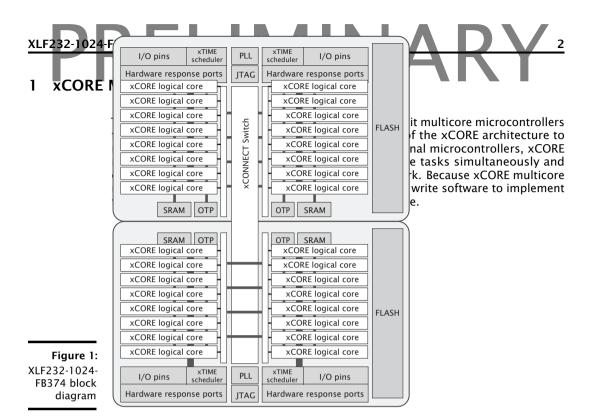
PRELIMINARY

XLF232-1024-FB374 Datasheet

Table of Contents

XLF232-1024-FB374 Datasheet

1	xCORE Multicore Microcontrollers
2	XLF232-1024-FB374 Features
3	Pin Configuration
4	Signal Description
5	Example Application Diagram
6	Product Overview
7	PLL
8	Boot Procedure
9	Memory
9 10	
	JTAG
11	Board Integration
12	DC and Switching Characteristics
13	Package Information
14	Ordering Information
App	endices
Α	Configuration of the XLF232-1024-FB374
В	Processor Status Configuration
С	Tile Configuration
D	Node Configuration
E	Device Errata
F	JTAG, xSCOPE and Debugging 57
G	Schematics Design Check List
н	PCB Layout Design Check List
Π.	Associated Design Documentation
1	Related Documentation
J	
ĸ	Revision History


TO OUR VALUED CUSTOMERS

It is our intention to provide you with accurate and comprehensive documentation for the hardware and software components used in this product. To subscribe to receive updates, visit http://www.xmos.com/.

XMOS Ltd. is the owner or licensee of the information in this document and is providing it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS Ltd. makes no representation that the information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

XMOS and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other countries, and may not be used without written permission. Company and product names mentioned in this document are the trademarks or registered trademarks of their respective owners.

1

Key features of the XLF232-1024-FB374 include:

- ► **Tiles**: Devices consist of one or more xCORE tiles. Each tile contains between five and eight 32-bit xCOREs with highly integrated I/O and on-chip memory.
- Logical cores Each logical core can execute tasks such as computational code, DSP code, control software (including logic decisions and executing a state machine) or software that handles I/O. Section 6.1
- ▶ **xTIME scheduler** The xTIME scheduler performs functions similar to an RTOS, in hardware. It services and synchronizes events in a core, so there is no requirement for interrupt handler routines. The xTIME scheduler triggers cores on events generated by hardware resources such as the I/O pins, communication channels and timers. Once triggered, a core runs independently and concurrently to other cores, until it pauses to wait for more events. Section 6.2
- Channels and channel ends Tasks running on logical cores communicate using channels formed between two channel ends. Data can be passed synchronously or asynchronously between the channel ends assigned to the communicating tasks. Section 6.5
- xCONNECT Switch and Links Between tiles, channel communications are implemented over a high performance network of xCONNECT Links and routed through a hardware xCONNECT Switch. Section 6.6

- Ports The I/O pins are connected to the processing cores by Hardware Response ports. The port logic can drive its pins high and low, or it can sample the value on its pins optionally waiting for a particular condition. Section 6.3
- Clock blocks xCORE devices include a set of programmable clock blocks that can be used to govern the rate at which ports execute. Section 6.4
- Memory Each xCORE Tile integrates a bank of SRAM for instructions and data, and a block of one-time programmable (OTP) memory that can be configured for system wide security features. Section 9
- PLL The PLL is used to create a high-speed processor clock given a low speed external oscillator. Section 7
- ▶ Flash The device has a built-in 2MBflash. Section 8
- ▶ **JTAG** The JTAG module can be used for loading programs, boundary scan testing, in-circuit source-level debugging and programming the OTP memory. Section 10

1.1 Software

Devices are programmed using C, C++ or xC (C with multicore extensions). XMOS provides tested and proven software libraries, which allow you to quickly add interface and processor functionality such as USB, Ethernet, PWM, graphics driver, and audio EQ to your applications.

1.2 xTIMEcomposer Studio

The xTIMEcomposer Studio development environment provides all the tools you need to write and debug your programs, profile your application, and write images into flash memory or OTP memory on the device. Because xCORE devices operate deterministically, they can be simulated like hardware within xTIMEcomposer: uniquely in the embedded world, xTIMEcomposer Studio therefore includes a static timing analyzer, cycle-accurate simulator, and high-speed in-circuit instrumentation.

xTIMEcomposer can be driven from either a graphical development environment, or the command line. The tools are supported on Windows, Linux and MacOS X and available at no cost from xmos.com/downloads. Information on using the tools is provided in the xTIMEcomposer User Guide, X3766.

XS2-LF32A-1024-FB374

► Multicore Microcontroller with Advanced Multi-Core RISC Architecture

- 32 real-time logical cores on 4 xCORE tiles
- Cores share up to 2000 MIPS
 - Up to 4000 MIPS in dual issue mode
- Each logical core has:
 - Guaranteed throughput of between 1/5 and 1/8 of tile MIPS
 - 16x32bit dedicated registers
- 167 high-density 16/32-bit instructions
 - All have single clock-cycle execution (except for divide)
 - 32x32 \rightarrow 64-bit MAC instructions for DSP, arithmetic and user-definable cryptographic functions

Programmable I/O

- 256 general-purpose I/O pins, configurable as input or output
 - Up to 59 x 1bit port, 22 x 4bit port, 15 x 8bit port, 8 x 16bit port, 4 x 32bit port
 10 xCONNECT links
- Port sampling rates of up to 60 MHz with respect to an external clock
- 64 channel ends for communication with other cores, on or off-chip

Memory

- 1024KB internal single-cycle SRAM (max 256KB per tile) for code and data storage
- 32KB internal OTP (max 8KB per tile) for application boot code
- 2MB internal flash for application code and overlays

Hardware resources

- 24 clock blocks (6 per tile)
- 40 timers (10 per tile)
- 16 locks (4 per tile)
- ► JTAG Module for On-Chip Debug

Security Features

• Programming lock disables debug and prevents read-back of memory contents

-XM()S

• AES bootloader ensures secrecy of IP held on external flash memory

• Ambient Temperature Range

- Commercial qualification: 0°C to 70°C
- Industrial qualification: -40 °C to 85 °C
- Speed Grade
 - 20: 1000 MIPS
- Power Consumption
 - 1140 mA (typical)
- ▶ 374-pin FBGA package 0.8 mm pitch

XLF232-1024-FB374 Datasheet 5 3 Pin Configuration

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
A	GND	VDDIO	X1D11	X1D32	X1D26		X1D41	X0D31	X0D29	ты	VDDIO	CLK	TDO	X3D32	X3D30		X2D31	X2D29	X2D32	VDDIO	GND
в	X0D37	X0D36	X1D10	X1033	X1027	X1D42	X1D40	X0D30	X0D28	X2D36	GND	RST_N	тск	X3D33	X3D31	X3D27	X2D30	X2D28	X2D27 327	X2D26	X2D35
С	X0D39	X0D38 X1 ¹⁰ X1 ¹⁰	VDD	X1D30	X1D28	x1D43	GND	X0D33	x0D32	MODE1	OTP VCC	TRST	X3D10	X3D29	GND	X3D43	x3D41	X2D33	VDD	10 X2D25 X27	X2D34 X2J34
D	X0D41 ×:	X0D40 x1,	X1D34 X1 ^{1K} X1 ²¹	X1D31	X1D29	GND	VDDIO	NC	GLOBAL _DEBUG	MODE0		TMS	X3D11	X3D28	X3D26	X3D42	X3D40	22A X2D70 X ¹¹ ₁	X3D00 X17	X3D01 317	X2D24
E	X0D43 X17	000 X0D42 X12	X1D35	VDD	VDD	GND	VDDIO	VDD	VDD				VDD	VDD	VDDIO	GND	VDD	VDD	22A X2D69 X17	X3D08 312	X3D09 32.7
F	X1D36	VDDIO	GND	VDD	VDD	VDD	VDD	VDD	VDD	PLL AGND	PLL AVDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	GND	VDDIO	X2D68
G	X1D49	222A X1D50 32 ⁺ ₁	22A X1051 X1 ²	NC	NC	10 NG X15	NC XL	$\cong \bigotimes_{j \in I} \gamma_j^{\alpha}$	9 C Y				NC NC X2s	NC NC	NC Xi ₂	10 NC X12	NC	NC	X2D67	X2D66 31%	22A X2D65 ³²⁵
н	X1D53 30.	X1D52 31.	VDD																VDD	X2D63	22A X2D64 324
J	22A X1D54 X1 ²	22A X1D55 327	VDD		GND	GND	GND	GND	GND				GND	GND	GND	GND	GND		VDD	X2D62 312	22A X2D61 334
к	X1D58	22A X1D57 32°	X1D56		GND	GND	GND	GND	GND				GND	GND	GND	GND	GND		228 X2D56 X ² 1	228 X2D57 X2 ⁰	220A X2D58 ³²¹⁴
L	VIDIO	GND	22A X1D61 X1 ₂		GND	GND	GND	GND	GND				GND	GND	GND	GND	GND		X2D55	GND	VDDIO
м	22A X1D64 303	22A X1D63 312	22A X1D62 X12		GND	GND	GND	GND	GND				GND	GND	GND	GND	GND		22A X2D54 X27	X2D53	22A X2D52 X1]
N	X1D65	X1D66 327	VDD		GND	GND	GND	GND	GND				GND	GND	GND	GND	GND		VDD	X2D50	X2D51 302
Р	X1D68	X1D67 325	VDD																VDD	3006 310 310	40 X3D07 X1 ¹¹
R	X1D69 X1 ²⁰⁸	X1D70 X1 ^{22A}	X1D37 X1 ³⁰	NC	NC	NC	NC	4 NC 11	n NC N				1G NC X1	NC NC X1	NC	NC	NC	NC	X2D49	X3D04 X:	x3D05 ³²⁷
т	X1D38	VDDIO	GND	VDD	VDD	VDD	VDD	VDD	VDD	VDD	GND	VDD	VDD	VDD	VDD	VDD	VDD	VDD	GND	VDDIO	X3D03 327
U	X1D17 ≍ੂ	X1D16	X1D39 X1 ⁵⁹	VDD	VDD	GND	VDDIO	NC	VDD		VDDIO		VDD	VDD	VDDIO	GND	VDD	VDD	NC	X2D19	X3D02 325
v	X1D19	X1D18 X1 [©] X1 [©]	X0D01 X1 ² X1 ²	X0D02	X0D08	X0D11	NC	X1D14	и Х1D25	X0D21	NC	1H X3D23	x2D05	x2D07	NC	NC	X3D15	X3D21	X2D12	X2D17	X2D18 323
w	X0D10 x11	X1D22 X ¹⁰	VDD33	X0D03	X0D09	NC	GND	X1D15	X0D14	X0D12	X0D23	X2D00	x2D04	X2D06	GND	NC	40 X3D14	X3D20	VDD33	1H X2D23	40 X2D16 ∞,
Y	X1D23	X0D00	X0D04	X0D06	X1D12	NC	X1D24	X1D20	X0D15	X0D13	GND	X2D11	X2D02	X2D08	иг Х3D13	NC	X2D14	X2D20	X3D24	x2D13	X2D22
AA	GND	VDDIO	x0D05	X0D07	X1D13	NC	NC	x1D21	x0D20	X0D22	VDDIO	X3D12	4A X2D03	4A X2D09	NC	NC	x2D15	x2D21	∪ X3D25	VDDIO	GND

-XMOS"

This section lists the signals and I/O pins available on the XLF232-1024-FB374. The device provides a combination of 1 bit, 4bit, 8bit and 16bit ports, as well as wider ports that are fully or partially (gray) bonded out. All pins of a port provide either output or input, but signals in different directions cannot be mapped onto the same port.

Pins may have one or more of the following properties:

PD/PU: The IO pin a weak pull-down or pull-up resistor. On GPIO pins this resistor can be enabled.

Power pins (9)									
Signal	Function	Туре	Properties						
GND	Digital ground	GND							
OTP_VCC	OTP power supply	PWR							
PLL_AGND	Analog ground for PLL	PWR							
PLL_AVDD	Analog PLL power	PWR							
VDD	Digital tile power	PWR							
VDD33	Peripheral power	PWR							
VDDIO	Digital I/O power	PWR							
VDDIOT_0		PWR							
VDDIOT_1		PWR							

ST: The IO pin has a Schmitt Trigger on its input.

	JTAG pins (6)									
Signal	Function	Туре	Properties							
RST_N	Global reset input	Input	IOL, PU, ST							
ТСК	Test clock	Input	IOL, PD, ST							
TDI	Test data input	Input	IOL, PU							
TDO	Test data output	Output	IOL, PD							
TMS	Test mode select	Input	IOL, PU							
TRST		Input	IOL, PU, ST							

			1/0) pins	(176)			
Signal	Function						Туре	Properties
X0D00		1A ⁰					I/O	IOL, PD
X0D01	XL3 ² out	1 B ⁰					I/0—	IOL, PD
X0D02			4A ⁰	8A ⁰	16A ⁰	32A ²⁰	I/O	IOL, PD
X0D03			4A ¹	8A ¹	16A ¹	32A ²¹	I/O	IOL, PD
X0D04			4B ⁰	8A ²	16A ²	32A ²²	I/0—	IOL, PD

(continued)

- <u>////</u> 05-	MOS [®] -
-------------------	--------------------

(continued)

4 Datash	eet		_			Д_	
Signal	Function					Туре	Properties
(0D05		4B ¹	8A ³	16A ³	32A ²³	I/0—	IOL, PD
(0D06		4B ²	8A ⁴	16A ⁴	32A ²⁴	I/0—	IOL, PD
(0D07		4B ³	8A ⁵	16A ⁵	32A ²⁵	I/0—	IOL, PD
(0D08		4A ²	8A ⁶	16A ⁶	32A ²⁶	I/O	IOL, PD
(0D09		4A ³	8A ⁷	16A ⁷	32A ²⁷	I/O	IOL, PD
(0D10	XL3 ³ out	1C ⁰				I/O—	IOL, PD
(0D11		1D ⁰				I/O	IOL, PD
(0D12		1E ⁰				I/0	IOR, PD
(0D13		1F ⁰				I/O	IOR, PD
(0D14		4C ⁰	8B ⁰	16A ⁸	32A ²⁸	I/O	IOR, PD
(0D15		4C ¹	8B1	16A ⁹	32A ²⁹	I/O	IOR, PD
(0D20		4C ²	8B ⁶	16A ¹⁴	32A ³⁰	I/O	IOR, PD
(0D21		4C ³	8B ⁷	16A ¹⁵	32A ³¹	I/0	IOR, PD
(0D22		1G ⁰				I/0	IOR, PD
(0D23		1H ⁰				I/0	IOR, PD
(0D28		4F ⁰	8C ²	16B ²		I/0	IOR, PD
(0D29		4F ¹	8C ³	16B ³		I/O	IOR, PD
(0D30		4F ²	8C ⁴	16B ⁴		I/O	IOR, PD
(0D31		4F ³	8C ⁵	16B ⁵		I/O	IOR, PD
(0D32		4E ²	8C ⁶	16B ⁶		I/O	IOR, PD
(0D33		4E ³	8C ⁷	16B ⁷		I/O	IOR, PD
(0D36		1M ⁰	8D ⁰	16B ⁸		I/0	IOL, PD
(0D37	XL0 ⁴	1N ⁰	8D1	16B ⁹		I/0	IOL, PD
(0D38	XL0 ³	10 ⁰	8D ²	16B ¹⁰		I/0	IOL, PD
(0D39	XL0 ²	1 P ⁰	8D ³	16B ¹¹		I/0	IOL, PD
(0D40	XL0 ¹ in		8D ⁴	16B ¹²		I/0	IOL, PD
(0D41	XL0 ⁰ in		8D ⁵	16B ¹³		I/0	IOL, PD
(0D42	XL0 ⁰ out		8D ⁶	16B ¹⁴		I/0	IOL, PD
(0D43	XL0 ¹ out		8D ⁷	16B ¹⁵		I/0	IOL, PD
(1D10		1C ⁰				I/0	IOT, PD
(1D11		1D ⁰				I/0	IOT, PD
(1D12		1 E ⁰				I/0	IOL, PD
(1D13		1F ⁰				I/0	IOL, PD
(1D14		4C ⁰	8B ⁰	16A ⁸	32A ²⁸	I/O	IOR, PD
(1D15		4C ¹	8B1	16A ⁹	32A ²⁹	I/O	IOR, PD
(1D16	XL3 ¹ in	4D ⁰		16A ¹⁰		I/O	IOL, PD
(1D17	XL3 ⁰ in	4D ¹		16A ¹¹		I/O	IOL, PD
(1D18	XL3 ⁰ out	4D ²	8B ⁴	16A ¹²		I/O	IOL, PD
(1D19	XL3 ¹ _{out}	4D ³	8B ⁵	16A ¹³		I/O	IOL, PD
(1D20		4C ²	8B ⁶	16A ¹⁴	32A ³⁰	I/O	IOR, PD
(1D21		4C ³	8B ⁷	16A ¹⁵	32A ³¹	I/0	IOR, PD
(1D22	XL3 ⁴ _{out}	1G ⁰				I/0	IOL, PD
(1D23		1H ⁰				1/0	IOL, PD

-XMOS®-	8
---------	---

(continued)

Signal Function Type Properties X1D24 11 ⁰ 1/0 100 100, PD X1D25 110 ⁰ 1/0 100, PD X1D26 4£ ⁰ 8C ⁰ 168 ⁰ 1/0 107, PD X1D27 4£ ¹ 8C ¹ 168 ¹ 1/0 107, PD X1D28 44 ⁰ 8C ² 168 ² 1/0 107, PD X1D29 44 ¹ 8C ² 168 ² 1/0 107, PD X1D31 44 ² 8C ⁶ 168 ⁶ 1/0 107, PD X1D32 44 ² 8C ⁶ 168 ⁶ 1/0 100, PD X1D33 44 ² 8C ⁶ 168 ⁶ 1/0 100, PD X1D34 X10 ² ₀ ut 110 1/0 100, PD 101, PD X1D35 X10 ³ ₀ ut 110 ⁰ 80 ² 168 ¹⁰ 1/0 100, PD X1D35 X10 ³ ₀ ut 110 ⁰ 80 ² 168 ¹⁰ 1/0 100, PD X1D37		_11								
X1D25 JJ^0 I/O IOR, PD X1D26 $4E^0$ $8C^0$ $16B^0$ I/O IOT, PD X1D27 $4E^1$ $8C^1$ $16B^1$ I/O IOT, PD X1D28 $4F^0$ $8C^2$ $16B^2$ I/O IOT, PD X1D29 $4F^2$ $8C^4$ $16B^4$ I/O IOT, PD X1D30 $4F^2$ $8C^4$ $16B^4$ I/O IOT, PD X1D31 $4F^3$ $8C^5$ $16B^5$ I/O IOT, PD X1D32 $4E^2$ $8C^6$ $16B^6$ I/O IOT, PD X1D33 $4E^3$ $8C^7$ $16B^7$ I/O IOL, PD X1D34 XLO_{out}^2 $1K^0$ $8D^2$ $16B^8$ I/O IOL, PD X1D35 XLO_{out}^2 $1K^0$ $8D^2$ $16B^{10}$ I/O IOL, PD X1D36 XLO_{out}^2 $16B^{10}$ I/O IOL, PD X1D4 X1D4 $8D^7$	Signal	Function						Туре	Properties	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D24		110					I/0	IOR, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D25		1J ⁰					I/0	IOR, PD	
X1D28 $4f^0$ $8C^2$ $1/0$ $10T$, PD X1D29 $4f^1$ $8C^3$ $16B^3$ $1/0$ $10T$, PD X1D30 $4f^2$ $8C^4$ $16B^3$ $1/0$ $10T$, PD X1D31 $4f^3$ $8C^5$ $16B^5$ $1/0$ $10T$, PD X1D32 $4E^2$ $8C^6$ $16B^5$ $1/0$ $10T$, PD X1D33 $4E^2$ $8C^6$ $16B^7$ $1/0$ $10T$, PD X1D33 $4E^3$ $8C^7$ $16B^7$ $1/0$ $10L$, PD X1D35 $XL0_{out}^3$ $1K^0$ $1/0$ $10L$, PD $X1D35$ X1D36 $XL0_{out}^3$ $1M^0$ $8D^0$ $16B^8$ $1/0$ $10L$, PD X1D37 $XL3_m^4$ $1N^0$ $8D^7$ $16B^{10}$ $1/0$ $10L$, PD X1D38 $XL3_m^2$ $1P^0$ $8D^3$ $16B^{11}$ $1/0$ $10T$, PD X1D40 $8D^6$ $16B^{13}$ $1/0$ $10T$, PD $X1D4$ <td>X1D26</td> <td></td> <td></td> <td>4E⁰</td> <td>8C⁰</td> <td>16B⁰</td> <td></td> <td>I/O</td> <td>IOT, PD</td> <td></td>	X1D26			4E ⁰	8C ⁰	16B ⁰		I/O	IOT, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D27			4E ¹	8C1	16B ¹		I/O	IOT, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D28			4F ⁰	8C ²	16B ²		I/0	IOT, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D29			4F ¹	8C ³	16B ³		I/0	IOT, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D30			4F ²	8C ⁴	16B ⁴		I/0	IOT, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D31			4F ³	8C ⁵	16B ⁵		I/0	IOT, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D32			4E ²	8C ⁶	16B ⁶		I/0	IOT, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D33			4E ³	8C ⁷	16B ⁷		I/0	IOT, PD	
XID36 XL0 $\frac{6}{out}$ IM ⁰ 8D ⁰ 168 ⁸ I/O IOL, PD XID37 XL3 $\frac{1}{m}$ 1N ⁰ 8D ¹ 168 ⁹ I/O IOL, PD XID38 XL3 $\frac{1}{m}$ 10 ⁰ 8D ² 168 ¹⁰ I/O IOL, PD XID39 XL3 $\frac{1}{m}$ 1P ⁰ 8D ³ 168 ¹¹ I/O IOL, PD XID40 8D ⁴ 168 ¹² I/O IOT, PD XID41 8D ⁵ 168 ¹³ I/O IOT, PD XID41 8D ⁵ 168 ¹³ I/O IOT, PD XID42 8D ⁶ 168 ¹⁴ I/O IOT, PD XID43 8D ⁷ 168 ¹⁵ I/O IOT, PD XID43 8D ⁷ 168 ¹⁵ I/O IOL, PD XID43 8D ⁷ 168 ¹⁵ I/O IOL, PD XID50 XL1 $\frac{1}{m}$ 32A ⁰ I/O IOL, PD XID51 XL1 $\frac{1}{m}$ 32A ³ I/O IOL, PD XID52 XL1 $\frac{1}{m}$ 32A ⁴ I/O IOL, PD XID53 XL1 $\frac{1}{m}$ 32A ⁴ I/O IOL, PD XID54 <	X1D34	XL0 ² _{out}	1K ⁰					I/0	IOL, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D35	XL0 ³ _{out}	1L ⁰					I/0	IOL, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D36	XL0 ⁴ _{out}	1M ⁰		8D ⁰	16B ⁸		I/O	IOL, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D37	XL3 ⁴	1N ⁰		8D1	16B ⁹		I/0	IOL, PD	
x1D40 m 8D ⁴ 168 ¹² I/O IOT, PD x1D41 8D ⁵ 168 ¹³ I/O IOT, PD x1D42 8D ⁶ 168 ¹⁴ I/O IOT, PD x1D43 8D ⁷ 168 ¹⁵ I/O IOT, PD x1D49 $xL1_m^4$ 32A ⁰ I/O IOL, PD x1D50 $xL1_m^2$ 32A ² I/O IOL, PD x1D51 $xL1_m^2$ 32A ² I/O IOL, PD x1D52 $xL1_m^1$ 32A ³ I/O IOL, PD x1D53 $xL1_m^0$ 32A ⁴ I/O IOL, PD x1D54 $xL1_{out}^0$ 32A ⁴ I/O IOL, PD x1D55 $xL1_{out}^1$ 32A ⁶ I/O IOL, PD x1D54 $xL1_{out}^0$ 32A ⁴ I/O IOL, PD x1D55 $xL1_{out}^1$ 32A ⁶ I/O IOL, PD x1D56 $xL1_{out}^2$ 32A ⁸ I/O IOL, PD x1D57 xL_{out}^3	X1D38	XL3 ³	10 ⁰		8D ²	16B ¹⁰		I/0	IOL, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D39	XL3 ²	1 P ⁰		8D ³	16B ¹¹		I/0	IOL, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D40				8D ⁴	16B ¹²		I/0	IOT, PD	
X1D43 $80^7 \ 168^{15}$ I/O IOT, PD X1D49 $XL1_{in}^4$ $32A^0$ I/O IOL, PD X1D50 $XL1_{in}^3$ $32A^1$ I/O IOL, PD X1D51 $XL1_{in}^2$ $32A^2$ I/O IOL, PD X1D52 $XL1_{in}^1$ $32A^2$ I/O IOL, PD X1D53 $XL1_{in}^0$ $32A^4$ I/O IOL, PD X1D54 $XL1_{out}^0$ $32A^4$ I/O IOL, PD X1D55 $XL1_{out}^0$ $32A^4$ I/O IOL, PD X1D56 $XL1_{out}^0$ $32A^5$ I/O IOL, PD X1D55 $XL1_{out}^0$ $32A^6$ I/O IOL, PD X1D56 $XL1_{out}^2$ $32A^7$ I/O IOL, PD X1D57 $XL1_{out}^3$ $32A^9$ I/O IOL, PD X1D61 $XL2_{in}^1$ $32A^{10}$ I/O IOL, PD X1D62 $XL2_{in}^2$ $32A^{11}$ I/O IOL, PD X1D63 $XL2_$	X1D41				8D ⁵	16B ¹³		I/0	IOT, PD	
X1D49 XL1 ⁴ _{in} 32A ⁰ I/O IOL, PD X1D50 XL1 ³ _{in} 32A ¹ I/O IOL, PD X1D51 XL1 ² _{in} 32A ² I/O IOL, PD X1D51 XL1 ² _{in} 32A ² I/O IOL, PD X1D52 XL1 ¹ _{in} 32A ³ I/O IOL, PD X1D53 XL1 ⁰ _{in} 32A ⁴ I/O IOL, PD X1D54 XL1 ⁰ _{out} 32A ⁵ I/O IOL, PD X1D55 XL1 ¹ _{out} 32A ⁶ I/O IOL, PD X1D56 XL1 ² _{out} 32A ⁷ I/O IOL, PD X1D57 XL1 ³ _{out} 32A ⁸ I/O IOL, PD X1D58 XL1 ⁴ _{out} 32A ⁹ I/O IOL, PD X1D61 XL2 ¹ _{in} 32A ¹¹ I/O IOL, PD X1D62 XL2 ¹ _{in} 32A ¹¹ I/O IOL, PD X1D63 XL2 ² _{in} 32A ¹² I/O IOL, PD X1D64 XL2 ¹ _{in} 32A	X1D42				8D ⁶	16B ¹⁴		I/0	IOT, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D43				8D ⁷	16B ¹⁵		I/0	IOT, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D49	XL1 ⁴					32A ⁰	I/0	IOL, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D50	XL1 ³					32A ¹	I/0	IOL, PD	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X1D51	XL1 ²					32A ²	I/0	IOL, PD	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X1D52	XL1 ¹ in					32A ³	I/O	IOL, PD	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X1D53	XL1 ⁰					32A ⁴	I/O	IOL, PD	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X1D54	XL1 ⁰ ut					32A ⁵	I/O	IOL, PD	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X1D55	XL1 ¹ ut					32A ⁶	I/0	IOL, PD	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X1D56	XL1 ² out					32A ⁷	I/O	IOL, PD	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X1D57	XL1 ³ out					32A ⁸	I/0	IOL, PD	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X1D58	XL1 ⁴ _{out}					32A ⁹	I/0	IOL, PD	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X1D61	XL2 ⁴					32A ¹⁰	I/0	IOL, PD	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X1D62	XL2 ³						I/O	IOL, PD	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	X1D63	XL2 ² in					32A ¹²	I/O	IOL, PD	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X1D64	XL2 ¹					32A ¹³	I/O	IOL, PD	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X1D65	XL2 ⁰					32A ¹⁴	I/O	IOL, PD	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X1D66						32A ¹⁵	I/O	IOL, PD	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X1D67						32A ¹⁶	I/O	IOL, PD	
X1D70 XL2 ⁴ _{out} 32A ¹⁹ I/O IOL, PD X2D00 1A ⁰ I/O IOL, PD X2D02 4A ⁰ 8A ⁰ 16A ⁰ 32A ²⁰ I/O IOL, PD	X1D68							I/O	IOL, PD	_
X1D70 XL2 ⁴ _{out} 32A ¹⁹ I/O IOL, PD X2D00 1A ⁰ I/O IOL, PD X2D02 4A ⁰ 8A ⁰ 16A ⁰ 32A ²⁰ I/O IOL, PD	X1D69	XL2 ³ _{out}						I/O	IOL, PD	
X2D02 4A ⁰ 8A ⁰ 16A ⁰ 32A ²⁰ I/O IOL, PD	X1D70	XL2 ⁴ ut						I/O	IOL, PD	
	X2D00		1A ⁰					I/O	IOL, PD	
X2D03 4A ¹ 8A ¹ 16A ¹ 32A ²¹ I/O IOL, PD	X2D02			4A ⁰	8A ⁰	16A ⁰	32A ²⁰	I/O	IOL, PD	
	X2D03			4A ¹	8A ¹	16A ¹	32A ²¹	I/O	IOL, PD	

8

Λ

X00	

-XMOS [®]	

(continued)

9

374 Datasheet					Ν			DV
	_11			L				
Signal	Function						Туре	Properties
X2D04			4B ⁰	8A ²	16A ²	32A ²²	I/O	IOL, PD
X2D05			4B ¹	8A ³	16A ³	32A ²³	I/O	IOL, PD
X2D06			4B ²	8A ⁴	16A ⁴	32A ²⁴	I/O	IOL, PD
X2D07			4B ³	8A ⁵	16A ⁵	32A ²⁵	I/O	IOL, PD
X2D08			4A ²	8A ⁶	16A ⁶	32A ²⁶	I/O	IOL, PD
X2D09			4A ³	8A ⁷	16A ⁷	32A ²⁷	I/O	IOL, PD
X2D11		1D ⁰					I/O	IOL, PD
X2D12		1 E ⁰					I/O	IOR, PD
X2D13		1 F ⁰					I/O	IOR, PD
X2D14			4C ⁰	8B ⁰	16A ⁸	32A ²⁸	I/O	IOR, PD
X2D15			4C ¹	8B1	16A ⁹	32A ²⁹	I/O	IOR, PD
X2D16	XL4 ⁴		4D ⁰	8B ²	16A ¹⁰		I/O	IOR, PD
X2D17	XL4 ³		4D ¹	8B ³	16A ¹¹		I/O	IOR, PD
X2D18	XL4 ²		4D ²	8B ⁴	16A ¹²		I/O	IOR, PD
X2D19	XL4 ¹		4D ³	8B ⁵	16A ¹³		I/O	IOR, PD
X2D20			4C ²	8B ⁶	16A ¹⁴	32A ³⁰	I/O	IOR, PD
X2D21			4C ³	8B ⁷	16A ¹⁵	32A ³¹	I/0	IOR, PD
X2D22		1G ⁰					I/0	IOR, PD
X2D23		1H ⁰					I/0	IOR, PD
X2D24	XL7 ⁰	11 ⁰					I/O	IOR, PD
X2D25	XL7 ⁰ ut	1J ⁰					I/O	IOR, PD
X2D26	XL7 ³ out		4E ⁰	8C ⁰	16B ⁰		I/O	IOR, PD
X2D27	XL7 ⁴ out		4E ¹	8C1	16B ¹		I/O	IOR, PD
X2D28			4F ⁰	8C ²	16B ²		I/O	IOR, PD
X2D29			4F ¹	8C ³	16B ³		I/O	IOR, PD
X2D30			4F ²	8C ⁴	16B ⁴		I/O	IOR, PD
X2D31			4F ³	8C ⁵	16B ⁵		I/O	IOR, PD
X2D32			4E ²	8C ⁶	16B ⁶		I/O	IOR, PD
X2D33			4E ³	8C ⁷	16B ⁷		I/O	IOR, PD
X2D34	XL7 ¹ out	1K ⁰					I/O	IOR, PD
X2D35	XL7 ² out	1L ⁰					I/O	IOR, PD
X2D36		1 M ⁰		8D ⁰	16B ⁸		I/O	IOL, PD
X2D49	XL5 ⁴					32A ⁰	I/O	IOR, PD
X2D50	XL5 ³					32A ¹	I/0	IOR, PD
X2D51	XL5 ²					32A ²	I/O	IOR, PD
X2D52	XL5 ¹					32A ³	I/O	IOR, PD
X2D53	XL5 ⁰					32A ⁴	I/O	IOR, PD
X2D54	XL5 ⁰ out					32A ⁵	I/O	IOR, PD
X2D55	XL5 ¹ xL5 ¹					32A ⁶	I/O	IOR, PD
X2D56	XL5 ² _{out}					32A ⁷	I/O	IOR, PD
X2D57	XL5 ³ out					32A ⁸	I/O	IOR, PD
X2D58	XL5 ⁴ out					32A ⁹	I/O	IOR, PD
X2D61	XL6 ⁴					32A ¹⁰	I/O	IOR, PD
								(continued)

X009390	

XLF232-1024-FB374 Datashee	et		4		N			
	_ []	V						
Signal	Function						Туре	Properties
X2D62	XL6 ³					32A ¹¹	I/O	IOR, PD
X2D63	XL6 ² in					32A ¹²	I/O	IOR, PD
X2D64	XL6 ¹					32A ¹³	I/O	IOR, PD
X2D65	XL6 ⁰ in					32A ¹⁴	I/O	IOR, PD
X2D66	XL6 ⁰ out					32A ¹⁵	I/O	IOR, PD
X2D67	XL6 ¹ _{out}					32A ¹⁶	I/0	IOR, PD
X2D68	XL6 ² _{out}					32A ¹⁷	I/0	IOR, PD
X2D69	XL6 ³ out					32A ¹⁸	I/O	IOR, PD
X2D70	XL6 ⁴ _{out}					32A ¹⁹	I/O	IOR, PD
X3D00	XL7 ² in	1A ⁰					I/O	IOR, PD
X3D01	XL7 ¹	1 B ⁰					I/O	IOR, PD
X3D02	XL4 ⁰		4A ⁰	8A ⁰	16A ⁰	32A ²⁰	I/O	IOR, PD
X3D03	XL4 ⁰ ut		4A ¹	8A1	16A ¹	32A ²¹	I/0	IOR, PD
X3D04	XL4 ¹ _{out}		4B ⁰	8A ²	16A ²	32A ²²	I/0	IOR, PD
X3D05	XL4 ² _{out}		4B ¹	8A ³	16A ³	32A ²³	I/O	IOR, PD
X3D06	XL4 ³ _{out}		4B ²	8A ⁴	16A ⁴	32A ²⁴	I/O	IOR, PD
X3D07	XL4 ⁴ _{out}		4B ³	8A ⁵	16A ⁵	32A ²⁵	I/0	IOR, PD
X3D08	XL7 ⁴		4A ²	8A ⁶	16A ⁶	32A ²⁶	1/0	IOR, PD
X3D09	XL7 ³ in		4A ³	8A ⁷	16A ⁷	32A ²⁷	1/0	IOR, PD
X3D10		1C ⁰					1/0	IOT, PD
X3D11		1D ⁰					1/0	IOT, PD
X3D12		1E ⁰					1/0	IOL, PD
X3D13		1F ⁰					1/0	IOL, PD
X3D14			4C ⁰	8B ⁰	16A ⁸	32A ²⁸	1/0	IOR, PD
X3D15			4C ¹	8B1	16A ⁹	32A ²⁹	1/0	IOR, PD
X3D20			4C ²	8B ⁶	16A ¹⁴	32A ³⁰	1/0	IOR, PD
X3D21			4C ³	8B ⁷	16A ¹⁵	32A ³¹	1/0	IOR, PD
X3D23		1H ⁰					1/0	IOL, PD
X3D24		110					1/0	IOR, PD
X3D25		1J ⁰					1/0	IOR, PD
X3D26		.,	4E ⁰	8C ⁰	16B ⁰		I/O	IOT, PD
X3D27			4E ¹	8C ¹	16B ¹		1/0	IOT, PD
X3D28			4F ⁰	8C ²	16B ²		I/O	IOT, PD
X3D20 X3D29			4F ¹	8C ³	16B ³		1/0	IOT, PD
X3D23			4F ²	8C ⁴	16B ⁴		I/O	IOT, PD
X3D30			4F ³	8C ⁵	16B ⁵		I/O	IOT, PD
X3D31 X3D32			4F ²	8C ⁶	16B ⁶		I/O	IOT, PD
X3D32 X3D33			4E ⁻	8C°	168°		I/O	IOT, PD
			4C ²	80 ⁴	16B ¹ 2			
X3D40				8D ⁻			I/0	IOT, PD
X3D41 X3D42				8D ⁵	16B ¹³ 16B ¹⁴		I/0	IOT, PD
				8D ⁰ 8D ⁷	16B ¹⁵		I/0	IOT, PD
X3D43	1			٥D.	108.3		I/0	IOT, PD

-XMOS[®]------

XLF232-1024-FB3	74 Datashee		4	RY "
		System pins (4)		
	Signal	Function	Туре	Properties
	CLK	PLL reference clock	Input	IOL, PD, ST
	GLOBAL_DEBUG	Multi-chip debug	I/0	IOL, PU

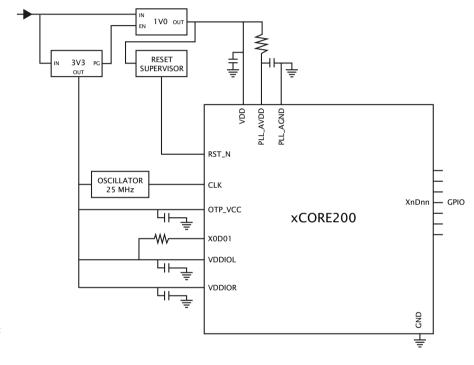
Input

Input

PU

PU

Boot mode select


Boot mode select

MODE0

MODE1

-XMOS°

Figure 2: Simplified Reference Schematic

The XLF232-1024-FB374 is a powerful device that consists of four xCORE Tiles, each comprising a flexible logical processing cores with tightly integrated I/O and on-chip memory.

6.1 Logical cores

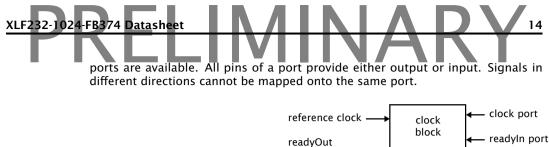
Each tile has 8 active logical cores, which issue instructions down a shared fivestage pipeline. Instructions from the active cores are issued round-robin. If up to five logical cores are active, each core is allocated a fifth of the processing cycles. If more than five logical cores are active, each core is allocated at least 1/n cycles (for *n* cores). Figure 3 shows the guaranteed core performance depending on the number of cores used.

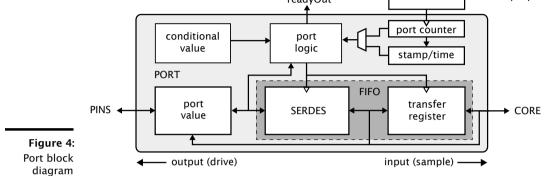
Figure 3: Logical core performance

re 3:	Speed	MIPS	Frequency		Minim	um MIP	'S per c	ore (fo	r <i>n</i> co	res)	
core	grade			1	2	3	4	5	6	7	8
ance	10	1000 MIPS	500 MHz	100	100	100	100	100	83	71	63

There is no way that the performance of a logical core can be reduced below these predicted levels (unless *priority threads* are used: in this case the guaranteed minimum performance is computed based on the number of priority threads as defined in the architecture manual). Because cores may be delayed on I/O, however, their unused processing cycles can be taken by other cores. This means that for more than five logical cores, the performance of each core is often higher than the predicted minimum but cannot be guaranteed.

The logical cores are triggered by events instead of interrupts and run to completion. A logical core can be paused to wait for an event.


6.2 xTIME scheduler


The xTIME scheduler handles the events generated by xCORE Tile resources, such as channel ends, timers and I/O pins. It ensures that all events are serviced and synchronized, without the need for an RTOS. Events that occur at the I/O pins are handled by the Hardware-Response ports and fed directly to the appropriate xCORE Tile. An xCORE Tile can also choose to wait for a specified time to elapse, or for data to become available on a channel.

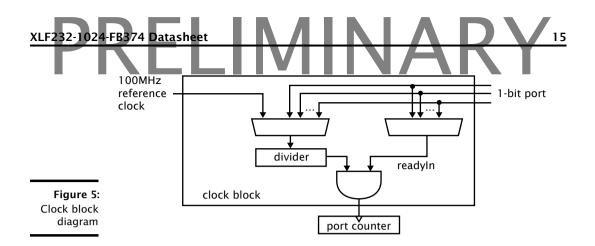
Tasks do not need to be prioritised as each of them runs on their own logical xCORE. It is possible to share a set of low priority tasks on a single core using cooperative multitasking.

6.3 Hardware Response Ports

Hardware Response ports connect an xCORE tile to one or more physical pins and as such define the interface between hardware attached to the XLF232-1024-FB374, and the software running on it. A combination of 1 bit, 4 bit, 8 bit, 16 bit and 32 bit

The port logic can drive its pins high or low, or it can sample the value on its pins, optionally waiting for a particular condition. Ports are accessed using dedicated instructions that are executed in a single processor cycle. xCORE-200 IO pins can be used as *open collector* outputs, where signals are driven low if a zero is output, but left high impedance if a one is output. This option is set on a per-port basis.

Data is transferred between the pins and core using a FIFO that comprises a SERDES and transfer register, providing options for serialization and buffered data.


Each port has a 16-bit counter that can be used to control the time at which data is transferred between the port value and transfer register. The counter values can be obtained at any time to find out when data was obtained, or used to delay I/O until some time in the future. The port counter value is automatically saved as a timestamp, that can be used to provide precise control of response times.

The ports and xCONNECT links are multiplexed onto the physical pins. If an xConnect Link is enabled, the pins of the underlying ports are disabled. If a port is enabled, it overrules ports with higher widths that share the same pins. The pins on the wider port that are not shared remain available for use when the narrower port is enabled. Ports always operate at their specified width, even if they share pins with another port.

6.4 Clock blocks

xCORE devices include a set of programmable clocks called clock blocks that can be used to govern the rate at which ports execute. Each xCORE tile has six clock blocks: the first clock block provides the tile reference clock and runs at a default frequency of 100MHz; the remaining clock blocks can be set to run at different frequencies.

XMOS

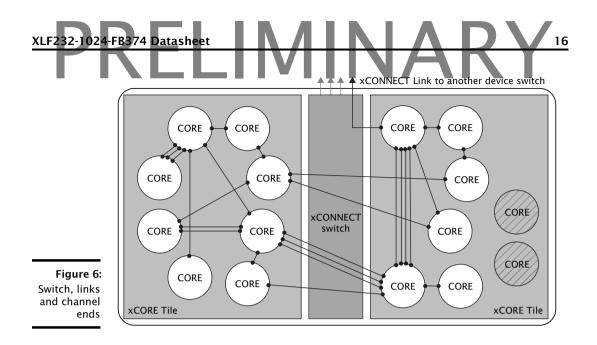
A clock block can use a 1-bit port as its clock source allowing external application clocks to be used to drive the input and output interfaces. xCORE-200 clock blocks optionally divide the clock input from a 1-bit port.

In many cases I/O signals are accompanied by strobing signals. The xCORE ports can input and interpret strobe (known as readyIn and readyOut) signals generated by external sources, and ports can generate strobe signals to accompany output data.

On reset, each port is connected to clock block 0, which runs from the xCORE Tile reference clock.

6.5 Channels and Channel Ends

Logical cores communicate using point-to-point connections, formed between two channel ends. A channel-end is a resource on an xCORE tile, that is allocated by the program. Each channel-end has a unique system-wide identifier that comprises a unique number and their tile identifier. Data is transmitted to a channel-end by an output-instruction; and the other side executes an input-instruction. Data can be passed synchronously or asynchronously between the channel ends.


6.6 xCONNECT Switch and Links

XMOS devices provide a scalable architecture, where multiple xCORE devices can be connected together to form one system. Each xCORE device has an xCONNECT interconnect that provides a communication infrastructure for all tasks that run on the various xCORE tiles on the system.

The interconnect relies on a collection of switches and XMOS links. Each xCORE device has an on-chip switch that can set up circuits or route data. The switches are connected by xConnect Links. An XMOS link provides a physical connection between two switches. The switch has a routing algorithm that supports many different topologies, including lines, meshes, trees, and hypercubes.

The links operate in either 2 wires per direction or 5 wires per direction mode, depending on the amount of bandwidth required. Circuit switched, streaming

and packet switched data can both be supported efficiently. Streams provide the fastest possible data rates between xCORE Tiles (up to 250 MBit/s), but each stream requires a single link to be reserved between switches on two tiles. All packet communications can be multiplexed onto a single link.

Information on the supported routing topologies that can be used to connect multiple devices together can be found in the XS1-LF Link Performance and Design Guide, X2999.

7 PLL

The PLL creates a high-speed clock that is used for the switch, tile, and reference clock. The PLL multiplication value is selected through the two MODE pins, and can be changed by software to speed up the tile or use less power. The MODE pins are set as shown in Figure 7:

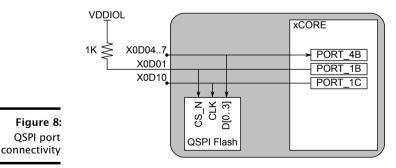
	Oscillator	MC	DDE	Tile	PLL Ratio	PLL	setting	gs
	Frequency	1	0	Frequency		OD	F	R
re 7:	3.25-10 MHz	0	0	130-400 MHz	40	1	159	0
olier	9-25 MHz	1	1	144-400 MHz	16	1	63	0
and	25-50 MHz	1	0	167-400 MHz	8	1	31	0
pins	50-100 MHz	0	1	196-400 MHz	4	1	15	0

-XMOS

Figure 7 also lists the values of OD, \overline{F} and R, which are the registers that define the ratio of the tile frequency to the oscillator frequency:

$$F_{core} = F_{osc} \times \frac{F+1}{2} \times \frac{1}{R+1} \times \frac{1}{OD+1}$$

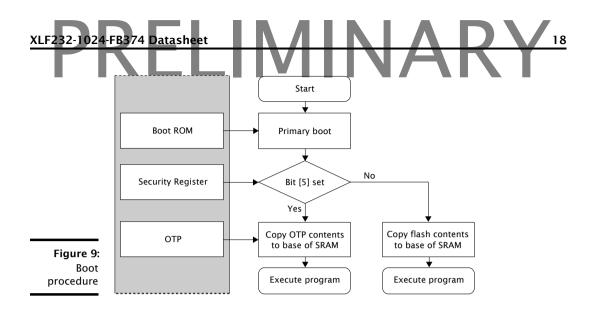
OD, *F* and *R* must be chosen so that $0 \le R \le 63$, $0 \le F \le 4095$, $0 \le OD \le 7$, and $260MHz \le F_{osc} \times \frac{F+1}{2} \times \frac{1}{R+1} \le 1.3GHz$. The *OD*, *F*, and *R* values can be modified by writing to the digital node PLL configuration register.


The MODE pins must be held at a static value during and after deassertion of the system reset.

If a different tile frequency is required (eg, 500 MHz), then the PLL must be reprogrammed after boot to provide the required tile frequency. The XMOS tools perform this operation by default. Further details on configuring the clock can be found in the xCORE-200 Clock Frequency Control document.

8 Boot Procedure

The device is kept in reset by driving RST_N low. When in reset, all GPIO pins have a pull-down enabled. The processor must be held in reset until VDDIOL is in spec for at least 1 ms. When the device is taken out of reset by releasing RST_N the processor starts its internal reset process. After 15-150 μ s (depending on the input clock) the processor boots.


The device boots from a QSPI flash that is embedded in the device. The QSPI flash is connected to the ports on Tile 0 as shown in Figure 8. An external 1K resistor must connect X0D01 to VDDIOL. X0D10 should ideally not be connected. If X0D10 is connected, then a 150 ohm series resistor close to the device is recommended. X0D04..X0D07 should be not connected.

The xCORE Tile boot procedure is illustrated in Figure 9. If bit 5 of the security register (*see* $\S9.1$) is set, the device boots from OTP. Otherwise, the device boots from the internal flash.

The boot image has the following format:

► A 32-bit program size *s* in words.

- Program consisting of $s \times 4$ bytes.
- A 32-bit CRC, or the value 0x0D15AB1E to indicate that no CRC check should be performed.

The program size and CRC are stored least significant byte first. The program is loaded into the lowest memory address of RAM, and the program is started from that address. The CRC is calculated over the byte stream represented by the program size and the program itself. The polynomial used is 0xEDB88320 (IEEE 802.3); the CRC register is initialized with 0xFFFFFFFF and the residue is inverted to produce the CRC.

8.1 Security register

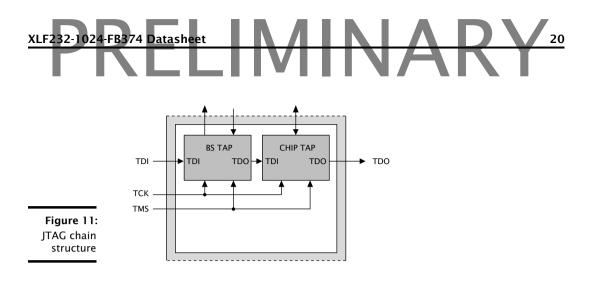
The security register enables security features on the xCORE tile. The features shown in Figure 10 provide a strong level of protection and are sufficient for providing strong IP security.

9 Memory

9.1 OTP

Each xCORE Tile integrates 8 KB one-time programmable (OTP) memory along with a security register that configures system wide security features. The OTP holds data in four sectors each containing 512 rows of 32 bits which can be used to implement secure bootloaders and store encryption keys. Data for the security register is loaded from the OTP on power up. All additional data in OTP is copied from the OTP to SRAM and executed first on the processor.

XLF232-1024-I	FB374 Datasheet		
ГГ	<u>\L</u>		
	Feature	Bit	Description
	Disable JTAG	0	The JTAG interface is disabled, making it impossible for the tile state or memory content to be accessed via the JTAG interface.
	Disable Link access	1	Other tiles are forbidden access to the processor state via the system switch. Disabling both JTAG and Link access transforms an xCORE Tile into a "secure island" with other tiles free for non-secure user application code.
	Secure Boot	5	The xCORE Tile is forced to boot from address 0 of the OTP, allowing the xCORE Tile boot ROM to be bypassed (<i>see</i> \S 8).
	Redundant rows	7	Enables redundant rows in OTP.
	Sector Lock 0	8	Disable programming of OTP sector 0.
	Sector Lock 1	9	Disable programming of OTP sector 1.
	Sector Lock 2	10	Disable programming of OTP sector 2.
	Sector Lock 3	11	Disable programming of OTP sector 3.
	OTP Master Lock	12	Disable OTP programming completely: disables updates to all sectors and security register.
	Disable JTAG-OTP	13	Disable all (read & write) access from the JTAG interface to this OTP.
Figure 10: Security		2115	General purpose software accessable security register available to end-users.
register features		3122	General purpose user programmable JTAG UserID code extension.


The OTP memory is programmed using three special I/O ports: the OTP address port is a 16-bit port with resource ID 0x100200, the OTP data is written via a 32-bit port with resource ID 0x200100, and the OTP control is on a 16-bit port with ID 0x100300. Programming is performed through libotp and xburn.

9.2 SRAM

Each xCORE Tile integrates a single 256KBSRAM bank for both instructions and data. All internal memory is 32 bits wide, and instructions are either 16-bit or 32-bit. Byte (8-bit), half-word (16-bit) or word (32-bit) accesses are supported and are executed within one tile clock cycle. There is no dedicated external memory interface, although data memory can be expanded through appropriate use of the ports.

10 JTAG

The JTAG module can be used for loading programs, boundary scan testing, incircuit source-level debugging and programming the OTP memory.

The JTAG chain structure is illustrated in Figure 11. Directly after reset, two TAP controllers are present in the JTAG chain for each xCORE Tile: the boundary scan TAP and the chip TAP. The boundary scan TAP is a standard 1149.1 compliant TAP that can be used for boundary scan of the I/O pins. The chip TAP provides access into the xCORE Tile, switch and OTP for loading code and debugging.

The JTAG module can be reset by holding TMS high for five clock cycles.

The JTAG device identification register can be read by using the IDCODE instruction. Its contents are specified in Figure 12.

Figure 12	Bit	31											De	evice	lde	ntifi	catio	on R	egist	er											В	it0
Figure 12:		Vers	ion								Pa	rt N	umb	er										Man	ufac	ture	r Ide	ntity	/			1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	1	1	0	0	1	1
return value	0 0															3																

The JTAG usercode register can be read by using the USERCODE instruction. Its contents are specified in Figure 13. The OTP User ID field is read from bits [22:31] of the security register on xCORE Tile 0, *see* §9.1 (all zero on unprogrammed devices).

Figure 13: USERCODE return value

.	Bit	31												ι	Jser	code	Reg	giste	r												В	it0
) .				0	TP U	lser	ID					Unu	sed									Silic	on F	Revis	ion							
E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e		()			()			()			Ĩ	2			8	3			0)			()			C)	

11 Board Integration

The device has the following power supply pins:

- ▶ VDD pins for the xCORE Tile
- VDDIO pins for the I/O lines

OTP VCC pins for the OTP

Several pins of each type are provided to minimize the effect of inductance within the package, all of which must be connected. The power supplies must be brought up monotonically and input voltages must not exceed specification at any time.

The VDD supply must ramp from 0V to its final value within $10 \, \text{ms}$ to ensure correct startup.

The VDDIO and OTP_VCC supply must ramp to its final value before VDD reaches 0.4 V.

The PLLVDD supply should be separated from the other noisier supplies on the board. The PLL requires a very clean power supply, and a low pass filter (for example, a 4.7Ω resistor and 100 nF multi-layer ceramic capacitor) is recommended on this pin.

The following ground pins are provided:

- PLL_AGND for PLL_AVDD
- ► GND for all other supplies

All ground pins must be connected directly to the board ground.

The VDD and VDDIO supplies should be decoupled close to the chip by several 100 nF low inductance multi-layer ceramic capacitors between the supplies and GND (for example, 4×100 nF 0402 low inductance MLCCs per supply rail). The ground side of the decoupling capacitors should have as short a path back to the GND pins as possible. A bulk decoupling capacitor of at least 10 uF should be placed on each of these supplies.

RST_N is an active-low asynchronous-assertion global reset signal. Following a reset, the PLL re-establishes lock after which the device boots up according to the boot mode (*see* §8). RST_N and must be asserted low during and after power up for 100 ns.

11.1 Land patterns and solder stencils

The land pattern recommendations in this document are based on a RoHS compliant process and derived, where possible, from the nominal *Generic Requirements for Surface Mount Design and Land Pattern Standards* IPC-7351B specifications. This standard aims to achieve desired targets of heel, toe and side fillets for solderjoints.

Solder paste and ground via recommendations are based on our engineering and development kit board production. They have been found to work and optimized as appropriate to achieve a high yield. The size, type and number of vias used in the center pad affects how much solder wicks down the vias during reflow. This in turn, along with solder paster coverage, affects the final assembled package height.

These factors should be taken into account during design and manufacturing of the PCB.

The following land patterns and solder paste contains recommendations. Final land pattern and solder paste decisions are the responsibility of the customer. These should be tuned during manufacture to suit the manufacturing process.

11.2 Moisture Sensitivity

XMOS devices are, like all semiconductor devices, susceptible to moisture absorption. When removed from the sealed packaging, the devices slowly absorb moisture from the surrounding environment. If the level of moisture present in the device is too high during reflow, damage can occur due to the increased internal vapour pressure of moisture. Example damage can include bond wire damage, die lifting, internal or external package cracks and/or delamination.

All XMOS devices are Moisture Sensitivity Level (MSL) 3 - devices have a shelf life of 168 hours between removal from the packaging and reflow, provided they are stored below 30C and 60% RH. If devices have exceeded these values or an included moisture indicator card shows excessive levels of moisture, then the parts should be baked as appropriate before use. This is based on information from *Joint IPC/JEDEC Standard For Moisture/Reflow Sensitivity Classification For Nonhermetic Solid State Surface-Mount Devices* J-STD-020 Revision D.

12.1 Operating Conditions

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
VDD	Tile DC supply voltage	0.95	1.00	1.05	V	
VDDIO	I/O supply voltage	2.30	3.30	3.60	V	
VDDIOT_0	I/O supply voltage	2.25	3.30	3.60	V	
VDDIOT_1	I/O supply voltage	2.25	3.30	3.60	V	
VDD33	Peripheral supply	3.135	3.30	3.465	V	
PLL_AVDD	PLL analog supply	0.95	1.00	1.05	V	
Cl	xCORE Tile I/O load capacitance			25	pF	
Та	Ambient operating temperature (Commercial)	0		70	°C	
	Ambient operating temperature (Industrial)	-40		85	°C	
Тј	Junction temperature			125	°C	
Tstg	Storage temperature	-65		150	°C	

Figure 14: Operating conditions

Figure 15: DC characteristics

12.2 DC Characteristics

Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
V(IH)	Input high voltage	2.00		3.60	V	А
V(IL)	Input low voltage	-0.30		0.70	V	А
V(OH)	Output high voltage	2.20			V	B, C
V(OL)	Output low voltage			0.40	V	B, C
R(PU)	Pull-up resistance		35K		Ω	D
R(PD)	Pull-down resistance		35K		Ω	D

A All pins except power supply pins.

B All general-purpose I/Os are nominal 4 mA.

C Measured with 4 mA drivers sourcing 4 mA, 8 mA drivers sourcing 8 mA.

D Used to guarantee logic state for an I/O when high impedance. The internal pull-ups/pull-downs should not be used to pull external circuitry.

12.3 ESD Stress Voltage

Figure 16:	Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
ESD stress	HBM	Human body model	-2.00		2.00	KV	
voltage	CDM	Charged Device Model	-500		500	V	

X009390,

Figure 17: Reset timing

> Figure 18: xCORE Tile currents

- -	Symbol	Parameters	MIN	ТҮР	MAX	UNITS	Notes
/: ~	T(RST)	Reset pulse width	5			μs	
1	T(INIT)	Initialization time			150	μs	А

A Shows the time taken to start booting after RST_N has gone high.

12.5 Power Consumption

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
I(DDCQ)	Quiescent VDD current		45		mA	A, B, C
PD	Tile power dissipation		325		µW/MIPS	A, D, E, F
IDD	Active VDD current ()		TBC	TBC	mA	A, G
	Active VDD current ()		1140	1400	mA	А, Н
I(ADDPLL) PLL_AVDD current				5	mA	1

A Use for budgetary purposes only.

- B Assumes typical tile and I/O voltages with no switching activity.
- C Includes PLL current.
- D Assumes typical tile and I/O voltages with nominal switching activity.
- E Assumes 1 MHz = 1 MIPS.
- F PD(TYP) value is the usage power consumption under typical operating conditions.
- G Measurement conditions: VDD = 1.0 V, VDDIO = 3.3 V, 25 °C, 400 MHz, average device resource usage.
- H Measurement conditions: VDD = 1.0 V, VDDIO = 3.3 V, 25 °C, 500 MHz, average device resource usage.
- I PLL_AVDD = 1.0 V

The tile power consumption of the device is highly application dependent and should be used for budgetary purposes only.

More detailed power analysis can be found in the XS1-LF Power Consumption document,

Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
f	Frequency	3.25	25	100	MHz	
SR	Slew rate	0.10			V/ns	
TJ(LT)	Long term jitter (pk-pk)			2	%	А
f(MAX)	Processor clock frequency ()			400	MHz	В
I(MAA)	Processor clock frequency			500	MHz	В

12.6 Clock

Figure 19: Clock

A Percentage of CLK period.

B Assumes typical tile and I/O voltages with nominal activity.

Further details can be found in the XS1-LF Clock Frequency Control document,

XLF232-1024-F	B374 Datashe	et k	NI /		25
ΓΓ	12.7 xCORE	Tile I/O AC Characteri	stics		
	Symbol	Parameter	MIN	TYP MAX	UNITS Notes

Input data valid window

Figure 20: I/O AC characteristics T(XOVALID)

):	T(XOINVALID)	Output data invalid window	9			ns	
r- s	T(XIFMAX)	Rate at which data can be sampled with respect to an external clock			60	MHz	
-	The input valid	window parameter relates to the ca	nabili	tv of	the d	evice to	capture

8

ns

The input valid window parameter relates to the capability of the device to capture data input to the chip with respect to an external clock source. It is calculated as the sum of the input setup time and input hold time with respect to the external clock as measured at the pins. The output invalid window specifies the time for which an output is invalid with respect to the external clock. Note that these parameters are specified as a window rather than absolute numbers since the device provides functionality to delay the incoming clock with respect to the incoming data.

Information on interfacing to high-speed synchronous interfaces can be found in the XS1 Port I/O Timing document, X5821.

12.8 xConnect Link Performance

	Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
	B(2blinkP)	2b link bandwidth (packetized)			87	MBit/s	А, В
Figure 21:	B(5blinkP)	5b link bandwidth (packetized)			217	MBit/s	А, В
Link	B(2blinkS)	2b link bandwidth (streaming)			100	MBit/s	В
performance	B(5blinkS)	5b link bandwidth (streaming)			250	MBit/s	В

A Assumes 32-byte packet in 3-byte header mode. Actual performance depends on size of the header and payload.

B 7.5 ns symbol time.

The asynchronous nature of links means that the relative phasing of CLK clocks is not important in a multi-clock system, providing each meets the required stability criteria.

1	2.9	JTAG	Timing
---	-----	------	--------

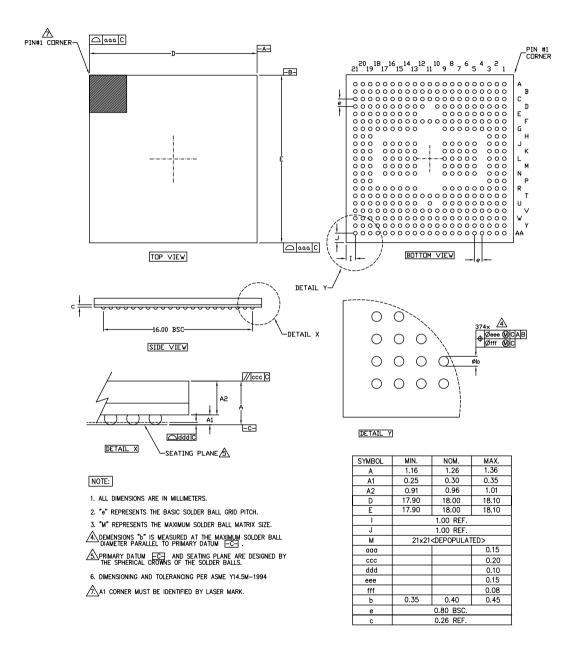
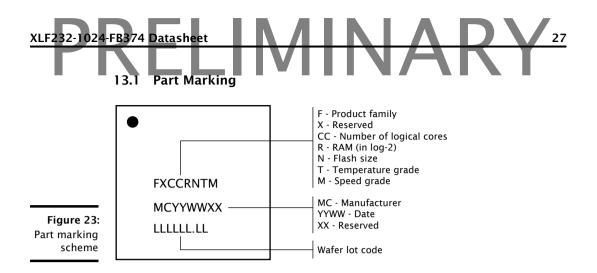
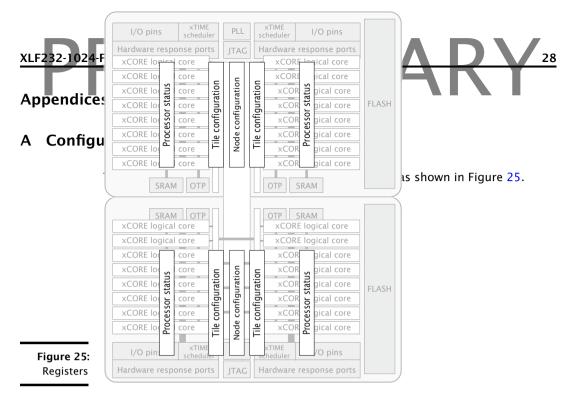

	Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
	f(TCK_D)	TCK frequency (debug)			18	MHz	
	f(TCK_B)	TCK frequency (boundary scan)			10	MHz	
-	T(SETUP)	TDO to TCK setup time	5			ns	А
2:	T(HOLD)	TDO to TCK hold time	5			ns	А
9	T(DELAY)	TCK to output delay			15	ns	В

Figure 22: JTAG timing


A Timing applies to TMS and TDI inputs.

B Timing applies to TDO output from negative edge of TCK.

All JTAG operations are synchronous to TCK.

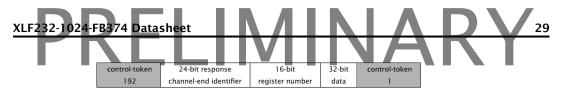

-XMOS

14 Ordering Information

Figure 24:	Product Code	Marking	Qualification	Speed Grade
Orderable	XLF232-1024-FB374-C20	L132A2C40	Commercial	1000 MIPS
part numbers	XLF232-1024-FB374-I20	L132A2I40	Industrial	1000 MIPS

The following communication sequences specify how to access those registers. Any messages transmitted contain the most significant 24 bits of the channel-end to which a response is to be sent. This comprises the node-identifier and the channel number within the node. if no response is required on a write operation, supply 24-bits with the last 8-bits set, which suppresses the reply message. Any multi-byte data is sent most significant byte first.

A.1 Accessing a processor status register


The processor status registers are accessed directly from the processor instruction set. The instructions GETPS and SETPS read and write a word. The register number should be translated into a processor-status resource identifier by shifting the register number left 8 places, and ORing it with 0x0C. Alternatively, the functions getps(reg) and setps(reg,value) can be used from XC.

A.2 Accessing an xCORE Tile configuration register

xCORE Tile configuration registers can be accessed through the interconnect using the functions write_tile_config_reg(tileref, ...) and read_tile_config_reg(tile \rightarrow ref, ...), where tileref is the name of the xCORE Tile, e.g. tile[1]. These functions implement the protocols described below.

Instead of using the functions above, a channel-end can be allocated to communicate with the xCORE tile configuration registers. The destination of the channel-end should be set to 0xnnnnC20C where nnnnnn is the tile-identifier.

A write message comprises the following:

The response to a write message comprises either control tokens 3 and 1 (for success), or control tokens 4 and 1 (for failure).

A read message comprises the following:

control-token	24-bit response	16-bit	control-token
193	channel-end identifier	register number	1

The response to the read message comprises either control token 3, 32-bit of data, and control-token 1 (for success), or control tokens 4 and 1 (for failure).

A.3 Accessing node configuration

Node configuration registers can be accessed through the interconnect using the functions write_node_config_reg(device, ...) and read_node_config_reg(device, ...), where device is the name of the node. These functions implement the protocols described below.

Instead of using the functions above, a channel-end can be allocated to communicate with the node configuration registers. The destination of the channel-end should be set to 0xnnnnC30C where nnnn is the node-identifier.

A write message comprises the following:

 control-token
 24-bit response
 16-bit
 32-bit
 control-token

 192
 channel-end identifier
 register number
 data
 1

The response to a write message comprises either control tokens 3 and 1 (for success), or control tokens 4 and 1 (for failure).

A read message comprises the following:

control-token	24-bit response	16-bit	control-token
193	channel-end identifier	register number	1

The response to a read message comprises either control token 3, 32-bit of data, and control-token 1 (for success), or control tokens 4 and 1 (for failure).

B Processor Status Configuration

The processor status control registers can be accessed directly by the processor using processor status reads and writes (use getps(reg) and setps(reg,value) for reads and writes).

Number	Perm	Description
0x00	RW	RAM base address
0x01	RW	Vector base address
0x02	RW	xCORE Tile control
0x03	RO	xCORE Tile boot status
0x05	RW	Security configuration
0x06	RW	Ring Oscillator Control
0x07	RO	Ring Oscillator Value
0x08	RO	Ring Oscillator Value
0x09	RO	Ring Oscillator Value
0x0A	RO	Ring Oscillator Value
0x0C	RO	RAM size
0x10	DRW	Debug SSR
0x11	DRW	Debug SPC
0x12	DRW	Debug SSP
0x13	DRW	DGETREG operand 1
0x14	DRW	DGETREG operand 2
0x15	DRW	Debug interrupt type
0x16	DRW	Debug interrupt data
0x18	DRW	Debug core control
0x20 0x27	DRW	Debug scratch
0x30 0x33	DRW	Instruction breakpoint address
0x40 0x43	DRW	Instruction breakpoint control
0x50 0x53	DRW	Data watchpoint address 1
0x60 0x63	DRW	Data watchpoint address 2
0x70 0x73	DRW	Data breakpoint control register
0x80 0x83	DRW	Resources breakpoint mask
0x90 0x93	DRW	Resources breakpoint value
0x9C 0x9F	DRW	Resources breakpoint control register

-XMOS

Figure 26:

Summary

XS2-LF32A-1024-FB374

This register contains the base address of the RAM. It is initialized to 0x00040000.

0x00: RAM base address

(00:	Bits	Perm	Init	Description
ase	31:2	RW		Most significant 16 bits of all addresses.
ess	1:0	RO	-	Reserved

B.2 Vector base address: 0x01

Base address of event vectors in each resource. On an interrupt or event, the 16 most significant bits of the destination address are provided by this register; the least significant 16 bits come from the event vector.

0x01 Vector base address

1:	Bits	Perm	Init	Description	
e.	31:18	RW		The event and interrupt vectors.	
S	17:0	RO	-	Reserved	

B.3 xCORE Tile control: 0x02

Register to control features in the xCORE tile

Bits	Perm	Init	Description			
31:26	RO	-	Reserved			
25:18	RW	0	RGMII TX data delay value (in PLL output cycle increments)			
17:9	RW	0	RGMII TX clock divider value. TX clk rises when counter (clocked by PLL output) reaches this value and falls when counter reaches value»1). Value programmed into this field should be actual divide value required minus 1			
8	RW	0	Enable RGMII interface periph ports			
7:6	RO	-	Reserved			
5	RW	0	Select the dynamic mode (1) for the clock divider when the clock divider is enabled. In dynamic mode the clock divider is only activated when all active threads are paused. In static mode the clock divider is always enabled.			
4	RW	0	Enable the clock divider. This divides the output of the PLL to facilitate one of the low power modes.			
3:0	RO	-	Reserved			

-XMOS

0x02: xCORE Tile control

This read-only register describes the boot status of the xCORE tile.

Bits	Perm	Init	Description		
31:24	RO	-	Reserved		
23:16	RO		Processor number.		
15:9	RO	-	Reserved		
8	RO		Overwrite BOOT_MODE.		
7:6	RO	-	Reserved		
5	RO		Indicates if core1 has been powered off		
4	RO		Cause the ROM to not poll the OTP for correct read levels		
3	RO		Boot ROM boots from RAM		
2	RO		Boot ROM boots from JTAG		
1:0	RO		The boot PLL mode pin value.		

0x03: xCORE Tile boot status

B.5 Security configuration: 0x05

Copy of the security register as read from OTP.

Bits	Perm	Init	Description	
31	RW		Disables write permission on this register	
30:15	RO	-	Reserved	
14	RW		Disable access to XCore's global debug	
13	RO	-	Reserved	
12	RW		lock all OTP sectors	
11:8	RW		lock bit for each OTP sector Enable OTP reduanacy	
7	RW			
6	RO	-	Reserved	
5	RW		Override boot mode and read boot image from OTP	
4	RW		Disable JTAG access to the PLL/BOOT configuration registers	
3:1	RO	-	Reserved	
0	RW		Disable access to XCore's JTAG debug TAP	

-XMOS

0x05: Security configuration

There are four free-running oscillators that clock four counters. The oscillators can be started and stopped using this register. The counters should only be read when the ring oscillator has been stopped for at least 10 core clock cycles (this can be achieved by inserting two nop instructions between the SETPS and GETPS). The counter values can be read using four subsequent registers. The ring oscillators are asynchronous to the xCORE tile clock and can be used as a source of random bits.

0x06: Ring Oscillator Control

•	Bits	Perm	Init	Description	
:	31:2	RO	-	Reserved	
r r	1	RW	0	Core ring oscillator enable.	
	0	RW	0	Peripheral ring oscillator enable.	

B.7 Ring Oscillator Value: 0x07

This register contains the current count of the xCORE Tile Cell ring oscillator. This value is not reset on a system reset.

0x07 Ring Oscillator Value

(07: Ling	Bits	Perm	Init	Description
ator	31:16	RO	-	Reserved
lue	15:0	RO	0	Ring oscillator Counter data.

B.8 Ring Oscillator Value: 0x08

This register contains the current count of the xCORE Tile Wire ring oscillator. This value is not reset on a system reset.

0x08: Ring Oscillator Value

8: a	Bits	Perm	Init	Description	
g or	31:16	RO	-	Reserved	
e	15:0	RO	0	Ring oscillator Counter data.	

B.9 Ring Oscillator Value: 0x09

This register contains the current count of the Peripheral Cell ring oscillator. This value is not reset on a system reset.

XMOS

B.10 Ring Oscillator Value: 0x0A

This register contains the current count of the Peripheral Wire ring oscillator. This value is not reset on a system reset.

0x0A Ring Oscillato Value

(0A: Ring	Bits	Perm	Init	Description
ator	31:16	RO	-	Reserved
alue	15:0	RO	0	Ring oscillator Counter data.

B.11 RAM size: 0x0C

The size of the RAM in bytes

0x0C: RAM size

Bits	Perm	Init	Description
31:2	RO		Most significant 16 bits of all addresses.
1:0	RO	-	Reserved

B.12 Debug SSR: 0x10

This register contains the value of the SSR register when the debugger was called.

-XMOS

FB374 D	<u>ata</u> shee	t	MINARY ³⁵
Bits	Perm	Init	Description
31:11	RO	-	Reserved
10	DRW		Address space indentifier
9	DRW		Determines the issue mode (DI bit) upon Kernel Entry after Exception or Interrupt.
8	RO		Determines the issue mode (DI bit).
7	DRW		When 1 the thread is in fast mode and will continually issue.
6	DRW		When 1 the thread is paused waiting for events, a lock or another resource.
5	RO	-	Reserved
4	DRW		1 when in kernel mode.
3	DRW		1 when in an interrupt handler.
2	DRW		1 when in an event enabling sequence.
1	DRW		When 1 interrupts are enabled for the thread.
	Bits 31:11 10 9 8 7 6 5 4 3 2	Bits Perm 31:11 RO 10 DRW 9 DRW 8 RO 7 DRW 6 DRW 5 RO 4 DRW 3 DRW	31:11 RO 9 DRW 9 DRW 8 RO 7 DRW 6 DRW 5 RO 4 DRW 3 DRW

Debug SSR

B.13 Debug SPC: 0x11

DRW

0

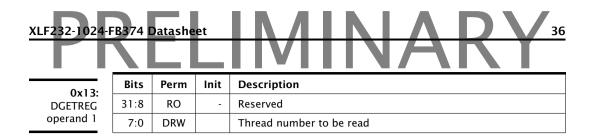
This register contains the value of the SPC register when the debugger was called.

When 1 events are enabled for the thread.

0x11:	Bits	Perm	Init	Description
Debug SPC	31:0	DRW		Value.

B.14 Debug SSP: 0x12

This register contains the value of the SSP register when the debugger was called.


0x12: Debug SSP	Bits	Perm	Init	Description
	31:0	DRW		Value.

B.15 DGETREG operand 1: 0x13

The resource ID of the logical core whose state is to be read.

-XMOS[®]

-

B.16 DGETREG operand 2: 0x14

Register number to be read by DGETREG

0x14: DGETREG operand 2

Bits	Perm	Init	Description		
31:5	RO	-	Reserved		
4:0	DRW		Register number to be read		

B.17 Debug interrupt type: 0x15

Register that specifies what activated the debug interrupt.

Bits	Perm	Init	Description	
31:18	RO	-	Reserved	
17:16	DRW		Number of the hardware breakpoint/watchpoint which caused the interrupt (always 0 for =HOST= and =DCALL=). If multiple breakpoints/watchpoints trigger at once, the lowest number is taken.	
15:8	DRW		Number of thread which caused the debug interrupt (always 0 in the case of $=HOST=$).	
7:3	RO	-	Reserved	
2:0	DRW	0	Indicates the cause of the debug interrupt 1: Host initiated a debug interrupt through JTAG 2: Program executed a DCALL instruction 3: Instruction breakpoint 4: Data watch point 5: Resource watch point	

0x15: Debug interrupt type

B.18 Debug interrupt data: 0x16

On a data watchpoint, this register contains the effective address of the memory operation that triggered the debugger. On a resource watchpoint, it countains the resource identifier.

-XMOS

B.19 Debug core control: 0x18

This register enables the debugger to temporarily disable logical cores. When returning from the debug interrupts, the cores set in this register will not execute. This enables single stepping to be implemented.

0x18: Debug core control

Bits	Perm	Init	Description
31:8	RO	-	Reserved
7:0	DRW		1-hot vector defining which threads are stopped when not in debug mode. Every bit which is set prevents the respective thread from running.

B.20 Debug scratch: 0x20 .. 0x27

A set of registers used by the debug ROM to communicate with an external debugger, for example over JTAG. This is the same set of registers as the Debug Scratch registers in the xCORE tile configuration.

0x20 .. 0x27 Debug scratch

0 x27: ebug	Bits	Perm	Init	Description
ratch	31:0	DRW		Value.

B.21 Instruction breakpoint address: 0x30 .. 0x33

This register contains the address of the instruction breakpoint. If the PC matches this address, then a debug interrupt will be taken. There are four instruction breakpoints that are controlled individually.

0x30 .. 0x33: Instruction breakpoint address

tion oint	Bits	Perm	Init	Description			
ress	31:0	DRW		Value.			

This register controls which logical cores may take an instruction breakpoint, and under which condition.

Bits	Perm	Init	Description	
31:24	RO	-	Reserved	
23:16	DRW	0	A bit for each thread in the machine allowing the breakpoint to be enabled individually for each thread.	
15:2	RO	-	Reserved	
1	DRW	0	When 0 break when PC == IBREAK_ADDR. When 1 = break whe PC != IBREAK_ADDR.	
0	DRW	0	When 1 the instruction breakpoint is enabled.	

0x40 .. 0x43: Instruction breakpoint control

B.23 Data watchpoint address 1: 0x50 ... 0x53

This set of registers contains the first address for the four data watchpoints.

0x50 .. 0x53: Data watchpoint address 1

Data point ress 1	Bits	Perm	Init	Description
	31:0	DRW		Value.

B.24 Data watchpoint address 2: 0x60 .. 0x63

This set of registers contains the second address for the four data watchpoints.

0x60 .. 0x63: Data watchpoint address 2

Data hpoint	Bits	Perm	Init	Description	
lress 2	31:0	DRW		Value.	

B.25 Data breakpoint control register: 0x70 .. 0x73

•**X**M(

This set of registers controls each of the four data watchpoints.

XLF232-1024-FB374 Datasheet				MINARY ³⁹
	Bits	Perm	Init	Description
	31:24	RO	-	Reserved
	23:16	DRW	0	A bit for each thread in the machine allowing the breakpoint to be enabled individually for each thread.
0x70 0x73:	15:3	RO	-	Reserved
Data breakpoint	2	DRW	0	When 1 the breakpoints will be be triggered on loads.
control	1	DRW	0	Determines the break condition: $0 = A AND B$, $1 = A OR B$.
register	0	DRW	0	When 1 the instruction breakpoint is enabled.

B.26 Resources breakpoint mask: 0x80 .. 0x83

This set of registers contains the mask for the four resource watchpoints.

0x80 0x83: Resources				
breakpoint	Bits	Perm	Init	Description
mask	31:0	DRW		Value.

B.27 Resources breakpoint value: 0x90 .. 0x93

This set of registers contains the value for the four resource watchpoints.

0x90 0x93: Resources				
breakpoint value	Bits	Perm	Init	Description
	31:0	DRW		Value.

B.28 Resources breakpoint control register: 0x9C .. 0x9F

This set of registers controls each of the four resource watchpoints.

-XMOS[®]

XLF232-1024-F	B374 D	atashee	t	MINARY ⁴⁰
	Bits	Perm	Init	Description
	31:24	RO	-	Reserved
	23:16	DRW	0	A bit for each thread in the machine allowing the breakpoint to be enabled individually for each thread.
0x9C 0x9F: Resources	15:2	RO	-	Reserved
breakpoint control	1	DRW	0	When 0 break when condition A is met. When 1 = break when condition B is met.
register	0	DRW	0	When 1 the instruction breakpoint is enabled.

XLF232-1024-FB374 Datasheet 41 C Tile Configuration

The xCORE Tile control registers can be accessed using configuration reads and writes (use write_tile_config_reg(tileref, ...) and read_tile_config_reg(tileref, \rightarrow ...) for reads and writes).

Number	Perm	Description
0x00	CRO	Device identification
0x01	CRO	xCORE Tile description 1
0x02	CRO	xCORE Tile description 2
0x04	CRW	Control PSwitch permissions to debug registers
0x05	CRW	Cause debug interrupts
0x06	CRW	xCORE Tile clock divider
0x07	CRO	Security configuration
0x20 0x27	CRW	Debug scratch
0x40	CRO	PC of logical core 0
0x41	CRO	PC of logical core 1
0x42	CRO	PC of logical core 2
0x43	CRO	PC of logical core 3
0x44	CRO	PC of logical core 4
0x45	CRO	PC of logical core 5
0x46	CRO	PC of logical core 6
0x47	CRO	PC of logical core 7
0x60	CRO	SR of logical core 0
0x61	CRO	SR of logical core 1
0x62	CRO	SR of logical core 2
0x63	CRO	SR of logical core 3
0x64	CRO	SR of logical core 4
0x65	CRO	SR of logical core 5
0x66	CRO	SR of logical core 6
0x67	CRO	SR of logical core 7

Figure 27: Summary

C.1 Device identification: 0x00

This register identifies the xCORE Tile

-XMOS

XLF232-1024-F	-B374 D	atashee	t	MINARY ⁴²
	Bits	Perm	Init	Description
	31:24	CRO		Processor ID of this XCore.
0x00:	23:16	CRO		Number of the node in which this XCore is located.
Device	15:8	CRO		XCore revision.
identification	7:0	CRO		XCore version.

C.2 xCORE Tile description 1: 0x01

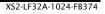
This register describes the number of logical cores, synchronisers, locks and channel ends available on this xCORE tile.

0x01:
xCORE Tile
description 1

Bits	Perm	Init	Description
31:24	CRO		Number of channel ends.
23:16	CRO		Number of the locks.
15:8	CRO		Number of synchronisers.
7:0	RO	-	Reserved

C.3 xCORE Tile description 2: 0x02

This register describes the number of timers and clock blocks available on this xCORE tile.


0x02: xCORE Tile description 2

	Bits	Perm	Init	Description
x02:	31:16	RO	-	Reserved
Tile	15:8	CRO		Number of clock blocks.
on 2	7:0	CRO		Number of timers.

C.4 Control PSwitch permissions to debug registers: 0x04

-XMOS-

This register can be used to control whether the debug registers (marked with permission CRW) are accessible through the tile configuration registers. When this bit is set, write -access to those registers is disabled, preventing debugging of the xCORE tile over the interconnect.

XLF232-1024-F	B374 I	Datashe	et	
ГГ				
	Bits	Perm	Init	Description
0x04: Control PSwitch	31	CRW	0	When 1 the PSwitch is restricted to RO access to all CRW registers from SSwitch, XCore(PS_DBG_Scratch) and JTAG
permissions	30:1	RO	-	Reserved
to debug registers	0	CRW	0	When 1 the PSwitch is restricted to RO access to all CRW registers from SSwitch

C.5 Cause debug interrupts: 0x05

This register can be used to raise a debug interrupt in this xCORE tile.

0x05: Cause debug interrupts

	Bits	Perm	Init	Description
	31:2	RO	-	Reserved
J	1	CRW	0	1 when the processor is in debug mode.
5	0	CRW	0	Request a debug interrupt on the processor.

C.6 xCORE Tile clock divider: 0x06

This register contains the value used to divide the PLL clock to create the xCORE tile clock. The divider is enabled under control of the tile control register

0x06: xCORE Tile clock divider

Bits	Perm	Init	Description
31	CRW	0	Clock disable. Writing '1' will remove the clock to the tile.
30:16	RO	-	Reserved
15:0	CRW	0	Clock divider.

C.7 Security configuration: 0x07

Copy of the security register as read from OTP.

-XMOS

XLF232-1024-F	- B 374 D	atashee	t	MINARY ⁴⁴
	Bits	Perm	Init	Description
	31	CRO		Disables write permission on this register
	30:15	RO	-	Reserved
	14	CRO		Disable access to XCore's global debug
	13	RO	-	Reserved
	12	CRO		lock all OTP sectors
	11:8	CRO		lock bit for each OTP sector
	7	CRO		Enable OTP reduanacy
	6	RO	-	Reserved
	5	CRO		Override boot mode and read boot image from OTP
0x07:	4	CRO		Disable JTAG access to the PLL/BOOT configuration registers
Security	3:1	RO	-	Reserved
configuration	0	CRO		Disable access to XCore's JTAG debug TAP

C.8 Debug scratch: 0x20 .. 0x27

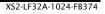
A set of registers used by the debug ROM to communicate with an external debugger, for example over the switch. This is the same set of registers as the Debug Scratch registers in the processor status.

0x20 .. 0x27 Debug scratch

0x27: Debug	Bits	Perm	Init	Description
cratch	31:0	CRW		Value.

C.9 PC of logical core 0: 0x40

Value of the PC of logical core 0.


0x40 PC of logical core 0

0x40: ogical	Bits	Perm	Init	Description
ore 0	31:0	CRO		Value.

-XMOS

C.10 PC of logical core 1: 0x41

Value of the PC of logical core 1.

PC of logical core 1

31:0

CRO

Init Description Value.

C.11 PC of logical core 2: 0x42

Value of the PC of logical core 2.

0x42: PC of logical core 2

Bits	Perm	Init	Description
31:0	CRO		Value.

C.12 PC of logical core 3: 0x43

Value of the PC of logical core 3.

0x43:				
PC of logical	Bits	Perm	Init	Description
core 3	31:0	CRO		Value.

C.13 PC of logical core 4: 0x44

Value of the PC of logical core 4.

0x44 PC of logical core 4

0x44: ogical	Bits	Perm	Init	Description
core 4	31:0	CRO		Value.

C.14 PC of logical core 5: 0x45

Value of the PC of logical core 5.

0x45: PC of logical core 5

Bits	Perm	Init	Description
31:0	CRO		Value.

Value of the PC of logical core 6.

0x46: PC of logical core 6

Bits

31:0

Perm	Init	Description
CRO		Value.

C.16 PC of logical core 7: 0x47

Value of the PC of logical core 7.

0 PC of loo со

0x47: ogical	Bits	Perm	Init	Description
ore 7	31:0	CRO		Value.

C.17 SR of logical core 0: 0x60

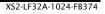
Value of the SR of logical core 0

0 SR of log со

0x60: ogical	Bits	Perm	Init	Description	
ore 0	31:0	CRO		Value.	

C.18 SR of logical core 1: 0x61

Value of the SR of logical core 1


0x6 SR of logic core

51: al	Bits	Perm	Init	Description
: 1	31:0	CRO		Value.

•**X**M(

C.19 SR of logical core 2: 0x62

Value of the SR of logical core 2

0x62: SR of logical core 2

Bits

31:0

Perm

CRO

Init Description Value.

C.20 SR of logical core 3: 0x63

Value of the SR of logical core 3

0x63: SR of logical core 3

Bits	Perm	Init	Description
31:0	CRO		Value.

C.21 SR of logical core 4: 0x64

Value of the SR of logical core 4

0x64: SR of logical core 4

Bits	Perm	Init	Description
31:0	CRO		Value.

C.22 SR of logical core 5: 0x65

Value of the SR of logical core 5

0x65: SR of logical core 5

: 	Bits	Perm	Init	Description
	31:0	CRO		Value.

C.23 SR of logical core 6: 0x66

Value of the SR of logical core 6

0x66: SR of logical core 6

Bits	Perm	Init	Description
31:0	CRO		Value.

Value of the SR of logical core 7

0x67: SR of logical	Bits	Perm	Init	Description
core 7	31:0	CRO		Value.

XLF232-1024-FB374 Datasheet 49 D Node Configuration

The digital node control registers can be accessed using configuration reads and writes (use write_node_config_reg(device, ...) and read_node_config_reg(device, ...) for reads and writes).

Number	Perm	Description
0x00	RO	Device identification
0x01	RO	System switch description
0x04	RW	Switch configuration
0x05	RW	Switch node identifier
0x06	RW	PLL settings
0x07	RW	System switch clock divider
0x08	RW	Reference clock
0x09	R	System JTAG device ID register
0x0A	R	System USERCODE register
0x0C	RW	Directions 0-7
0x0D	RW	Directions 8-15
0x10	RW	Reserved
0x11	RW	Reserved.
0x1F	RO	Debug source
0x20 0x28	RW	Link status, direction, and network
0x40 0x47	RO	PLink status and network
0x80 0x88	RW	Link configuration and initialization
0xA0 0xA7	RW	Static link configuration

Figure 28: Summary

D.1 Device identification: 0x00

This register contains version and revision identifiers and the mode-pins as sampled at boot-time.

	Bits	Perm	Init	Description
	31:24	RO	-	Reserved
0x00:	23:16	RO		Sampled values of BootCtl pins on Power On Reset.
Device	15:8	RO		SSwitch revision.
itification	7:0	RO		SSwitch version.

-XMOS

identificati

This register specifies the number of processors and links that are connected to this switch.

0x01 System switch descriptior

	Bits	Perm	Init	Description
_	31:24	RO	-	Reserved
01: em	23:16	RO		Number of SLinks on the SSwitch.
ch	15:8	RO		Number of processors on the SSwitch.
on	7:0	RO		Number of processors on the device.

D.3 Switch configuration: 0x04

This register enables the setting of two security modes (that disable updates to the PLL or any other registers) and the header-mode.

Bits	Perm	Init	Description
31	RW	0	0 = SSCTL registers have write access. $1 = SSCTL$ registers can not be written to.
30:9	RO	-	Reserved
8	RW	0 0 = PLL_CTL_REG has write written to.	0 = PLL_CTL_REG has write access. 1 = PLL_CTL_REG can not be written to.
7:1	RO	-	Reserved
0	RW	0	0 = 2-byte headers, $1 = 1$ -byte headers (reset as 0).

0x04: Switch configuration

D.4 Switch node identifier: 0x05

This register contains the node identifier.

0x05 Switch node identifier

0x05:	Bits	Perm	Init	Description
node	31:16	RO	-	Reserved
ntifier	15:0	RW	0	The unique ID of this node.

D.5 PLL settings: 0x06

An on-chip PLL multiplies the input clock up to a higher frequency clock, used to clock the I/O, processor, and switch, see Oscillator. Note: a write to this register will cause the tile to be reset.

XMOS

XLF232-1024-F	B374 D	atashee	t	MINARY ⁵¹
	Bits	Perm	Init	Description
	31	RW		If set to 1, the chip will not be reset
	30	RW		If set to 1, the chip will not wait for the PLL to re-lock. Only use this if a gradual change is made to the PLL
	29	DW		If set to 1, set the PLL to be bypassed
	28	DW		If set to 1, set the boot mode to boot from JTAG
	27:26	RO	-	Reserved
	25:23	RW		Output divider value range from 1 (8'h0) to 250 (8'hF9). P value.
	22:21	RO	-	Reserved
	20:8	RW		Feedback multiplication ratio, range from 1 (8'h0) to 255 (8'hFE). M value.
	7	RO	-	Reserved
0x06: PLL settings	6:0	RW		Oscilator input divider value range from 1 (8'h0) to 32 (8'h0F). N value.

D.6 System switch clock divider: 0x07

Sets the ratio of the PLL clock and the switch clock.

0x07 System switch clock divider

9 7: m	Bits	Perm	Init	Description
ck	31:16	RO	-	Reserved
er	15:0	RW	0	SSwitch clock generation

D.7 Reference clock: 0x08

Sets the ratio of the PLL clock and the reference clock used by the node.

0x08: Reference	Bits	Perm	Init	Description
	31:16	RO	-	Reserved
clock	15:0	RW	3	Software ref. clock divider

0x09 System JTAG device ID register

	Bits	Perm	Init	Description
	31:28	RO		
)x09: JTAG	27:12	RO		
ce ID	11:1	RO		
jister	0	RO		

D.9 System USERCODE register: 0x0A

0x0A System USERCODE register

:	Bits	Perm	Init	Description
n E	31:18	RO		JTAG USERCODE value programmed into OTP SR
r	17:0	RO		metal fixable ID code

D.10 Directions 0-7: 0x0C

This register contains eight directions, for packets with a mismatch in bits 7..0 of the node-identifier. The direction in which a packet will be routed is goverened by the most significant mismatching bit.

Bits	Perm	Init	Description
31:28	RW	0	The direction for packets whose dimension is 7.
27:24	RW	0	The direction for packets whose dimension is 6.
23:20	RW	0	The direction for packets whose dimension is 5.
19:16	RW	0	The direction for packets whose dimension is 4.
15:12	RW	0	The direction for packets whose dimension is 3.
11:8	RW	0	The direction for packets whose dimension is 2.
7:4	RW	0	The direction for packets whose dimension is 1.
3:0	RW	0	The direction for packets whose dimension is 0.

0x0C: Directions 0-7

D.11 Directions 8-15: 0x0D

This register contains eight directions, for packets with a mismatch in bits 15..8 of the node-identifier. The direction in which a packet will be routed is goverened by the most significant mismatching bit.

XMOS

XLF232-1024-FB374 Datasheet 53

	Bits	Perm	Init	Description
	31:28	RW	0	The direction for packets whose dimension is F.
	27:24	RW	0	The direction for packets whose dimension is E.
	23:20	RW	0	The direction for packets whose dimension is D.
	19:16	RW	0	The direction for packets whose dimension is C.
	15:12	RW	0	The direction for packets whose dimension is B.
-):	11:8	RW	0	The direction for packets whose dimension is A.
s	7:4	RW	0	The direction for packets whose dimension is 9.
5	3:0	RW	0	The direction for packets whose dimension is 8.

0x0D: Directions 8-15

D.12 Reserved: 0x10

Reserved.

	-
0x10)-
Reserved	-

Bits	Perm	Init	Description
31:2	RO	-	Reserved
1	RW	0	Reserved.
0	RW	0	Reserved.

D.13 Reserved.: 0x11

Reserved.

0x11: Reserved.

Bits	Perm	Init	Description
31:2	RO	-	Reserved
1	RW	0	Reserved.
0	RW	0	Reserved.

D.14 Debug source: 0x1F

Contains the source of the most recent debug event.

-XM(

XLF232-1024-FB374 Datasheet		et		
FNLL				
	Bits	Perm	Init	Description
	31:5	RO	-	Reserved
	4	RW		Reserved.
	3:2	RO	-	Reserved
0x1F:	1	RW		If set, XCore1 is the source of last GlobalDebug event.
Debug source	0	RW		If set, XCore0 is the source of last GlobalDebug event.

D.15 Link status, direction, and network: 0x20 .. 0x28

These registers contain status information for low level debugging (read-only), the network number that each link belongs to, and the direction that each link is part of. The registers control links 0..7.

Bits	Perm	Init	Description
31:26	RO	-	Reserved
25:24	RO		Identify the SRC_TARGET type 0 - SLink, 1 - PLink, 2 - SSCTL, 3 - Undefine.
23:16	RO		When the link is in use, this is the destination link number to which all packets are sent.
15:12	RO	-	Reserved
11:8	RW	0	The direction that this link operates in.
7:6	RO	-	Reserved
5:4	RW	0	Determines the network to which this link belongs, reset as 0.
3	RO	-	Reserved
2	RO		1 when the current packet is considered junk and will be thrown away.
1	RO		1 when the dest side of the link is in use.
0	RO		1 when the source side of the link is in use.

0x20 .. 0x28: Link status, direction, and network

D.16 PLink status and network: 0x40 .. 0x47

These registers contain status information and the network number that each processor-link belongs to.

-XMOS'-

XLF232-1024-FB374 Datasheet				MINARY ⁵⁵
	Bits	Perm	Init	Description
	31:26	RO	-	Reserved
	25:24	RO		Identify the SRC_TARGET type 0 - SLink, 1 - PLink, 2 - SSCTL, 3 - Undefine.
	23:16	RO		When the link is in use, this is the destination link number to which all packets are sent.
	15:6	RO	-	Reserved
	5:4	RW	0	Determines the network to which this link belongs, reset as 0.
	3	RO	-	Reserved
0x40 0x47:	2	RO		1 when the current packet is considered junk and will be thrown away.
PLink status	1	RO		1 when the dest side of the link is in use.

and network

0

RO

D.17 Link configuration and initialization: 0x80 ... 0x88

These registers contain configuration and debugging information specific to external links. The link speed and width can be set, the link can be initialized, and the link status can be monitored. The registers control links 0..7.

1 when the source side of the link is in use.

Bits	Perm	Init	Description
31	RW		Write to this bit with '1' will enable the XLink, writing '0' will disable it. This bit controls the muxing of ports with overlapping xlinks.
30	RW	0	0: operate in 2 wire mode; 1: operate in 5 wire mode
29:28	RO	-	Reserved
27	RO		Rx buffer overflow or illegal token encoding received.
26	RO	0	This end of the xlink has issued credit to allow the remote end to transmit
25	RO	0	This end of the xlink has credit to allow it to transmit.
24	WO		Clear this end of the xlink's credit and issue a HELLO token.
23	WO		Reset the receiver. The next symbol that is detected will be the first symbol in a token.
22	RO	-	Reserved
21:11	RW	0	Specify min. number of idle system clocks between two contin- uous symbols witin a transmit token -1.
10:0	RW	0	Specify min. number of idle system clocks between two contin- uous transmit tokens -1.

-XMOS°

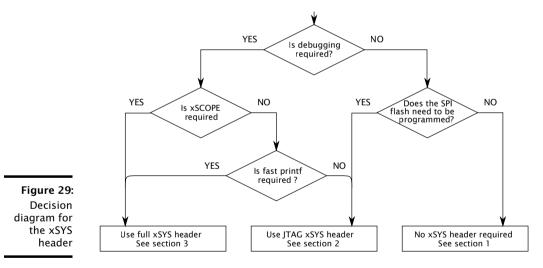
0x80 .. 0x88 Lin configuration an initializatio

These registers are used for static (ie, non-routed) links. When a link is made static, all traffic is forwarded to the designated channel end and no routing is attempted. The registers control links C, D, A, B, G, H, E, and F in that order.

Bits	Perm	Init	Description	
31	RW	0	Enable static forwarding.	
30:9	RO	-	Reserved	
8	RW	0	The destination processor on this node that packets received in static mode are forwarded to.	
7:5	RO	-	Reserved	
4:0	RW	0	The destination channel end on this node that packets received in static mode are forwarded to.	

0xA0 .. 0xA7: Static link configuration

XLF232-1024-FB374 Datasheet 57 E Device Errata


This section describes minor operational differences from the data sheet and recommended workarounds. As device and documentation issues become known, this section will be updated the document revised.

To guarantee a logic low is seen on the pins RST_N, MODE[1:0], TMS, and TDI, the driving circuit should present an impedance of less than 100Ω to ground. Usually this is not a problem for CMOS drivers driving single inputs. If one or more of these inputs are placed in parallel, however, additional logic buffers may be required to guarantee correct operation.

For static inputs tied high or low, the relevant input pin should be tied directly to GND or VDDIO.

F JTAG, xSCOPE and Debugging

If you intend to design a board that can be used with the XMOS toolchain and xTAG debugger, you will need an xSYS header on your board. Figure 29 shows a decision diagram which explains what type of xSYS connectivity you need. The three subsections below explain the options in detail.

XMOS

F.1 No xSYS header

The use of an xSYS header is optional, and may not be required for volume production designs. However, the XMOS toolchain expects the xSYS header; if you do not have an xSYS header then you must provide your own method for writing to flash/OTP and for debugging.

XLF232-1024-FB374 Datasheet 58 F.2 JTAG-only xSYS header

The xSYS header connects to an xTAG debugger, which has a 20-pin 0.1" female IDC header. The design will hence need a male IDC header. We advise to use a boxed header to guard against incorrect plug-ins. If you use a 90 degree angled header, make sure that pins 2, 4, 6, ..., 20 are along the edge of the PCB.

Connect pins 4, 8, 12, 16, 20 of the xSYS header to ground, and then connect:

- ▶ TDI to pin 5 of the xSYS header
- ▶ TMS to pin 7 of the xSYS header
- TCK to pin 9 of the xSYS header
- ▶ TDO to pin 13 of the xSYS header

The RST_N net should be open-drain, active-low, and have a pull-up to VDDIO.

F.3 Full xSYS header

For a full xSYS header you will need to connect the pins as discussed in Section F.2, and then connect a 2-wire xCONNECT Link to the xSYS header. The links can be found in the Signal description table (Section 4): they are labelled XL0, XL1, etc in the function column. The 2-wire link comprises two inputs and outputs, labelled ${}^{1}_{out}$, ${}^{0}_{out}$, ${}^{0}_{in}$, and ${}^{1}_{in}$. For example, if you choose to use XL0 for xSCOPE I/O, you need to connect up XL0 ${}^{1}_{out}$, XL0 ${}^{0}_{out}$, XL0 ${}^{1}_{in}$ as follows:

- XL0¹_{out} (X0D43) to pin 6 of the xSYS header with a 33R series resistor close to the device.
- XL0⁰_{out} (X0D42) to pin 10 of the xSYS header with a 33R series resistor close to the device.
- > $XL0_{in}^{0}$ (X0D41) to pin 14 of the xSYS header.
- > XLO_{in}^{1} (X0D40) to pin 18 of the xSYS header.

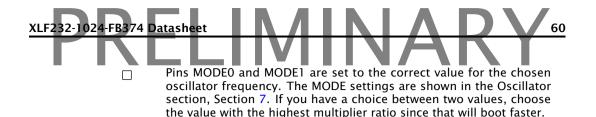
 $\cdot X \wedge ()$

This section is a checklist for use by schematics designers using the XLF232-1024-FB374. Each of the following sections contains items to check for each design.

G.1 Power supplies

- □ VDDIO and OTP_VCC supply is within specification before the VDD (core) supply is turned on. Specifically, the VDDIO and OTP_VCC supply is within specification before VDD (core) reaches 0.4V (Section 11).
- The VDD (core) supply ramps monotonically (rises constantly) from 0V to its final value (0.95V 1.05V) within 10ms (Section 11).
- The VDD (core) supply is capable of supplying 600mA (Section 11).
- PLL_AVDD is filtered with a low pass filter, for example an RC filter, see Section 11

G.2 Power supply decoupling


- The design has multiple decoupling capacitors per supply, for example at least four0402 or 0603 size surface mount capacitors of 100nF in value, per supply (Section 11).
- □ A bulk decoupling capacitor of at least 10uF is placed on each supply (Section 11).

G.3 Power on reset

The RST_N pins are asserted (low) during or after power up. The device is not used until these resets have taken place.
 As the errata in the datasheets show, the internal pull-ups on these two pins can occasionally provide stronger than normal pull-up currents. For this reason, an RC type reset circuit is discouraged as behavior would be unpredictable. A voltage supervisor type reset device is recommended to guarantee a good reset. This also has the benefit of resetting the system should the relevant supply go out of specification.

G.4 Clock

The CLK input pin is supplied with a clock with monotonic rising edges and low jitter.

G.5 Boot

- \square X0D01 has a 1K pull-up to VDDIOL (Section 8).
- The device is kept in reset for at least 1 ms after VDDIOL has reached its minimum level (Section 8).

G.6 JTAG, XScope, and debugging

- \Box You have decided as to whether you need an XSYS header or not (Section F)
- ☐ If you have not included an XSYS header, you have devised a method to program the SPI-flash or OTP (Section F).

G.7 GPIO

- You have not mapped both inputs and outputs to the same multi-bit port.
- Pins X0D04, X0D05, X0D06, and X0D07 are output only and are, after reset, pulled low or not connected (Section 8)

G.8 Multi device designs

Skip this section if your design only includes a single XMOS device.

 $-X \wedge () >$

- \Box One device is connected to a SPI flash for booting.
- Devices that boot from link have MODE2 grounded and MODE3 NC. These device must have link XLB connected to a device to boot from (see 8).
- □ If you included an XSYS header, you have included buffers for RST_N, TMS, TCK, MODE2, and MODE3 (Section E).

This section is a checklist for use by PCB designers using the XS2-LF32A-1024-FB374. Each of the following sections contains items to check for each design.

H.1 Ground Plane

- Each ground ball has a via to minimize impedance and conduct heat away from the device. (Section **??**)
- Other than ground vias, there are no (or only a few) vias underneath or closely around the device. This create a good, solid, ground plane.

H.2 Power supply decoupling

- The decoupling capacitors are all placed close to a supply pin (Section 11).
- \Box The decoupling capacitors are spaced around the device (Section 11).
- \Box The ground side of each decoupling capacitor has a direct path back to the center ground of the device.

H.3 PLL_AVDD

The PLL_AVDD filter (especially the capacitor) is placed close to the PLL_AVDD pin (Section 11).

-XM()S

XLF232-1024-FB374 Datasheet 62

Document Title	Information	Document Number
Estimating Power Consumption For XS1-LF Devices	Power consumption	X4271
Programming XC on XMOS Devices	Timers, ports, clocks, cores and channels	X9577
xTIMEcomposer User Guide	Compilers, assembler and linker/mapper	X3766
	Timing analyzer, xScope, debugger	
	Flash and OTP programming utilities	

J Related Documentation

Document Title	Information	Document Number
The XMOS XS1 Architecture	ISA manual	X7879
XS1 Port I/O Timing	Port timings	X5821
xCONNECT Architecture	Link, switch and system information	X4249
XS1-LF Link Performance and Design Guidelines	Link timings	X2999
XS1-LF Clock Frequency Control	Advanced clock control	X1433
XS1-L Active Power Conservation	Low-power mode during idle	X7411

-XMOS°

XLF232-1024-FB374 Datasheet 63 K Revision History

Date	Description	
2015-03-20	Preliminary release	
2015-04-14	Added RST to pins to be pulled hard, and removed reference to TCK from Errata	
	Removed TRST_N references in packages that have no TRST_N	
	New diagram for boot from embedded flash showing ports	
	Pull up requirements for shared clock and external resistor for QSPI	
2015-05-06	Removed references tro DEBUG_N	
2015-07-09	Updated electrical characteristics - Section 12	
2015-08-27	Updated part marking - Section 14	

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the "Information") and is providing it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims.