
AN00109 (1.0.1)

Application Note: AN00109

Multiple Firmware Booting
This application note demonstrates how to use XFLASH option --loader to change the behaviour of
selecting which image to boot by the flash loader.

This application note provides an example that uses a button to select the image that gets booted. When
the button is in the up position at power on, the highest even number image version will be booted. When
the button is in the down position at power on, the highest odd number image version will be booted.

Required tools and libraries

• xTIMEcomposer Tools - Version 13.0

Required hardware

This application note is designed to run on an XMOS startKIT.

The example code provided with the application has been implemented and tested on the startKIT but
there is no dependancy on this board and it can be modified to run on any development board.

Prerequisites

• This document assumes familiarity with the XMOS xCORE architecture, the XMOS tool chain and the
xC language. Documentation related to these aspects which are not specific to this application note
are linked to in the references appendix.

• For descriptions of XMOS related terms found in this document please see the XMOS Glossary1.

1http://www.xmos.com/published/glossary

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM006679

http://www.xmos.com/published/glossary


AN00109 (1.0.1)

1 Overview

1.1 Introduction

The flash memory is logically split between a boot and data partition. The boot partition consists of a
flash loader followed by a factory image and zero or more optional upgrade images. Each image starts
with a descriptor that contains a unique version number and a header that contains a table of code/data
segments for each tile used by the program and a CRC.

The flash loader scans flash memory searching for valid images to boot. By default the flash loader boots
the image with the highest version number. This default behavior can be modifed by writing some simple
functions and using the XFLASH option --loader.

An application designer may wish to change this default behavior because a device may need to operate
differently depending on the position of a switch, jumper, button or if an external device is attached
or detached. Using the XFLASH option --loader gives the application designer control to decide which
image version to boot based on one or more of these inputs.

In this application note example, a button is used to select which version is booted.

This application note demonstrates

• How to write and compile the functions used to select the version to be booted.
• How to use the XFLASH option --loader to ensure these functions are used by the flash loader.
• How to provide an upgrade to the versions.

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM006679



AN00109 (1.0.1)

2 Multiple Image Boot application note

2.1 Source code structure for this application note

There are four projects contained within this source code structure. There is also the file loader.xc
which contains the functions required to modify the behavior of the flash loader.

These are stored in the following directory structure:

src <-- top level project source directory
app_factory_image_button_down <-- project
src <-- source directory for project
main.xc <-- source file for project

Makefile <-- make file for project
app_factory_image_button_up <-- project
src <-- source directory for project
main.xc <-- source file for project

Makefile <-- make file for project
app_upgrade_image_button_down <-- project
src <-- source directory for project
main.xc <-- source file for project

Makefile <-- make file for project
app_upgrade_image_button_up <-- project
src <-- source directory for project
main.xc <-- source file for project

Makefile <-- make file for project
loader <-- directory for the loader functions
loader.xc <-- functions used to select the image version to boot

Project app_factory_image_button_down is used to create a factory image version that boots when the
button on the startKIT is pressed as power is turned on. This repeatedly flashes a diamond pattern on the
LED’s where the LED’s are either on or off.

Project app_factory_image_button_up is used to create a factory image version that boots when the button
on the startKIT is not pressed as power is turned on. This repeatedly flashes a criss-cross pattern on the
LED’s where the LED’s are either on or off.

Project app_upgrade_image_button_down is used to create an upgrade image version that boots when
the button on the startKIT is pressed as power is turned on. This repeatedly flashes a diamond pattern
on the LED’s where the LED’s smoothly transition between on and off.

Project app_upgrade_image_button_up is used to create an upgrade image version that boots when the
button on the startKIT is not pressed when power is turned on. This repeatedly flashes a criss-cross
pattern on the LED’s where the LED’s smoothly transition between on and off.

The file loader.xc contains the functions required to change the flash loaders default behavior of selecting
the image with the highest version number.

Two modules used to drive GPIO on the XMOS startKIT are also used but are not described as they fall
outside the scope of this application note.

2.2 Writing the functions to select and boot the desired image

The functions for selecting and booting the desired image are contained within the file loader.xc.

IMPORTANT NOTE:

As of tools 13.2 the loader functions may get called twice, once before the pll is reset and once after.
Application designers need to take this into careful consideration when writing the following functions.

// Copyright (c) 2016, XMOS Ltd, All rights reserved
#include <xs1.h>

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM006679



AN00109 (1.0.1)

/* Port for button on startKIT board. */
in port p_button = XS1_PORT_32A;

/* Enum for representing button state. */
enum button_val
{
BUTTON_UP,
BUTTON_DOWN

};

/* Store the button position. */
int buttonPosition;

/* Enum for representing the potential interest in the image. */
enum interest
{
NOT_INTERESTED = 0,
INTERESTED = 1

};

/* Store the version of the image in memory that will potentially be booted. */
int candidateImageVersion = -1;

/* Store the address of the image in memory that will potentially be booted. */
unsigned candidateImageAddress;

void init(void)
{
unsigned buttonVal;

/* Read state of button. */
p_button :> buttonVal;

/* Button is up. */
if((buttonVal & 1) == 1)
{
buttonPosition = BUTTON_UP;

}
/* Button is down. */
else
{
buttonPosition = BUTTON_DOWN;

}
}

int checkCandidateImageVersion(int imageVersion)
{
/* If the button is up and imageVersion is even and imageVersion is higher */
/* than the last candidateImageVersion then this is a potential version */
/* for booting. */
if ((buttonPosition == BUTTON_UP) &&

((imageVersion % 2) == 0) &&
(imageVersion > candidateImageVersion))

{
return INTERESTED;

}
/* If the button is down and imageVersion is odd and imageVersion is higher */
/* than the last candidateImageVersion then this is a potential version */

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM006679



AN00109 (1.0.1)

/* for booting. */
else if ((buttonPosition == BUTTON_DOWN) &&

((imageVersion % 2) != 0) &&
(imageVersion > candidateImageVersion))

{
return INTERESTED;

}

/* Not a potential firmware image in all other cases. */
return NOT_INTERESTED;

}

void recordCandidateImage(int imageVersion, unsigned imageAddress)
{
/* Save the imageVersion that we are interested in. */
candidateImageVersion = imageVersion;
/* Save the imageAddress of the imageVersion that we are interested in. */
candidateImageAddress = imageAddress;

}

unsigned reportSelectedImage(void)
{
/* Return the candidateImageAddress of the image that we are interested in. */
return candidateImageAddress;

}

In this example the button on input port XS1_PORT_32A is used to decide which image version to boot.
The include file <xs1.h> is required for this port definition.

/* Port for button on startKIT board. */
in port p_button = XS1_PORT_32A;

The first function that is called by the flash loader is the init() function. This function is called before
the flash loader starts to search flash memory looking for images to boot.

In this example the init() function is used to test the value of the button on input port XS1_PORT_32A
and save this value to the global symbol buttonPosition. The enumerator button_val is used to
represent the current status of the button.

/* Enum for representing button state. */
enum button_val
{
BUTTON_UP,
BUTTON_DOWN

};

/* Store the button position. */
int buttonPosition;

Copyright 2016 XMOS Ltd. 5 www.xmos.com
XM006679



AN00109 (1.0.1)

void init(void)
{
unsigned buttonVal;

/* Read state of button. */
p_button :> buttonVal;

/* Button is up. */
if((buttonVal & 1) == 1)
{
buttonPosition = BUTTON_UP;

}
/* Button is down. */
else
{
buttonPosition = BUTTON_DOWN;

}
}

After calling init(), the flash loader scans flash memory looking for valid images to boot. When
the flash loader finds an image header it performs a CRC check of the first 256 byte page
of that image. If the first page of the image is valid then the flash loader calls the function
checkCandidateImageVersion(int imageVersion). The imageVersion parameter indicates the
version of the upgrade image found by the flash loader. All images contained within flash memory must
have a unique version number. The function checkCandidateImageVersion(int imageVersion) must
return an integer value indicating whether this imageVersion is of interest or not. The value 1 is used to
represent that the imageVersion is of interest. The value 0 is used to represent that the imageVersion
is not of interest.

/* Enum for representing the potential interest in the image. */
enum interest
{
NOT_INTERESTED = 0,
INTERESTED = 1

};

In this example the function checkCandidateImageVersion(int imageVersion) checks the value of
the button position stored in the global symbol buttonPosition. If the button is in the up position and
the imageVersion is an even version number and the imageVersion is higher than the value stored in
the global symbol candidateImageVersion, then INTERESTED is returned. If the button is in the down
position and the imageVersion is an odd version number and the imageVersion is higher than the value
stored in the global symbol candidateImageVersion, then INTERESTED is returned. In all other cases
the value NOT_INTERESTED is returned.

Copyright 2016 XMOS Ltd. 6 www.xmos.com
XM006679



AN00109 (1.0.1)

int checkCandidateImageVersion(int imageVersion)
{
/* If the button is up and imageVersion is even and imageVersion is higher */
/* than the last candidateImageVersion then this is a potential version */
/* for booting. */
if ((buttonPosition == BUTTON_UP) &&

((imageVersion % 2) == 0) &&
(imageVersion > candidateImageVersion))

{
return INTERESTED;

}
/* If the button is down and imageVersion is odd and imageVersion is higher */
/* than the last candidateImageVersion then this is a potential version */
/* for booting. */
else if ((buttonPosition == BUTTON_DOWN) &&

((imageVersion % 2) != 0) &&
(imageVersion > candidateImageVersion))

{
return INTERESTED;

}

/* Not a potential firmware image in all other cases. */
return NOT_INTERESTED;

}

If the function checkCandidateImageVersion(int imageVersion) returns NOT_INTERESTED the flash
loader continues to search flash memory looking for further upgrade image versions.

If the function checkCandidateImageVersion(int imageVersion) returns INTERESTED the flash
loader performs a full CRC check of the image. If the CRC is valid then the flash loader calls the
function recordCandidateImage(int imageVersion, unsigned imageAddress). The parameter
imageVersion is passed in by the flash loader and shall be the same version number as given to the
function checkCandidateImageVersion(int imageVersion). The parameter imageAddress is also
passed in by the flash loader and represents the address in flash memory where this version of the image
is found.

In this example the function recordCandidateImage(int imageVersion, unsigned imageAddress)
saves the imageVersion value into the global symbol candidateImageVersion and saves the
imageAddress value into the global symbol candidateImageAddress.

/* Store the version of the image in memory that will potentially be booted. */
int candidateImageVersion = -1;

/* Store the address of the image in memory that will potentially be booted. */
unsigned candidateImageAddress;

void recordCandidateImage(int imageVersion, unsigned imageAddress)
{
/* Save the imageVersion that we are interested in. */
candidateImageVersion = imageVersion;
/* Save the imageAddress of the imageVersion that we are interested in. */
candidateImageAddress = imageAddress;

}

On return from the function recordCandidateImage the flash loader continues to search flash memory
looking for additional images. The process of calling checkCandidateImageVersion(int imageVersion)
and recordCandidateImage(int imageVersion, unsigned imageAddress) repeats until all of flash

Copyright 2016 XMOS Ltd. 7 www.xmos.com
XM006679



AN00109 (1.0.1)

memory has been searched.

Once the search is complete the flash loader calls the function reportSelectedImage(). This function
returns the address in flash memory of the image that is to be booted.

In this example the function reportSelectedImage() is used to return the value of the
candidateImageAddress variable that represents the address of the highest valid image to boot.

unsigned reportSelectedImage(void)
{
/* Return the candidateImageAddress of the image that we are interested in. */
return candidateImageAddress;

}

Copyright 2016 XMOS Ltd. 8 www.xmos.com
XM006679



AN00109 (1.0.1)

APPENDIX A - Example Hardware Setup

This application note example is designed to run on the xCORE startKIT module board which has a single
button, and 9 LED’s positioned as a 3x3 square. The xCORE startKIT module board should be connected
to a host machine via the USB cable supplied with the board to allow program download.

Figure 1: XMOS startKIT core module board setup

Once the flash memory on the xCORE startKIT has been appropriately programmed with this application
note example, the LED’s flash with the following patterns.

With the button on the xCORE startKIT in the up position when power is applied, the criss-cross LED
pattern flashes on and off.

Figure 2: XMOS startKIT core module board button up boot

With the button on the xCORE startKIT in the down position when power is applied, the diamond LED
pattern flashes on and off.

Copyright 2016 XMOS Ltd. 9 www.xmos.com
XM006679



AN00109 (1.0.1)

Figure 3: XMOS startKIT core module button down boot

Copyright 2016 XMOS Ltd. 10 www.xmos.com
XM006679



AN00109 (1.0.1)

APPENDIX B - Launching the example applications

B.1 Building the example application projects

Change directory into the top level src directory:

> cd src/

The top level Makefile builds the 4 example application projects and their dependancies. This can be
launched from the command line using the tool xmake:

> xmake

Once built there is a bin directory within each application project which contains the binary with a XMOS
standard .xe extension for that application project.

B.2 Building the loader functions

In order to build the loader functions described within this application note and defined in the file
loader/loader.xc the XMOS xcc tool is used on the command line with the following options:

> xcc -c loader/loader.xc -o loader/loader.o

The option -c causes the xcc tool to compile and assemble the input file without linking.

B.3 Writing the default applications to the flash device

From the command line the xflash tool is used to download the code to the flash device on the xCORE
startKIT module board. The XFLASH option --factory is used to specify the default factory image with
a version number of 0. As the file loader.xc specifies that the button in the up position boots all even
number images then the application project app_factory_image_button_up is used with the --factory
option. Only one application can be specified with the XFLASH option --factory, all other applica-
tions must use the XFLASH option --upgrade and specify the version number. The application project
app_factory_image_button_down is used with the XFLASH option --upgrade and has an odd version
number of 1. The XFLASH option --loader is used to include the compiled loader functions when XFLASH
creates the flash loader. The complete XFLASH command line is as follows:

> xflash --target=STARTKIT --factory app_factory_image_button_up/bin/app_factory_image_button_up.xe --upgrade
↪→ 1 app_factory_image_button_down/bin/app_factory_image_button_down.xe --loader loader/loader.o

Once XFLASH has sucessfully programmed the flash memory device on the startKIT module board, the
xCORE device is reset. The default application to boot should therefore be the image for the button up
position. In this instance the LED’s should start flashing a criss cross pattern.

Remove the power from the startKIT module board. Now press and hold the button on the device whilst
applying power to the board. This time the device should boot the default image for the button in the
down position. In this instance the LED’s should start flashing in a diamond pattern.

B.4 Writing the upgrade applications to the flash device

In this application note example the command line tool xflash is used to create and download the
upgrade images onto the xCORE startKIT module board.

As the file loader.xc specifies that the button in the up position boots all even number images then
the application project app_upgrade_image_button_up is used with the --upgrade option and has an
even version number of 2. The application project app_upgrade_image_button_down is used with the

Copyright 2016 XMOS Ltd. 11 www.xmos.com
XM006679



AN00109 (1.0.1)

--upgrade option and has an odd version number of 3. The complete XFLASH command line is as follows:

> xflash --target=STARTKIT --factory app_factory_image_button_up/bin/app_factory_image_button_up.xe --upgrade
↪→ 1 app_factory_image_button_down/bin/app_factory_image_button_down.xe --upgrade 2
↪→ app_upgrade_image_button_up/bin/app_upgrade_image_button_up.xe --upgrade 3 app_upgrade_image_button_down
↪→ /bin/app_upgrade_image_button_down.xe --loader loader/loader.o

Once XFLASH has sucessfully programmed the flash memory device on the startKIT module board, the
xCORE device is reset. The default application to boot should therefore be the upgrade image for the
button up position. In this instance the LED’s should start transitioning a criss cross pattern between on
and off. The effect is a much smoother fade in and out of the LED’s.

Remove the power from the startKIT module board. Now press and hold the button on the device whilst
applying power to the board. This time the device should boot the upgrade image for the button in the
down position. In this instance the LED’s should start transitioning a a diamond pattern between on and
off. The effect is a much smoother fade in and out of the LED’s.

In normal practice in-field upgrade would be integrated into the application running on the xCORE. In
this case XFLASH is used to create an upgrade image that is written to a binary file, and the application is
responsible for writing the upgrade images to flash memory (e.g. using the libflash library). The complete
XFLASH command line might look something as follows in this instance:

> xflash --target=STARTKIT --upgrade 2 app_upgrade_image_button_up/bin/app_upgrade_image_button_up.xe --
↪→ upgrade 3 app_upgrade_image_button_down/bin/app_upgrade_image_button_down.xe --factory-version 13.2 -o
↪→ my_upgrade_images.bin

Copyright 2016 XMOS Ltd. 12 www.xmos.com
XM006679



AN00109 (1.0.1)

APPENDIX C - References

XMOS Tools User Guide

http://www.xmos.com/published/xtimecomposer-user-guide

XMOS xCORE Programming Guide

http://www.xmos.com/published/xmos-programming-guide

XMOS startKIT Hardware Guide

http://www.xmos.com/published/startkit-hardware-manual

Copyright 2016 XMOS Ltd. 13 www.xmos.com
XM006679

http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide
http://www.xmos.com/published/startkit-hardware-manual


AN00109 (1.0.1)

APPENDIX D - Full source code listing

D.1 Source code for loader.xc

// Copyright (c) 2016, XMOS Ltd, All rights reserved
#include <xs1.h>

/* Port for button on startKIT board. */
in port p_button = XS1_PORT_32A;

/* Enum for representing button state. */
enum button_val
{
BUTTON_UP,
BUTTON_DOWN

};

/* Store the button position. */
int buttonPosition;

/* Enum for representing the potential interest in the image. */
enum interest
{
NOT_INTERESTED = 0,
INTERESTED = 1

};

/* Store the version of the image in memory that will potentially be booted. */
int candidateImageVersion = -1;

/* Store the address of the image in memory that will potentially be booted. */
unsigned candidateImageAddress;

void init(void)
{
unsigned buttonVal;

/* Read state of button. */
p_button :> buttonVal;

/* Button is up. */
if((buttonVal & 1) == 1)
{
buttonPosition = BUTTON_UP;

}
/* Button is down. */
else
{
buttonPosition = BUTTON_DOWN;

}
}

int checkCandidateImageVersion(int imageVersion)
{
/* If the button is up and imageVersion is even and imageVersion is higher */
/* than the last candidateImageVersion then this is a potential version */
/* for booting. */

Copyright 2016 XMOS Ltd. 14 www.xmos.com
XM006679



AN00109 (1.0.1)

if ((buttonPosition == BUTTON_UP) &&
((imageVersion % 2) == 0) &&
(imageVersion > candidateImageVersion))

{
return INTERESTED;

}
/* If the button is down and imageVersion is odd and imageVersion is higher */
/* than the last candidateImageVersion then this is a potential version */
/* for booting. */
else if ((buttonPosition == BUTTON_DOWN) &&

((imageVersion % 2) != 0) &&
(imageVersion > candidateImageVersion))

{
return INTERESTED;

}

/* Not a potential firmware image in all other cases. */
return NOT_INTERESTED;

}

void recordCandidateImage(int imageVersion, unsigned imageAddress)
{
/* Save the imageVersion that we are interested in. */
candidateImageVersion = imageVersion;
/* Save the imageAddress of the imageVersion that we are interested in. */
candidateImageAddress = imageAddress;

}

unsigned reportSelectedImage(void)
{
/* Return the candidateImageAddress of the image that we are interested in. */
return candidateImageAddress;

}

D.2 Source code for project app_factory_image_button_down

// Copyright (c) 2016, XMOS Ltd, All rights reserved
#include <xs1.h>
#include <platform.h>
#include <print.h>
#include "startkit_gpio.h"

// This function is combinable - it can share a core with other tasks.
[[combinable]]
static void glow(client startkit_led_if leds)
{
timer tmr;
int period = 1 * 1000 * 1000 * 100; // period from off to on = 1s;
int level = LED_OFF; // the level of led brightness;
unsigned pattern = 0b010101010; // the pattern output to the leds;
int timestamp; // holds the current timestamp;

// Take the initial timestamp of the 100Mhz timer.
tmr :> timestamp;

while (1)
{

Copyright 2016 XMOS Ltd. 15 www.xmos.com
XM006679



AN00109 (1.0.1)

select
{
// After 'delay' ticks do this.
case tmr when timerafter(timestamp + period) :> void:
if (level == LED_ON)
{
level = LED_OFF;

}
else
{
level = LED_ON;

}
// set the leds.
leds.set_multiple(pattern, level);
// update the timestamp for the next timeout.
timestamp += period;
break;

}
}

}

//Required ports to drive the GPIO on the startKIT.
startkit_gpio_ports gpio_ports =
{XS1_PORT_32A, XS1_PORT_4A, XS1_PORT_4B, XS1_CLKBLK_1};

// 'main' sets up the system, consisting of two tasks - one to drive
// the i/o and one to run the application that communicates with that driver.
int main()
{
// These interface connections link the application to the gpio driver.
startkit_led_if i_led;
par
{
on tile[0].core[0]: startkit_gpio_driver(i_led, null,

null, null,
gpio_ports);

on tile[0].core[1]: glow(i_led);
}
return 0;

}

D.3 Source code for project app_factory_image_button_up

// Copyright (c) 2016, XMOS Ltd, All rights reserved
#include <xs1.h>
#include <platform.h>
#include <print.h>
#include "startkit_gpio.h"

// This function is combinable - it can share a core with other tasks.
[[combinable]]
static void glow(client startkit_led_if leds)
{
timer tmr;
int period = 1 * 1000 * 1000 * 100; // period from off to on = 1s;
int level = LED_OFF; // the level of led brightness;
unsigned pattern = 0b101010101; // the pattern output to the leds;

Copyright 2016 XMOS Ltd. 16 www.xmos.com
XM006679



AN00109 (1.0.1)

int timestamp; // holds the current timestamp;

// Take the initial timestamp of the 100Mhz timer.
tmr :> timestamp;

while (1)
{
select
{
// After 'delay' ticks do this.
case tmr when timerafter(timestamp + period) :> void:
if (level == LED_ON)
{
level = LED_OFF;

}
else
{
level = LED_ON;

}
// set the leds.
leds.set_multiple(pattern, level);
// update the timestamp for the next timeout.
timestamp += period;
break;

}
}

}

startkit_gpio_ports gpio_ports =
{XS1_PORT_32A, XS1_PORT_4A, XS1_PORT_4B, XS1_CLKBLK_1};

// 'main' sets up the system, consisting of two tasks - one to drive
// the i/o and one to run the application that communicates with that driver.
int main()
{
// These interface connections link the application to the gpio driver.
startkit_led_if i_led;
par
{
on tile[0].core[0]: startkit_gpio_driver(i_led, null,

null, null,
gpio_ports);

on tile[0].core[1]: glow(i_led);
}
return 0;

}

D.4 Source code for project app_upgrade_image_button_down

// Copyright (c) 2016, XMOS Ltd, All rights reserved
#include <xs1.h>
#include <platform.h>
#include <print.h>
#include "startkit_gpio.h"

// This function is combinable - it can share a core with other tasks.

Copyright 2016 XMOS Ltd. 17 www.xmos.com
XM006679



AN00109 (1.0.1)

[[combinable]]
static void glow(client startkit_led_if leds)
{
timer tmr;
int period = 1 * 1000 * 1000 * 100; // period from off to on = 1s;
unsigned res = 30; // increment the brightness in this

// number of steps;
int delay = period / res; // how long to wait between updates;
int level = 0; // the level of led brightness;
unsigned pattern = 0b010101010; // the pattern output to the leds;
int timestamp; // holds the current timestamp;
int dir = 1; // step increase in led brightness;

// Take the initial timestamp of the 100Mhz timer.
tmr :> timestamp;

while (1)
{
select
{
// After 'delay' ticks do this.
case tmr when timerafter(timestamp + delay) :> void:
// increase the output level of the led.
level += dir * (LED_ON / res);
if (level > LED_ON)
{
level = LED_ON;
dir = -1;

}
if (level < 0)
{
level = 0;
dir = 1;

}
// set the leds.
leds.set_multiple(pattern, level);
// update the timestamp for the next timeout.
timestamp += delay;
break;

}
}

}

startkit_gpio_ports gpio_ports =
{XS1_PORT_32A, XS1_PORT_4A, XS1_PORT_4B, XS1_CLKBLK_1};

// 'main' sets up the system, consisting of two tasks - one to drive
// the i/o and one to run the application that communicates with that driver.
int main()
{
// These interface connections link the application to the gpio driver.
startkit_led_if i_led;
par
{
on tile[0].core[0]: startkit_gpio_driver(i_led, null,

null, null,
gpio_ports);

Copyright 2016 XMOS Ltd. 18 www.xmos.com
XM006679



AN00109 (1.0.1)

on tile[0].core[1]: glow(i_led);
}
return 0;

}

D.5 Source code for project app_upgrade_image_button_up

// Copyright (c) 2016, XMOS Ltd, All rights reserved
#include <xs1.h>
#include <platform.h>
#include <print.h>
#include "startkit_gpio.h"

// This function is combinable - it can share a core with other tasks.
[[combinable]]
static void glow(client startkit_led_if leds)
{
timer tmr;
int period = 1 * 1000 * 1000 * 100; // period from off to on = 1s;
unsigned res = 30; // increment the brightness in this

// number of steps;
int delay = period / res; // how long to wait between updates;
int level = 0; // the level of led brightness;
unsigned pattern = 0b101010101; // the pattern output to the leds;
int timestamp; // holds the current timestamp;
int dir = 1; // step increase in led brightness;

// Take the initial timestamp of the 100Mhz timer.
tmr :> timestamp;

while (1)
{
select
{
// After 'delay' ticks do this.
case tmr when timerafter(timestamp + delay) :> void:
// increase the output level of the led.
level += dir * (LED_ON / res);
if (level > LED_ON)
{
level = LED_ON;
dir = -1;

}
if (level < 0)
{
level = 0;
dir = 1;

}
// set the leds.
leds.set_multiple(pattern, level);
// update the timestamp for the next timeout.
timestamp += delay;
break;

}
}

}

Copyright 2016 XMOS Ltd. 19 www.xmos.com
XM006679



AN00109 (1.0.1)

startkit_gpio_ports gpio_ports =
{XS1_PORT_32A, XS1_PORT_4A, XS1_PORT_4B, XS1_CLKBLK_1};

// 'main' sets up the system, consisting of two tasks - one to drive
// the i/o and one to run the application that communicates with that driver.
int main()
{
// These interface connections link the application to the gpio driver.
startkit_led_if i_led;
par
{
on tile[0].core[0]: startkit_gpio_driver(i_led, null,

null, null,
gpio_ports);

on tile[0].core[1]: glow(i_led);
}
return 0;

}

Copyright 2016 XMOS Ltd. 20 www.xmos.com
XM006679



AN00109 (1.0.1)

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 21 www.xmos.com
XM006679


	Multiple Firmware Booting
	Overview
	Introduction

	Multiple Image Boot application note
	Source code structure for this application note
	Writing the functions to select and boot the desired image

	Example Hardware Setup
	Launching the example applications
	Building the example application projects
	Building the loader functions
	Writing the default applications to the flash device
	Writing the upgrade applications to the flash device

	References
	Full source code listing
	Source code for loader.xc
	Source code for project app_factory_image_button_down
	Source code for project app_factory_image_button_up
	Source code for project app_upgrade_image_button_down
	Source code for project app_upgrade_image_button_up


