
XDK Tutorial

(VERSION 9.7)

2009/07/01

Authors:

XMOS LTD.

Copyright © 2009, XMOS Ltd.
All Rights Reserved



XMOS 1/13

1 Introduction

The XDK is an Event-Driven Processor development board based on the XMOS
XS1-G4. It comprises a single XS1-G4, QVGA colour touch-screen, 96KHz
stereo codec w/3.5mm jacks, 12 LEDs, 5 press-buttons, 10/100Mbit Ethernet,
USB 2.0 PHY, JTAG and serial interfaces, and 128 I/O expansion pins.

The XS1-G4 consists of four XCore tiles, each comprising an event-driven multi-
threaded processor core with tightly integrated general purpose I/O. Each tile
provides up to eight threads, 400 MIPS and 64 KBytes of RAM. The XS1-G4
pins are connected to the components on the board through ports, details of
which are available in a separate document [1].

The XMOS originated XC language [2] is based upon C, providing additional
constructs that simplify control over I/O operations, time and concurrent be-
haviour. The XMOS design tools support XC and C, allowing complete systems
to be built and debugged from within a single development environment.

This tutorial provides an introduction to start developing for Event-Driven Pro-
cessor devices using the LEDs on your XDK and the XC language. It assumes
that you are familiar with C [3]. In this tutorial you will:

• illuminate an LED on the XDK

• flash an LED connected to a single core

• implement a UART protocol and send the message “Hello World” to your
host PC

• flash three LEDs connected to a single core concurrently

• flash three LEDs connected to a single core in sequence

• flash three LEDs connected to different cores in sequence

• flash all 12 LEDs on the XDK in a round robin sequence

• terminate your program when one of the XDK buttons is pressed

Each section of the tutorial introduces a new feature of XC; the corresponding
keywords and operators are included in the section title. The example programs

XDK TUTORIAL (9.7) 2009/07/01



XMOS 2/13

are intended to illustrate how particular language constructs simplify the imple-
mentation of Event-Driven Processor designs.

The examples in this tutorial apply to version 9.7 of the XMOS Design Tools.
Information on downloading, installing and using these tools is provided in the
Development Tools User Guide [4].

2 Illuminate an LED: port, <:

This part of the tutorial shows you how to use an XC port and an output state-
ment to illuminate an LED on your XDK.

The XDK has 12 LEDs positioned in four LED windows. Each XCore is con-
nected to three LED pins that control the LEDs in a single window. The LEDs
are active low.

The following program illuminates a single LED on your XDK:

#include <platform.h>

out port led = PORT_LED_0_1;

int main(void){
led <: 0;
while (1);
return 0;

}

The second line of this program declares a port variable led and initialises
it with a generic port identifier PORT LED 0 1. The XDK.xn file maps the
PORT LED 0 1 identifier to the XS1 PORT 1F port which originates from
the xs1.h header file. The 1F refers to the pin width (1 bit) and name (F).

Ports are used to transfer data to and from the pins on the processor, thereby
interfacing with external components. Integrated input and output XC statements
make it easy to express I/O operations on these pins.

The first statement in main is an output statement:

XDK TUTORIAL (9.7) 2009/07/01



XMOS 3/13

led <: 0;

The value specified to the right of <: (0) is output to the port specified to its left
(led). This value sets one of the LED pins low, causing the corresponding LED
to illuminate.

The infinite loop introduced after the output statement prevents the program ter-
minating, ensuring that the LED remains illuminated.

Note: Ports must be declared as global variables. The optional out qualifier
allows the compiler to check for correct usage, thereby helping to reduce pro-
gramming errors.

. Compile and run this program on your XDK. (See the Development Tools
User Guide [4] for details on compiling programs.) A single LED should illumi-
nate in the top-left LED window.

3 Flash an LED: timer, :>

This part of the tutorial shows you how to use an XC timer with an input state-
ment to flash an LED on-off.

Timers are a special type of port that, when input from, return the current time.
Timers provide a view onto a 100 MHz reference clock, and can be used to
determine when an event happens or to delay execution until a particular time.

The following code declares a timer named tmr and then inputs the time into
the variable t:

timer tmr;
tmr :> t;

Having recorded the current time, you can increment the time and then delay a
following input until after this time is reached:

t += FLASH_PERIOD;
tmr when timerafter(t) :> void;

XDK TUTORIAL (9.7) 2009/07/01



XMOS 4/13

Note that the processor must complete an input operation once a condition is
met, even if the input value is not required. This is expressed in XC as an input
to void.

This code sequence can be used to delay an output operation to an LED pin
which, when executed in a loop, flashes an LED on-off. The complete program
is shown below:

#include <platform.h>

#define PERIOD 20000000

out port led = PORT_LED_0_1;

int main(void) {
timer tmr;
unsigned ledOff = 1;
unsigned t;
tmr :> t;
while (1) {
led <: ledOff;
ledOff = !ledOff;
t += PERIOD;
tmr when timerafter(t) :> void;

}
return 0;

}

. Compile and run this program on your XDK. A single LED should flash on-
off in the top-left window of your XDK.

4 Flash multiple LEDs in parallel: par

This part of the tutorial shows you how to use the XC par statement to flash
multiple LEDs in parallel on your XDK.

XDK TUTORIAL (9.7) 2009/07/01



XMOS 5/13

The par statement provides a simple way to execute multiple statements as
separate threads in parallel. In the following example, three instances of a func-
tion are called concurrently:

#include <platform.h>

#define PERIOD 20000000

out port led1 = PORT_LED_0_2;
out port led2 = PORT_LED_0_1;
out port led3 = PORT_LED_0_0;

void flashLED(out port led, int period);

int main(void) {
par {
flashLED(led1, PERIOD);
flashLED(led2, PERIOD);
flashLED(led3, PERIOD);

}
return 0;

}

The flashLED function flashes an LED connected to the specified port at the
specified period.

. Implement the flashLED function (see Section 3). Compile and run this
complete program on your XDK. Three LEDs should flash on-off in the top-left
LED window.

5 Flash LEDs in alternating sequence: chan, chanend

This part of the tutorial shows you how to use XC channels to flash three LEDs
on your XDK in round robin sequence.

XDK TUTORIAL (9.7) 2009/07/01



XMOS 6/13

An XC channel provides a synchronous, bidirectional link between two threads.
A channel is declared using the chan keyword:

chan c;

A channel consists of two channel ends, the locations of which are implcitly
defined by the usage of the channel in two statements of a par. A channel end
may be explicitly referred to as a function parameter, for example:

void flashLED(chanend left, chanend right,
out port led, int period, int m)

This modified declaration of the flashLED function is used to form a compo-
nent of a token ring. The first two parameters are channel ends, the third is an
LED port and the fourth is a Boolean value indicating whether or not the thread
executing the function is the master thread. The master thread generates a to-
ken and inserts it into the ring; all other slave threads wait for a communication
to be instigated.

A generalised token ring for all 12 LEDs is illustrated in Figure 1. Each thread
receives the token, flashes its LED and then passes the token to the next thread
in the ring.

Figure 1 LED Token Ring

XDK TUTORIAL (9.7) 2009/07/01



XMOS 7/13

The body of the flashLED function is defined as follows:

#define TOKEN 1

void flashLED(chanend left, chanend right,
out port led, int period, int m) {

timer tmr;
unsigned t;

if (m)
right <: TOKEN;

while (1) {
left :> int _;
led <: 0;
tmr :> t;
tmr when timerafter(t+period) :> void;
led <: 1;
right <: TOKEN;

}
return;

}

This function first tests whether it is executing on the master thread and, if so,
sends a token to the next thread in the ring. All threads in the token ring then
repeatedly wait for the token, flash an LED and pass the token on to the next
thread.

The XC input and output statements are used to pass the token between threads.
Channels are synchronous (an input operation blocks until a matching output op-
eration is ready), so exactly one thread has possession of the token at any one
time.

XDK TUTORIAL (9.7) 2009/07/01



XMOS 8/13

The following main function declares three channels and passes them as argu-
ments to three instances of the flashLED function, all of which are executed
in parallel. This function is a simplification of the full ring illustrated in Figure 1,
implemented on a single core.

int main(void) {
chan c0, c1, c2;
par {
flashLED(c0, c1, led1, PERIOD, 1);
flashLED(c1, c2, led2, PERIOD, 0);
flashLED(c2, c0, led3, PERIOD, 0);

}
return 0;

}

. Compile and run this program on your XDK. Three LEDs should flash on-off
in alternating sequence in the top-left LED window.

6 Flash LEDs connected to different cores: on

This part of the tutorial shows you how to use the XC on statement to implement
a multicore program, in this case to flash LEDs in any of the four LED windows
on your XDK. The LEDs in each of these four windows are connected to different
cores on the XS1-G4.

The header file platform.h provides a declaration of the global variable
stdcore for the target device, in this case an XS1-G4. This variable can
be used with the on keyword to specify the location of port declarations, for
example:

#include <platform.h>

on stdcore[0] : out port led1 = PORT_LED_0_2;
on stdcore[3] : out port led2 = PORT_LED_3_1;
on stdcore[2] : out port led3 = PORT_LED_2_0;

XDK TUTORIAL (9.7) 2009/07/01



XMOS 9/13

The on statement can also be used to specify the core on which each substate-
ment in a parallel statement is placed. The example in Section 5 is easily mod-
ified so that each LED port and corresponding flashLED function is placed
on a different core:

int main(void) {
chan c0, c1, c2;
par {
on stdcore[0] :
flashLED(c0, c1, led1, PERIOD, 1);

on stdcore[3] :
flashLED(c1, c2, led2, PERIOD, 0);

on stdcore[2] :
flashLED(c2, c0, led3, PERIOD, 0);

}
return 0;

}

Note: When main is used with on it may contain only channel declarations, a
single par statement and an optional return statement.

. Compile and run this program on your XDK. Three LEDs should flash in
alternating sequence in three separate windows.

. Modify this program so that each of the 12 LEDs on the XDK is flashed in a
clockwise cycle. (See Figure 1.)

7 Terminate the program: select

This part of the tutorial shows you how to use the XC select statement to
respond to a button on the XDK, in this case to safely terminate the program.

A select statement waits for one of a set of inputs to become ready, performs
the selected input and then executes a corresponding body of code. Each input
is proceeded by the keyword case and its body must be terminated with a
break or return statement.

XDK TUTORIAL (9.7) 2009/07/01



XMOS 10/13

The first task is to define a button listener thread and integrate it into the token
ring. A select statement is used to wait for either a button to be pressed
or the token to be received (highlighted in the example below). If a button is
pressed then a check is made to determine whether it is the black button and, if
so, a terminal token is inserted into the ring. After inserting the terminal token
into the ring, the listener waits for it to cycle around the ring and then returns.
The code for the button listener thread is shown below:

#define TERM 0
void listen(chanend left, chanend right) {
int token = TOKEN;
while(token == TOKEN) {

select {
case left :> token:
break;

case button when pinsneq(0xf) :> int x :
/* check which button pressed */
if ((x & 0x4) == 0) { // black button
token = TERM;
left :> int _; // wait for TOKEN

}
break;

}
right <: token; // pass token on

}
left :> int _; // wait for TERM

}

. Modify the flashLED function so that upon receiving a TERM token it
passes this token to its neigbour and returns.

. Add a declaration for the button port 4F (PORT BUTTON 0 3) and mod-
ify main by adding the button listener into the token ring. Both the button port
and the button listener must be placed on core 0.

XDK TUTORIAL (9.7) 2009/07/01



XMOS 11/13

. Compile and run this program on your XDK. Pressing the black button
should cause the program to terminate upon completion of the current flash
cycle.

. Modify the button listener so that pressing one button changes the direction
of the flash cycle.

. Modify the button listener to that pressing one button increases the speed
of the flash cycle and pressing another reduces its speed.

8 Further Reading

Further information on the XC language can be found in the Programming XC
on XCore XS1 Devices document [5].

Information on the XS1 architecture is available in the XS1 Architecturee [6],
Instruction Set [7], System [8] and Assembly [9] documents.

See also:

• http://www.xmos.com

• http://www.xlinkers.org

XDK TUTORIAL (9.7) 2009/07/01



XMOS 12/13

References

[1] XMOS Ltd. XMOS XS1-G Port Map. Website, 2008. http://www.
xmos.com/published/xs1-portmap.

[2] Douglas Watt and Richard Osborne and David May. XC Reference Man-
ual (8.7). Website, 2008. http://www.xmos.com/published/
xc87.

[3] Brian W. Kernighan and Dennis M. Ritchie. The C programming language.
Prentice Hall Press, Upper Saddle River, NJ, USA, 1988.

[4] Huw Geddes and Matt Fyles and Mike Wrighton and Douglas Watt.
XMOS Tools User Guide. Website, 2009. http://www.xmos.com/
published/xtools.

[5] Douglas Watt. Programming XC on XCore XS1 Devices. Website, 2009.
http://www.xmos.com/published/xcxs1.

[6] David May. XMOS XS1 Architecture. Website, 2008. http://www.
xmos.com/published/xs1-87.

[7] David May and Henk Muller. XMOS XS1 Instruction Set Architecture. Web-
site, 2008. http://www.xmos.com/published/xs1inst87.

[8] David May and Ali Dixon and Ayewin Oung and Henk Muller. XS1-G
System Specification. Website, 2008. http://www.xmos.com/
published/xsystem.

[9] Douglas Watt. XS1 Assembly Language Manual (8.7). Website, 2008.
http://www.xmos.com/published/xas87.

XDK TUTORIAL (9.7) 2009/07/01

http://www.xmos.com/published/xs1-portmap
http://www.xmos.com/published/xs1-portmap
http://www.xmos.com/published/xc87
http://www.xmos.com/published/xc87
http://www.xmos.com/published/xtools
http://www.xmos.com/published/xtools
http://www.xmos.com/published/xcxs1
http://www.xmos.com/published/xs1-87
http://www.xmos.com/published/xs1-87
http://www.xmos.com/published/xs1inst87
http://www.xmos.com/published/xsystem
http://www.xmos.com/published/xsystem
http://www.xmos.com/published/xas87


XMOS 13/13

XMOS Ltd is the owner or licensee of this design, code, or Information (collec-
tively, the “Information”) and is providing it to you “AS IS” with no warranty of any
kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementa-
tion thereof, is or will be free from any claims of infringement and again, shall
have no liability in relation to any such claims.

(c) 2009 XMOS Limited - All Rights Reserved

XDK TUTORIAL (9.7) 2009/07/01


	Introduction
	Illuminate an LED: port, <:
	Flash an LED: timer, :>
	Flash multiple LEDs in parallel: par
	Flash LEDs in alternating sequence: chan, chanend
	Flash LEDs connected to different cores: on
	Terminate the program: select
	Further Reading

