®
l MOS ANO00126 (2.0.0)

Application Note: AN0OO126
USB Printer Device Class

This application note shows how to create a USB device compliant to the standard USB printer device class
on an XMOS multicore microcontroller.

The code associated with this application note provides an example of using the XMQOS USB Device Library
(XUD) and associated USB class descriptors to provide a framework for the creation of a USB printer device.

The printer framework uses XMOS libraries to provide a unidirectional printer device example over high
speed USB. The code used in the application note creates a device which supports the receiving of data
from the USB host in order to demonstrate how to build a USB printer interface on an XMOS device.

Text files can be printed from the USB host and the text will be sent back to the host via debug output
from the xCORE device demonstrating the operation of the USB printer device in this application.

Note: This application note provides a standard USB Printer Class Device and as a result does not require
drivers to run on Windows, Mac or Linux.

Required tools and libraries

e XTIMEcomposer Tools - Version 14.0.0
e XMOS USB library - Version 2.0.0
e XMOS debug printing library - Version 2.0.0

Required hardware

This application note is designed to run on an XMOS xCORE-USB series device.

The example code provided with the application has been implemented and tested on the xCORE-USB
sliceKIT (XK-SK-U16-ST) but there is no dependency on this board and it can be modified to run on any
development board which uses an xCORE-USB series device.

Prerequisites

e This document assumes familiarity with the XMOS xCORE architecture, the Universal Serial Bus 2.0
Specification (and related specifications, the XMOS tool chain and the xC language. Documentation
related to these aspects which are not specific to this application note are linked to in the references
appendix.

e For descriptions of XMOS related terms found in this document please see the XMOS Glossary'.

e For the full API listing of the XMOS USB Device (XUD) Library please see the the document XMOS USB
Device (XUD) Library?.

e For information on designing USB devices using the XUD library please see the XMOS USB Device
Design Guide for reference3.

Thttp://www.xmos.com/published/glossary
2http://www.xmos .com/publi shed/xuddg
3http://www.xmos.com/published/xmos-usb-device-design-guide

Copyright 2015 XMOS Ltd. 1 WWW.Xmos.com
XM006124

http://www.xmos.com/published/glossary
http://www.xmos.com/published/xuddg
http://www.xmos.com/published/xmos-usb-device-design-guide

®
l MOS ANO00126 (2.0.0)

1 Overview

1.1 Introduction

The Universal Serial Bus (USB) is a communications architecture that gives a PC the ability to interconnect
a variety of devices via a simple four-wire cable. One such device is the printer. Traditionally, printers
have been interfaced using the following technologies:

e Unidirectional parallel port
e Bi-directional parallel port
e Serial port

e SCSI port

e Ethernet/LAN

There are other, more sophisticated printer interfaces, but the ones previously listed are the most popular.
USB offers a much greater throughput capability than the serial port and is comparable in speed to the
parallel port. This makes both parallel and serial printers good candidates for interfacing with USB.

The USB specification provides as standard device class for the implementation of USB printers.

(http://www.usb.org/developers/devclass_docs/usbprintll.pdf)

1.2 Block diagram

Text Printer USB Device

Printer

LR ED Endpoint

BUFFER

USB PRINTER
CONNECTED

Endpoint 0

\ XS1-Ue-64)

Figure 1: Block diagram of USB printer application example

Copyright 2015 XMOS Ltd. 2 WWW.Xmos.com
XM006124

http://www.usb.org/developers/devclass_docs/usbprint11.pdf

®
l MOS ANO00126 (2.0.0)

2 USB Printer Device Class application note

The demo in this note uses the XMOS USB device library and shows a simple program that receives data
in PCL format from the host and outputs this data to the console in the form of a log.

For the USB printer device class application example, the system comprises three tasks running on sepa-
rate logical cores of a xCORE-USB multicore microcontroller.

The tasks perform the following operations.

e A task containing the USB library functionality to communicate over USB
e A task implementing EndpointO responding both standard and printer class USB requests
e A task implementing the application code for receiving printer data into the device

These tasks communicate via the use of XCONNECT channels which allow data to be passed between
application code running on separate logical cores.

The following diagram shows the task and communication structure for this USB printer device class
application example.

XUD
Manager

c_ep_out[0]

c_ep_in[0] c_ep_out[1]
) Printer

Figure 2: Task diagram of USB printer application example

2.1 Makefile additions for this application
To start using the USB library, you need to add 1ib_usb to your makefile:

USED_MODULES = ... Tib_usb Tib_logging

You can then access the USB functions in your source code via the usb.h header file:

#include <usb.h>

2.2 Declaring resource and setting up the USB components

main.xc contains the application implementation for a device based on the USB printer device class.
There are some defines in it that are used to configure the XMOS USB device library. These are displayed
below.

Copyright 2015 XMOS Ltd. 3 WWW.Xmos.com
XM006124

®
l MOS ANO00126 (2.0.0)

/* USB Endpoint Defines =/
#define XUD_EP_COUNT_OUT 2 //Includes EPO (1 out EPO + Printer data output EP)
#define XUD_EP_COUNT_IN 1 //Includes EPO (1 in EPO)

These defines describe the endpoint configuration for this device. This example has bi-directional com-
munication with the host machine via the standard endpoint0 and an endpoint for receiving the printer
data from the host into our device.

These defines are passed to the setup function for the USB library which is called from main().

2.3 The application main() function

Below is the source code for the main function of this application, which is taken from the source file
main.xc

int mainQ
{
chan c_ep_out[XUD_EP_COUNT_OUT], c_ep_in[XUD_EP_COUNT_IN];
par
{
on USB_TILE: xud(c_ep_out, XUD_EP_COUNT_OUT, c_ep_in, XUD_EP_COUNT_IN,
null, XUD_SPEED_HS, XUD_PWR_SELF);
on USB_TILE: EndpointO(c_ep_out[0], c_ep_in[0]);
on USB_TILE: printer_main(c_ep_out[1]);
}
return 0;

3

Looking at this in a more detail you can see the following:

The par statement starts three separate tasks in parallel

There is a task to configure and execute the USB library: xud()

There is a task to startup and run the Endpoint0 code: Endpoint0()

There is a task to deal with USB printer data requests arriving from the host printer_main()

The define USB_TILE describes the tile on which the individual tasks will run

In this example all tasks run on the same tile as the USB PHY this isa requirement of xud ()

The xCONNECT communication channels used by the application are set up at the beginning of
main()

e The USB defines discussed earlier are passed into the function xud()

2.4 Configuring the USB Device ID

The USB ID values used for vendor id, product id and device version number are defined in the file
endpoint0.xc. These are used by the host machine to determine the vendor of the device (in this case
XMOS) and the product plus the firmware version.

/* USB Device ID Defines =/
#define BCD_DEVICE 0x1000
#define VENDOR_ID 0x20B1
#define PRODUCT_ID 0x00ed

Copyright 2015 XMOS Ltd. 4 WWW.Xmos.com
XM006124

®
l MOS ANO00126 (2.0.0)

2.5 USB Printer Class specific defines

The USB Printer Class is configured in the file endpoint0.xc. Below there are a set of standard defines
which are used to configure the USB device descriptors to setup a USB printer device running on an
xCORE-USB microcontroller.

/% USB Printer Subclass Definition */
#define USB_PRINTER_SUBCLASS 0x01

/% USB Printer interface types =/

#define USB_PRINTER_UNIDIRECTIONAL 0x01
#define USB_PRINTER_BIDIRECTIONAL 0x02
#define USB_PRINTER_1284_4_COMPAT 0x03

/% USB Printer Request types =/

#define PRINTER_GET_DEVICE_ID 0x00
#define PRINTER_GET_PORT_STATUS 0x01
#define PRINTER_SOFT_RESET 0x02

Copyright 2015 XMOS Ltd. 5 WWW.Xmos.com
XM006124

XMOS

ANO00126 (2.0.0)

2.6 USB Device Descriptor

endpoint0.xc is where the standard USB device descriptor is declared for the printer device. Below is the
structure which contains this descriptor. This will be requested by the host when the device is enumerated

on the USB bus.

static unsigned char devDesc[] =

{

0x12,
USB_DESCTYPE_DEVICE,
0x00,

0x02,

0x00,

0x00,

0x00,

0x40,

(VENDOR_ID & OxFF),
(VENDOR_ID >> 8),
(PRODUCT_ID & OxFF),
(PRODUCT_ID >> 8),
(BCD_DEVICE & OxFF),
(BCD_DEVICE >> 8),
0x01,

0x02,

0x00,

0x01

it

OooNOoOOUVLTA WNREO

bLength =/

bdescriptorType */

bcdUSB version */

bcdUSB version =/

bDeviceClass - Specified by interface =/
bDeviceSubClass - Specified by interface =/
bDeviceProtocol - Specified by interface =/
bMaxPacketSize for EPO - max = 64x/

idVendor =/
idVendor =/
idProduct =
idProduct =
bcdDevice =
bcdDevice =
iManufacturer - index of stringx/
iProduct - index of string=*/
iSerialNumber - index of string=/
bNumConfigurations =/

NN N~

From this descriptor you can see that product, vendor and device firmware revision are all coded into this
structure. This will allow the host machine to recognise the printer device when it is connected to the USB

bus.

Copyright 2015 XMOS Ltd.

6 WWW.XMO0S.com
XM006124

®
l MOS ANO00126 (2.0.0)

2.7 USB Configuration Descriptor

The USB configuration descriptor is used to configure the device in terms of the device class and the
endpoint setup. For the USB printer device the configuration descriptor which is read by the host is as
follows.

static unsigned char cfgDesc[] = {

0x09, /% 0 blLength x*/
USB_DESCTYPE_CONFIGURATION, /+ 1 bDescriptortype = configurations/
0x19, 0x00, /% 2 wTotalLength of all descriptors =/
0x01, /* 4 DbNumInterfaces =/

0x01, /* 5 bConfigurationValue =/

0x03, /% 6 iConfiguration - index of string/
0x40, /% 7 bmAttributes - Self powered:/
OxFA, /% 8 bMaxPower - 500mA =/

0x09, /% 0 blLength x/
USB_DESCTYPE_INTERFACE,/* 1 bDescriptorType */

0x00, /* 2 bInterfacecNumber =/

0x00, /% 3 bAlternateSetting »/

0x01, /* 4: bNumEndpoints =/
USB_CLASS_PRINTER, /* 5: bInterfaceClass */
USB_PRINTER_SUBCLASS, /* 6: bInterfaceSubClass =/
USB_PRINTER_UNIDIRECTIONAL, /* 7: bInterfaceProtocolx/

0x00, /* 8 ilnterface =/

0x07, /% 0 bLength »/
USB_DESCTYPE_ENDPOINT,/+ 1 bDescriptorType =/

0x01, /% 2 bEndpointAddress - EP1, OUTx/
XUD_EPTYPE_BUL, /% 3 bmAttributes =/

0x00, /* 4 wMaxPacketSize - Low =/

0x02, /% 5 wMaxPacketSize - High x*/

0x01, /* 6 bInterval =/

I

From this you can see that the USB printer class defines described earlier are encoded into the configura-
tion descriptor along with the bulk USB endpoint description for receiving printer data into the application
code. This endpoint allows us to process the printer data request from the host inside the main printer
application task.

2.8 USB string descriptors

There are two further descriptors within this file relating to the configuration of the USB Printer Class.
These sections should also be modified to match the capabilities of the printer.

/% String table - unsafe as accessed via shared memory =/
static char * unsafe stringDescriptors[]=

{
"\x09\x04", // Language ID string (US English)
"XMOS", // iManufacturer
"Printomatic 2000", // iProduct
"Test config", // iConfiguration string
};

/* Class specific string IEEE1288 string descriptor =/
static unsigned char deviceIDstring[] = " MFG:Generic;MDL:Generic_/_Text_Only;CMD:1284.4;CLS:PRINTER;DES:
— Generic text only printer;";

Copyright 2015 XMOS Ltd. 7 WWW.Xmos.com
XM006124

®
l MOS ANO00126 (2.0.0)

2.9 USB Printer Class requests

Inside endpoint0.xc there is some code for handling the USB printer device class specific requests.
These are shown in the following code:

/% Printer Class Requests */
XUD_Result_t PrinterInterfaceClassRequests(XUD_ep c_epO_out, XUD_ep c_epO_in, USB_SetupPacket_t sp)

unsigned char PRT_STATUS[] = {0Ob00011000}; /= Paper not empty, selected, no error =/

deviceIDstring[0] = O;
deviceIDstring[l] = sizeof(deviceIDstring-1);

switch(sp.bRequest)

{
case PRINTER_GET_DEVICE_ID:
debug_printf("Class request - get device id\n");
debug_printf(&deviceIDstring[2]); //Skip first two characters
debug_printf("\n");
return XUD_DoGetRequest(c_epO_out, c_epO_in, (deviceIDstring, unsigned char []),
sizeof(deviceIDstring-1), sp.wLength);
break;
case PRINTER_GET_PORT_STATUS:
debug_printf("Class request - get port status id\n");
return XUD_DoGetRequest(c_epO_out, c_epO_in, PRT_STATUS, 1, sp.wlLength);
break;
case PRINTER_SOFT_RESET:
debug_printf("Class request - soft reset id\n");
/% Do nothing - i.e. STALL =/
/* TODO flush buffers and reset Bulk Out endpoint to default statex/
break;
}

return XUD_RES_ERR;

These printer specific request are implemented by the application as they do not form part of the standard
requests which have to be accepted by all device classes via endpointO.

2.10 USB Printer Class EndpointO

The function Endpoint0() contains the code for dealing with device requests made from the host to the
standard endpointO which is present in all USB devices. In addition to requests required for all devices,
the code handles the requests specific to the printer device class.

Copyright 2015 XMOS Ltd. 8 WWW.Xmos.com
XM006124

®
l MOS ANO00126 (2.0.0)

if(result == XUD_RES_OKAY)

{
/* Set result to ERR, we expect it to get set to OKAY if a request is handled =/
result = XUD_RES_ERR;
/% Stick bmRequest type back together for an easier parse... */
bmRequestType = (sp.bmRequestType.Direction<<7) |
(sp.bmRequestType.Type<<5) |
(sp.bmRequestType.Recipient);
if(USE_XSCOPE)
if ((bmRequestType == USB_BMREQ_H2D_STANDARD_DEV) &&
(sp.bRequest == USB_SET_ADDRESS))
debug_printf("Address allocated %d\n", sp.wValue);
}
/% Handle specific requests first =/
switch(bmRequestType)
{
/+* Direction: Device-to-host and Host-to-device
« Type: Class
+« Recipient: Interface
%/
case USB_BMREQ_H2D_CLASS_INT:
case USB_BMREQ_D2H_CLASS_INT:
/% Inspect for printer interface num =/
if(sp.wIndex == 0)
{
/* Returns XUD_RES_OKAY if handled,
* XUD_RES_ERR if not handled,
* XUD_RES_RST for bus reset =/
result = PrinterInterfaceClassRequests(epO_out, epO_in, sp);
}
break;
}
}

Copyright 2015 XMOS Ltd. 9 WWW.Xmos.com
XM006124

®
l MOS ANO00126 (2.0.0)

2.11 Receiving printer data from the host

The application endpoint for receiving printer data from the host machine is implemented in the file
main.xc. This is contained within the function printer_main() which is shown below:

void printer_main(chanend c_ep_prt_out)

unsigned size;
unsigned char print_packet[1024]; // Buffer for storing printer packets sent from host

debug_printf("USB printer class demo started\n");

/* Initialise the XUD endpoints =/
XUD_ep ep_out = XUD_InitEp(c_ep_prt_out, XUD_EPTYPE_BUL);

while (1)
{

// Perform a blocking read waiting for data to be received at the endpoint
XUD_GetBuffer(ep_out, print_packet, size);

debug_printf("#*%+ Received %d byte print buffer xxxx\n",
print_string(print_packet, size);

size);

}

From this you can see the following.

e A buffer is declared to receive the print data which is streamed into the application from the host

e This task operates inside a while (1) loop which waits for data to arrive and then processes it

e A blocking call is made to the XMOS USB device library to receive data into the application

e The data received is output to the debug console; in a real printer this data would be processed here
or passed onto another task for processing

Copyright 2015 XMOS Ltd. 10 WWW.Xmos.com
XM006124

®
l MOS ANO0O0126 (2.0.0)

APPENDIX A - Demo Hardware Setup

To run the demo, connect the xCORE-USB sliceKIT USB-B and XxTAG-2 USB-A connectors to separate USB
connectors on your development PC.

On the xCORE-USB sliceKIT ensure that the xCONNECT LINK switch is set to ON, as per the image, to allow
XSCOPE to function. The use of xSCOPE is required in this application so that the print messages that
are generated on the device as part of the demo do not interfere with the real-time behavior of the USB
device.

Connect xCORE-
USB board power
cable to power on

the system

Set xSCOPE
switch on xCORE-
USB core board to

Connect xCORE- o
the on position

USB board to host
machine with USB
cable

b T BV,
A
|
!
‘ Connect XTAG to
XSYS connector
and XTAG USB

connection to
host PC

Figure 3: XMOS xCORE-USB sliceKIT

The hardware should be configured as displayed above for this demo:

e The XTAG debug adapter should be connected to the XSYS connector and the XTAG USB cable should
be connected to the host machine

e The xCORE-USB core board should have a USB cable connecting the device to the host machine

e The xSCOPE switch on the board should be set to the on position

e The xCORE-USB core board should have the power cable connected

Copyright 2015 XMOS Ltd. 11 WWW.Xmos.com
XM006124

®
l MOS ANO00126 (2.0.0)

APPENDIX B - Launching the demo device

Once the demo example has been built either from the command line using xmake or via the build
mechanism of xTIMEcomposer studio the application can be executed on the xXCORE-USB sliceKIT.

Once built there will be a bin directory within the project which contains the binary for the xCORE device.
The xCORE binary has a XMOS standard .xe extension.

B.1 Launching from the command line

From the command line the xrun tool is used to download code to both the xCORE devices. Changing
into the bin directory of the project we can execute the code on the xCORE microcontroller as follows:

> Xrun --xscope app_printer_demo.xe <-- Download and execute the xCORE code

Once this command has executed the printer USB device should have enumerated on your machine

B.2 Launching from xTIMEcomposer Studio

From xTIMEcomposer Studio the run mechanism is used to download code to xCORE device. Select the
xCORE binary from the bin directory, right click and then follow the instructions below.

Select Run As.

Select Run Configurations.

Double click on xCORE application**.
Enable xSCOPE in Target I/O options:

Target: XMOS XTAG-3 connected to In Use [7uwFuk35] Vv | | Refresh list

Target I/0 options:
OIJTAG
(®) xSCOPE (via xCONNECT/UART)

(0 Raw (via xCONNECT/UART)

Figure 4: xTIMEcomposer xSCOPE configuration

e Click Apply and then Run.

Once this command has executed the printer USB device should have enumerated on your machine

Copyright 2015 XMOS Ltd. 12 WWW.Xmos.com
XM006124

®
l MOS ANO00126 (2.0.0)

APPENDIX C - Running the printer demo

C.1 Windows Host

To add the printer to Windows Control Panel :

Open the Control Panel, select Devices and Printers and then Add Printer.

Click The printer that | want isn’t listed.

Select Add a local printer or network printer with manual settings, then click Next.
Select Use an existing port and USBOOT (Virtual printer port for USB), then click Next.
Select Generic and Generic / Text Only, then click Next.

Select Use the driver that is currently installed (recommended), then click Next.
Change the name to XMOS Generic / Text Only, then click Next.

Select Do not share this printer, then click Next.

Click Finish.

The printer will now appear in your Control Panel:

7 XMOS Generic / Text Only

/ A

"»/«3 éea:i_,

Figure 5: XMOS printer in control panel

C.2 OSX Host

When connecting the printer to an Apple Mac computer it will be automatically detected as a Printomatic
2000 and you will be able to print directly to the device.

C.3 Testing the printer

To test the printer, create a text file containing the following:

HelTlo World !

Print the file to the printer and you will see the following output in the xTIMEcomposer console window
(note some of the print decode has been deleted to aid clarity):

#%%% Received 512 byte print buffer wxwx
Hello World !

Note that on OSX the default printer output will be in PCL format, this mean that there are extra characters
printed to the console other than just the hello world text.

Copyright 2015 XMOS Ltd. 13 WWW.Xmos.com
XM006124

XMOS

ANO00126 (2.0.0)

APPENDIX D - References

XMOS Tools User Guide
http://www.xmos.com/published/xtimecomposer-user-guide
XMOS xCORE Programming Guide
http://www.xmos.com/published/xmos-programming-guide

XMOS xCORE-USB Device Library:
http://www.xmos.com/published/xuddg

XMOS USB Device Design Guide:
http://www.xmos.com/published/xmos-usb-device-design-guide
USB Printer Class Specification, USB.org:
http://www.usb.org/developers/devclass_docs/usbprintll.pdf
USB 2.0 Specification

http://www.usb.org/developers/docs/usb20_docs/usb_20_081114.zip

Copyright 2015 XMOS Ltd. 14

WWW.Xmos.com
XMO006124

http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide
http://www.xmos.com/published/xuddg
http://www.xmos.com/published/xmos-usb-device-design-guide
http://www.usb.org/developers/devclass_docs/usbprint11.pdf
http://www.usb.org/developers/docs/usb20_docs/usb_20_081114.zip

®
l MOS ANO00126 (2.0.0)

APPENDIX E - Full source code listing

E.1 Source code for endpoint0.xc

// Copyright (c) 2015, XMOS Ltd, A1l rights reserved
/%

« @brief Implements endpoint zero for an example Printer class device.

#include <xsl.h>
#include "usb.h"
#include "debug_print.h"

/* USB Device ID Defines =/
#define BCD_DEVICE 0x1000
#define VENDOR_ID 0x20B1
#define PRODUCT_ID 0x00ed

/* USB Printer Subclass Definition =/
#define USB_PRINTER_SUBCLASS 0x01

/% USB Printer interface types */

#define USB_PRINTER_UNIDIRECTIONAL 0x01
#define USB_PRINTER_BIDIRECTIONAL 0x02
#define USB_PRINTER_1284_4_COMPAT 0x03

/% USB Printer Request types */

#define PRINTER_GET_DEVICE_ID 0x00
#define PRINTER_GET_PORT_STATUS 0x01
#define PRINTER_SOFT_RESET 0x02

/% USB Device Descriptor =/
static unsigned char devDesc[] =

{
0x12, /% 0 bLength =/
USB_DESCTYPE_DEVICE, /* 1 bdescriptorType =/
0x00, /% 2 bcdUSB version =/
0x02, /* 3 bcdUSB version =/
0x00, /* 4 bDeviceClass - Specified by interface x/
0x00, /% 5 bDeviceSubClass - Specified by interface =/
0x00, /% 6 bDeviceProtocol - Specified by interface =/
0x40, /* 7 bMaxPacketSize for EPO - max = 64x/
(VENDOR_ID & OxFF), /* 8 idVendor =/
(VENDOR_ID >> 8), /* 9 idVendor =/
(PRODUCT_ID & OxFF), /* 10 idProduct */
(PRODUCT_ID >> 8), /% 11 idProduct =/
(BCD_DEVICE & OxFF), /* 12 bcdDevice =/
(BCD_DEVICE >> 8), /* 13 bcdDevice =/
0x01, /% 14 iManufacturer - index of string=/
0x02, /% 15 iProduct - index of stringx/
0x00, /% 16 iSerialNumber - index of string=/
0x01 /% 17 bNumConfigurations =/
};

/% USB Configuration Descriptor =/
static unsigned char cfgDesc[] = {

0x09, /% 0 bLength =/
USB_DESCTYPE_CONFIGURATION, /+ 1 bDescriptortype = configurations/
0x19, 0x00, /% 2 wTotalLength of all descriptors =/
0x01, /* 4 DbNumInterfaces =/

0x01, /% 5 bConfigurationValue =/

0x03, /% 6 iConfiguration - index of string=/
0x40, /% 7 bmAttributes - Self powered:/
OxFA, /* 8 bMaxPower - 500mA =/

0x09, /% 0 blLength =/
USB_DESCTYPE_INTERFACE,/* 1 bDescriptorType =/

0x00, /* 2 bInterfacecNumber =/

0x00, /% 3 bAlternateSetting =/

0x01, /% 4: bNumEndpoints =/
USB_CLASS_PRINTER, /% 5: bInterfaceClass =*/

USB_PRINTER_SUBCLASS, /* 6: bInterfaceSubClass =/

Copyright 2015 XMOS Ltd. 15 WWW.Xmos.com
XM006124

®
l MOS ANO00126 (2.0.0)

USB_PRINTER_UNIDIRECTIONAL, /* 7: bInterfaceProtocolx/

0x00, /+* 8 ilInterface =/
0x07, /% 0 bLength =/
USB_DESCTYPE_ENDPOINT,/* 1 bDescriptorType */
0x01, /% 2 bEndpointAddress - EP1, OUT=/
XUD_EPTYPE_BUL, /% 3 bmAttributes =/
0x00, /* 4 wMaxPacketSize - Low =/
0x02, /% 5 wMaxPacketSize - High =/
0x01, /* 6 bInterval =/

};

unsafe{

/% String table - unsafe as accessed via shared memory =/
static char * unsafe stringDescriptors[]=

"\x09\x04", // Language ID string (US English)
""XMOS", // iManufacturer
"Printomatic 2000", // 1iProduct
"Test config", // iConfiguration string
};
}
/% Class specific string IEEE1288 string descriptor =/
static unsigned char deviceIDstring[] = " MFG:Generic;MDL:Generic_/_Text_Only;CMD:1284.4;CLS:PRINTER;DES:
— Generic text only printer;";
/%
"MFG:Generic;" - manufacturer (case sensitive)
"MDL:Generic_/_Text_Only;" - model (case sensitive)
"CMD:1284.4;" - PDL command set
"CLS:PRINTER;" - class
"DES:Generic text only printer;" - description
%/

/* Printer Class Requests #*/
XUD_Result_t PrinterInterfaceClassRequests(XUD_ep c_epO_out, XUD_ep c_epO_in, USB_SetupPacket_t sp)
{

unsigned char PRT_STATUS[] = {0b00011000}; /= Paper not empty, selected, no error =/

deviceIDstring[0]

0;
deviceIDstring[1] i

sizeof(deviceIDstring-1);

switch(sp.bRequest)

case PRINTER_GET_DEVICE_ID:
debug_printf("Class request - get device id\n");
debug_printf(&deviceIDstring[2]); //Skip first two characters
debug_printf("\n");

return XUD_DoGetRequest(c_epO_out, c_epO_in, (deviceIDstring, unsigned char []),
sizeof(deviceIDstring-1), sp.wLength);
break;

case PRINTER_GET_PORT_STATUS:
debug_printf("Class request - get port status id\n");
return XUD_DoGetRequest(c_epO_out, c_epO_in, PRT_STATUS, 1, sp.wLength);
break;

case PRINTER_SOFT_RESET:
debug_printf("Class request - soft reset id\n");
/% Do nothing - i.e. STALL =/
/% TODO flush buffers and reset Bulk Out endpoint to default statex/
break;

}

return XUD_RES_ERR;
}

/% Endpoint 0 Task =/
void EndpointO(chanend chan_epO_out, chanend chan_ep0_in)

USB_SetupPacket_t sp;

Copyright 2015 XMOS Ltd. 16 WWW.Xmos.com
XM006124

®
l MOS ANO00126 (2.0.0)

unsigned bmRequestType;
XUD_BusSpeed_t usbBusSpeed;

XUD_ep epO_out
XUD_ep epO_in

= XUD_InitEp(chan_epO_out, XUD_EPTYPE_CTL | XUD_STATUS_ENABLE);
= XUD_InitEp(chan_epO_in, XUD_EPTYPE_CTL | XUD_STATUS_ENABLE);

while(1)
{

/* Returns XUD_RES_OKAY on success */
XUD_Result_t result = USB_GetSetupPacket(epO_out, epO_in, sp);

if(result == XUD_RES_OKAY)

{
/* Set result to ERR, we expect it to get set to OKAY if a request is handled =/
result = XUD_RES_ERR;
/* Stick bmRequest type back together for an easier parse... x/
bmRequestType = (sp.bmRequestType.Direction<<7) |
(sp.bmRequestType.Type<<5) |
(sp.bmRequestType.Recipient);
if(USE_XSCOPE)
{
if ((bmRequestType == USB_BMREQ_H2D_STANDARD_DEV) &&
(sp.bRequest == USB_SET_ADDRESS))
debug_printf("Address allocated %d\n", sp.wValue);
}
/% Handle specific requests first =/
switch(bmRequestType)
{
/+* Direction: Device-to-host and Host-to-device
« Type: Class
* Recipient: Interface
%/
case USB_BMREQ_H2D_CLASS_INT:
case USB_BMREQ_D2H_CLASS_INT:
/% Inspect for printer interface num =/
if(sp.wIndex == 0)
{
/+* Returns XUD_RES_OKAY if handled,
* XUD_RES_ERR if not handled,
* XUD_RES_RST for bus reset */
result = PrinterInterfaceClassRequests(epO_out, epO_in, sp);
}
break;
}
}

/% If we haven't handled the request above then do standard enumeration requests =/
if(result == XUD_RES_ERR)

{
/+* Returns XUD_RES_OKAY if handled okay,
* XUD_RES_ERR if request was not handled (STALLed),
* XUD_RES_RST for USB Reset =/
unsafeq{
result = USB_StandardRequests(epO_out, epO_in, devDesc,
sizeof(devDesc), cfgDesc, sizeof(cfgDesc),
null, 0, null, 0, stringDescriptors, sizeof(stringDescriptors)/sizeof(
— stringDescriptors[0]),
sp, usbBusSpeed);
}
}

/* USB bus reset detected, reset EP and get new bus speed =/
if(result == XUD_RES_RST)

usbBusSpeed = XUD_ResetEndpoint(epO_out, epO_in);

Copyright 2015 XMOS Ltd. 17 WWW.Xmos.com
XM006124

®
l MOS ANO00126 (2.0.0)

E.2 Source code for main.xc

// Copyright (c) 2015, XMOS Ltd, A1l rights reserved
#include "usb.h"

#include "debug_print.h"

#include <xscope.h>

/* USB Endpoint Defines =/
#define XUD_EP_COUNT_OUT 2 //Includes EPO (1 out EPO + Printer data output EP)
#define XUD_EP_COUNT_IN 1 //Includes EPO (1 in EPO)

/% XSCOPE Setup Function =/

#if (USE_XSCOPE == 1)

void xscope_user_init(void) {
xscope_register(0, 0, "", O, ;
xscope_config_io(XSCOPE_IO_BASIC); /+ Enable fast printing over links =/

}
#endif

/% Prototype for Endpoint0 function in endpoint0.xc =/
void EndpointO(chanend c_epO_out, chanend c_ep0_in);

/* Global report buffer, global since used by EndpointO core =/
unsigned char g_reportBuffer[] = {0, 0, 0, 0};

/% Version of print string that doesn't terminate on null =/
void print_string(unsigned char =string, unsigned size)

{

for (int i=0; i<size; i++)

switch(xstring){
/% dgnore nulls =/
case 0x00:
break;

#ifdef IGNORE_WHITESPACE
case 0x20: //space
case Ox0a: //tab

break;
#endif
default:
printchar(xstring);
break;
} .
string++;

printchar('\n');
}

/% This function receives the printer endpoint transfers from the host */
void printer_main(chanend c_ep_prt_out)

{
unsigned size;
unsigned char print_packet[1024]; // Buffer for storing printer packets sent from host
debug_printf("USB printer class demo started\n");
/% Initialise the XUD endpoints =/
XUD_ep ep_out = XUD_InitEp(c_ep_prt_out, XUD_EPTYPE_BUL);
while (1)
{
// Perform a blocking read waiting for data to be received at the endpoint
XUD_GetBuffer(ep_out, print_packet, size);
debug_printf ("=« Received %d byte print buffer xxxx\n", size);
print_string(print_packet, size);
}
}

/% The main function runs three cores: the XUD manager, Endpoint 0, and a Printer endpoint. An array of
channels is used for both IN and OUT endpoints =/
int main(Q)

{
chan c_ep_out[XUD_EP_COUNT_OUT], c_ep_in[XUD_EP_COUNT_IN];

Copyright 2015 XMOS Ltd. 18 WWW.Xmos.com
XM006124

®
l MOS ANO00126 (2.0.0)

par

on USB_TILE: xud(c_ep_out, XUD_EP_COUNT_OUT, c_ep_in, XUD_EP_COUNT_IN,
null, XUD_SPEED_HS, XUD_PWR_SELF);

on USB_TILE: EndpointO(c_ep_out[0], c_ep_in[0]);
on USB_TILE: printer_main(c_ep_out[1]);
}

return 0;

Copyright 2015 XMOS Ltd. 19 WWW.Xmos.com
XM006124

®
l MOS ANO00126 (2.0.0)

XMOS

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2015 XMOS Ltd. 20 WWW.Xmos.com
XM006124

	USB Printer Device Class
	Overview
	Introduction
	Block diagram

	USB Printer Device Class application note
	Makefile additions for this application
	Declaring resource and setting up the USB components
	The application main() function
	Configuring the USB Device ID
	USB Printer Class specific defines
	USB Device Descriptor
	USB Configuration Descriptor
	USB string descriptors
	USB Printer Class requests
	USB Printer Class Endpoint0
	Receiving printer data from the host

	Demo Hardware Setup
	Launching the demo device
	Launching from the command line
	Launching from xTIMEcomposer Studio

	Running the printer demo
	Windows Host
	OSX Host
	Testing the printer

	References
	Full source code listing
	Source code for endpoint0.xc
	Source code for main.xc

