
XCC Pragma Directives

xTimeComposer supports the following pragmas.

#pragma unsafe arrays
(XC Only) This pragma disables the generation of run-time safety checks that
prevent indexing an invalid array element within the scope of the next do, while or
for statement in the current function; outside of a function the pragma applies to
the next function definition.

#pragma loop unroll (n)
(XC only) This pragma controls the number of times the next do, while or for loop
in the current function is unrolled. n specifies the number of iterations to unroll,
and unrolling is performed only at optimization level 01 and higher. Omitting
the n parameter causes the compiler to try and fully unroll the loop. Outside of
a function the pragma is ignored. The compiler produces a warning if unable to
perform the unrolling.

#pragma stackfunction n
This pragma allocates n words (ints) of stack space for the next function declaration
in the current translation unit.

#pragma stackcalls n
(XC only) This pragma allocates n words (ints) of stack space for any function
called in the next statement. If the next statement does not contain a function call
then the pragma is ignored; the next statement may appear in another function.

#pragma ordered
(XC only) This pragma controls the compilation of the next select statement. This
select statement is compiled in a way such that if multiple events are ready when
the select starts, cases earlier in the select statement are selected in preference to
ones later on.

#pragma select handler
(XC only) This pragma indicates that the next function declaration is a select
handler. A select handler can be used in a select case, as shown in the example
below.

#pragma select handler
void f(chanend c, int &token , int &data);

...
select {

case f(c, token , data):
...
break;

}
...

Publication Date: 2013/11/11 REV C

XMOS © 2013, All Rights Reserved



XCC Pragma Directives 2/2

The effect is to enable an event on the resource that is the first argument to the
function. If the event is taken, the body of the select handler is executed before
the body of the case.

The first argument of the select handler must have transmissive type and the return
type must be void.

If the resource has associated state, such as a condition, then the select will not
alter any of that state before waiting for events.

#pragma fallthrough
(XC only) This pragma indicates that the following switch case is expected to
fallthrough to the next switch case without a break or return statement. This will
suppress any warnings/errors from the compiler due to the fallthrough.

#pragma xta label "name"
This pragma provides a label that can be used to specify timing constraints.

#pragma xta endpoint "name"
(XC only) This pragma specifies an endpoint. It may appear before an input or
output statement.

#pragma xta call "name"
(XC only) This pragma defines a label for a (function) call point. Use to specify a
particular called instance of a function. For example, if a function contains a loop,
the iterations for this loop can be set to a different value depending on which call
point the function was called from.

#pragma xta command "command"
(XC only) This pragma allows XTA commands to be embedded into source code.
All commands are run every time the binary is loaded into the XTA. Commands are
executed in the order they occur in the file, but the order between commands in
different source files is not defined.

#pragma xta loop (integer)
(XC only) This pragma applies the given loop XTA iterations to the loop containing
the pragma.

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV C


