700EQ_OUT_Z_MSB 0x5
#define FX0S8700EQ_OUT_Z_LSB 0x6

int

}

read_acceleration(client interface i2c_master_if i2c, int reg) {

i2c_regop_res_t result;
int accel_val = 0;
unsigned char data = 0;

// Read MSB data

data = i2c.read_reg(FX0S8700EQ_I2C_ADDR,

if (result != I2C_REGOP_SUCCESS) {
printf("I2C read reg failed\n");
return 0;

}

accel_val = data << 2;

// Read LSB data

data = i2c.read_reg(FX0S8700EQ_I2C_ADDR,

if (result != I2C_REGOP_SUCCESS) {
printf("I2C read reg failed\n");
return 0;

}

accel_val |= (data >> 6);

if (accel_val & 0x200) {
accel_val -= 1023;

3

return accel_val;

reg, result);

reg+l,

result);

void output_accelerometer_values(int x, int y, int z) {
int rgb_led_value = 0;

if (x > 0) {

rgb_led_value |= 0x2;

3
if (y > 0) {

rgb_led_value |= 0x4;

if (z > 0) {

}

p—

rgb_led_value |= 0x8;

led <: rgb_led_value;

Copyright 2015 XMOS Ltd.

WWW.XmMOos.com
XM007870



®
l MOS ANOO0181 (1.0.0)

printf("X = %d, Y = %d, Z = %d \r', X, y, 2);

}

void accelerometer(client interface i2c_master_if i2c) {
i2c_regop_res_t result;
char status_data = 0;

// Configure FX0S8700EQ
result = i2c.write_reg(FX0S8700EQ_I2C_ADDR, FX0S8700EQ_XYZ_DATA_CFG_REG, 0x01);
if (result != I2C_REGOP_SUCCESS) {

printf("I2C write reg failed\n");

// Enable FX0S8700EQ
result = i2c.write_reg(FX0S8700EQ_I2C_ADDR, FX0S8700EQ_CTRL_REG_1, 0x01);
if (result != I2C_REGOP_SUCCESS) {
printf("I2C write reg failed\n");
}

while (1) {
// Wait for data ready from FX0S8700EQ
do {
status_data = i2c.read_reg(FX0S8700EQ_I2C_ADDR, FX0S8700EQ_DR_STATUS, result);
} while (!status_data & 0x08);

int x,y,z;

x = read_acceleration(i2c, FX0S8700EQ_OUT_X_MSB);

y read_acceleration(i2c, FX0S8700EQ_OUT_Y_MSB);

z = read_acceleration(i2c, FX0S8700EQ_OUT_Z_MSB);
output_accelerometer_values(x,y,z);

// End of accelerometer()

int main(void) {
i2c_master_if i2c[1];
par {
i2c_master(i2c, 1, p_scl, p_sda, 10);
accelerometer(i2c[0]);

}

return 0;

Copyright 2015 XMOS Ltd. 12 WWW.Xmos.com
XM007870




®
l MOS ANOO0181 (1.0.0)

XMOS

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2015 XMOS Ltd. 13 WWW.Xmos.com
XMO007870



	xCORE-200 explorer - Accelerometer
	Overview
	Introduction
	Block diagram

	Accelerometer application note
	Makefile additions for this example
	Application resource declaration
	The application main() function
	Configuring the FXOS8700EQ accelerometer device
	The accelerometer data processing main loop
	Reading acceleration data
	Outputting accelerometer data

	Demo Hardware Setup
	Launching the demo application
	Launching from the command line
	Launching from xTIMEcomposer Studio
	Running the accelerometer demo

	References
	Full source code listing
	Source code for main.xc


