
XC-5 Development Card Tutorial

Version 9.9

Publication Date: 2009/09/09

Copyright © 2009 XMOS Ltd. All Rights Reserved.



XC-5 Development Card Tutorial (9.9) 2/16

1 Introduction

The XC-5 is an Event-Driven Processor development board based on the XMOS XS1-L1
programmable device. It comprises a single XS1-L1, 16 LEDs, four press-buttons, a
speaker, SPI flash memory, JTAG and serial interfaces, and a through-hole prototyping
area for connecting external components.

The XS1-L1 consists of a single XCore that comprises an event-driven multi-threaded
processor core with tightly integrated general purpose I/O, eight threads, 400 MIPS
and 64 KBytes of RAM. The XS1-L1 pins are connected to the components on the
board using ports (see Section 8).

The XMOS originated XC language [1]is based upon C, providing additional constructs
that simplify control over I/O operations, time and concurrent behaviour. The XMOS
design tools support XC and C, allowing complete systems to be built and debugged
from within a single development environment.

This tutorial provides an introduction to start developing for event-driven processor
devices using features of the XC-5 and the XC language. It assumes that you are
familiar with C [2]. In this tutorial you will:

• illuminate the LEDs on the card

• flash an LED on the card

• flash an LED while cycling it around a 12-LED circle on the card

• respond to a button press, outputting an audible tone to the speaker, at the
same time as flashing the LEDs in a cycle

• communicate between two threads so that the flashing LED changes colour
when a button is pressed

• implement a UART protocol and send the message “Hello World” to your host
PC

Each section of the tutorial introduces a new feature of XC; the corresponding
keywords and operators are included in the section title. The example programs are
intended to illustrate how particular language constructs simplify the implementation
of Event-Driven Processor designs.

The examples in this tutorial apply to version 9.7 of the Tools. Information on
downloading, installing and using these tools is provided in the Tools User Guide .

www.xmos.com



XC-5 Development Card Tutorial (9.9) 3/16

2 Illuminate an LED: port, <:

This part of the tutorial shows you how to use XC ports and an output statement to
illuminate the LEDs on your XC-5.

The XC-5 has 16 LEDs. Four of these green LEDs are positioned next to the four
press-buttons (collectively referred to as button-LEDs) and contain green diodes.
Another 12 red/green LEDs are positioned around the XS1-G4 in a circle (collectively
referred to as clock-LEDs). A Roman numeral is printed next to each LED.

The following program illuminates a single button-LED on your XC-5:

#include <platform.h>

out port bled = PORT_BUTTONLED;

int main() {
bled <: 0x1;
while(1)
;

return 0;
}

The second line of this program declares a port variable bled and initialises it with a
generic port identifier PORT_BUTTONLED. The XC-5.xn file maps the PORT_BUTTONLED
identifier to the XS1_PORT_4E port which originates from the xs1.h header file. The
4E refers to the pin width (4 bits) and name (E). On the XC-5, the four pins of 4E are
connected to the four button-LEDs. The LEDs are active high.

Ports are used to transfer data to and from the pins on the processor, thereby
interfacing with external components. Integrated input and output XC statements
make it easy to express I/O operations on these pins.

The first statement in main is an output statement:

bled <: 0x1;

The value specified to the right of <: (0b00000001) is output to the port specified
to its left (bled). This value sets one of the button-LED pins high, causing the
corresponding LED to illuminate. Outputting a different value to bled causes a
different combination of the button-LEDs to illuminate.

The infinite loop introduced after the output statement prevents the program termi-
nating, ensuring that the LED remains illuminated.

www.xmos.com



XC-5 Development Card Tutorial (9.9) 4/16

Ports must be declared as global variables. The optional out qualifier allows the~

compiler to check for correct usage, thereby helping to reduce programming errors.

Compile and run this program on your XC-5. (See the Tools User Guide for informa-.
tion on using the Development Tools .) A single LED should illuminate.

Modify the value output to the button-LED port (0xf0) to illuminate all four button-.
LEDs.

To reduce the number of pins required for the 12 clock-LEDs, the LED anodes
are connected to three 4-bit ports (4A, 4B and 4C, which are referenced using the
PORT_CLOCKLED_0/1/2 identifiers) and the cathodes are connected to two 1-bit ports
(1E for red and 1F for green, which are referenced using the PORT_CLOCKLED_SELR
and PORT_CLOCKLED_SELG identifiers) that are active high. The schematic for the
clock-LEDs is shown in Figure 1.

I II III IIII V VI VII VIII IX X XI XII

X0D2

PORT_CLOCKLED_0 PORT_CLOCKLED_1PORT_CLOCKLED_2

X0D3 X0D8 X0D9 X0D4 X0D5 X0D6 X0D7 X0D14X0D15 X0D20 X0D21

PORT_CLOCKLED_SELG
X0D13

PORT_CLOCKLED_SELR
X0D12

Figure 1: Schematic for the 12 bi-colour clock-LEDs on the XC-5

www.xmos.com



XC-5 Development Card Tutorial (9.9) 5/16

The following program illuminates the red diode of an LED connected to
PORT_CLOCKLED_0:

#include <platform.h>

out port cled0 = PORT_CLOCKLED_0;
out port cledG = PORT_CLOCKLED_SELG;
out port cledR = PORT_CLOCKLED_SELR;

int main(void) {
cledG <: 0; // disable GREEN line
cledR <: 1; // enable RED line
cled0 <: 0x1; // LED pattern
while (1);
return 0;

}

PORT_CLOCKLED_SELG is driven low, PORT_CLOCKLED_SELR is driven high and the
value 0x1 is output to PORT_CLOCKLED_0 (IIII, V, VI, VII).

Compile and run this program on your XC-5. The clock-LED numbered VII should.
illuminate red.

Modify this program to illuminate the green diodes of all 12 LEDs (output the pattern.
0xf to PORT_CLOCKLED_0, PORT_CLOCKLED_1 and
PORT_CLOCKLED_2).

3 Flash an LED: timer, :>

This part of the tutorial shows you how to use an XC timer with an input statement
to flash an LED green-red.

Timers are a special type of port that, when input from, return the current time.
Timers provide a view onto a 100 MHz reference clock, and can be used to determine
when an event happens or to delay execution until a particular time.

The following code declares a timer named tmr and then inputs the time into the
variable t:

timer tmr;
tmr :> t;

www.xmos.com



XC-5 Development Card Tutorial (9.9) 6/16

Having recorded the current time, you can increment the time and then delay a
following input until after this time is reached:

t += FLASH_PERIOD;
tmr when timerafter(t) :> void;

The processor must complete an input operation once a condition is met, even if the
input value is not required. This is expressed in XC as an input to void.

This code sequence can be used to delay an output operation to the LED pins which,
when executed in a loop, flashes the LED green-red. The complete program is shown
below:

#include <platform.h>
#define FLASH_PERIOD 20000000

out port cled0 = PORT_CLOCKLED_0;
out port cledG = PORT_CLOCKLED_SELG;
out port cledR = PORT_CLOCKLED_SELR;

int main(void) {
timer tmr;
unsigned ledGreen = 1;
unsigned t;
tmr :> t;
while (1) {
cledG <: ledGreen;
cledR <: !ledGreen;
cled0 <: 0x1;
t += FLASH_PERIOD;
tmr when timerafter(t) :> void;
ledGreen = !ledGreen;

}
return 0;

}

Compile and run this program on your XC-5. A single clock-LED should flash green-.
red.

Modify this program by reducing the timer period to colour-blend the lights and.
create the appearence of a constant orange illumination. Note that the red LED is
approximately five times as bright as the green LED, which means it should be turned
on five times less frequently to create the desired effect.

www.xmos.com



XC-5 Development Card Tutorial (9.9) 7/16

4 Flash and cycle LEDs at different rates: select

This part of the tutorial shows you how to use the XC select statement to make an
LED flash while cycling it around the clockface on your XC-5.

A select statement waits for one of a set of inputs to become ready, performs
the selected input and then executes a corresponding body of code. Each input is
proceeded by the keyword case and its body must be terminated with a break or
return statement.

The select statement in the following example waits for one of two timeouts to
occur and then responds to this timeout:

select {
case tmrF when timerafter(timeF) :> void :
/* respond to timeout,
* switch LED between on and off */
...
break;

case tmrC when timerafter(timeC) :> void :
/* respond to timeout,
* change which LED is flashing */
...
break;

}

The following program uses this select statement to update the LED flash and cycle
states at different rates:

#include <platform.h>

#define FLASH_PERIOD 10000000
#define CYCLE_PERIOD 60000000

out port cled0 = PORT_CLOCKLED_0;
out port cled1 = PORT_CLOCKLED_1;
out port cled2 = PORT_CLOCKLED_2;
out port cledG = PORT_CLOCKLED_SELG;
out port cledR = PORT_CLOCKLED_SELR;

www.xmos.com



XC-5 Development Card Tutorial (9.9) 8/16

int main(void) {
unsigned ledOn = 1;
unsigned ledVal = 1;
timer tmrF, tmrC;
unsigned timeF, timeC;

tmrF :> timeF;
tmrC :> timeC;

while (1) {
select {
case tmrF when timerafter(timeF) :> void :
ledOn = !ledOn;
cledG <: ledOn;
timeF += FLASH_PERIOD;
break;

case tmrC when timerafter(timeC) :> void :
cled0 <: ledVal;
cled1 <: (ledVal >> 4);
cled2 <: (ledVal >> 8);
ledVal <<= 1;
if (ledVal == 0x1000)
ledVal = 1;

timeC += CYCLE_PERIOD;
break;

}
}
return 0;

}

Compile and run this program on your XC-5. A flashing LED should cycle clockwise.
around the clockface.

www.xmos.com



XC-5 Development Card Tutorial (9.9) 9/16

5 Respond to a button concurrently: par

This part of the tutorial shows you how to use the XC par statement to process
multiple tasks concurrently. In this case, the flashing LED code from the previous
example is run in parallel with a thread that sends an audible tone to the speaker on
your XC-5 when a button is pressed.

The par statement provides a simple way to execute multiple statements as separate
threads in parallel. In the following example, two functions are called concurrently:

in port buttons = PORT_BUTTON;
out port speaker = PORT_SPEAKER;

int main(void) {
par {
cycleLED(cled0, cled1, cled2,

cledG, cledR,
FLASH_PERIOD, CYCLE_PERIOD);

buttonListener(buttons, speaker);
}
return 0;

}

The cycleLED function cycles a flashing LED around the clockface (see Section 4).
The buttonListener function, defined below, waits for input from a button and then
outputs a tone to the speaker:

#define TDELAY 100000
#define TLENGTH 500

void buttonListener(in port b, out port spkr) {
timer tmr;
int t, isOn = 1;
while (1) {
b when pinsneq(0xf) :> void;
tmr :> t;
for (int i=0; i<TLENGTH; i++) {
isOn = !isOn;
t += TDELAY;
tmr when timerafter(t) :> void;
spkr <: isOn;

}
}

}

www.xmos.com



XC-5 Development Card Tutorial (9.9) 10/16

The pinsneq function causes the input to wait until the value sampled on the pins is
not equal to the bit pattern 0xf, which signifies that one or more of the four buttons
was pressed. The for loop sends a sequence of alternating ones and zeros to the
speaker at the frequency specified by the delay, for the specified period of time. This
causes the speaker to emit an audible tone.

Modify the example in Section 4 so that the code for cycling a flashing LED around.
the clockface is implemented as the body of the cycleLED function. Compile and
run this complete program on your XC-5. A flashing LED should cycle around the
clockface; pressing any of the four buttons at any time should result in an audible
tone.

Extend the buttonListener function with four additional tone parameters: pressing.
different buttons should result in different tones being emitted.

6 Use a button to change the LED colour: chan, chanend

This section of the tutorial shows you how to use an XC channel to communicate
between threads. In this case, the button listener thread tells the LED thread to
change the colour of the flashing LED.

An XC channel provides a synchronous, bi-directional link between two threads. A
channel is declared using the chan keyword, as in the following example:

int main(void) {
chan c;
par {
cycleLED(cled0, cled1, cled2,

cledG, cledR,
FLASH_PERIOD, CYCLE_PERIOD,
c);

buttonListener(buttons, speaker, c);
}
return 0;

}

www.xmos.com



XC-5 Development Card Tutorial (9.9) 11/16

A channel consists of two channel ends, the locations of which are implicitly defined
by the use of the channel in two statements of a par. A channel end may be explicitly
referred to as a function parameter using the chanend keyword, for example:

void buttonListener(in port b, out port spkr,
chanend c);

The XC input and output operators can be used for channels, as in the following
example:

c <: 0;

This statement outputs the value 0 to the channel c. As the channel is synchronous,
the output operation waits until a matching input operation is ready before continuing.
Similarly, an input operation waits for a matching output operation before continuing.

Modify the buttonListener function so that immediately after inputting from the.
button, the value 0 is output to c.

Modify the cycleLED function so that it takes an additional channel end argument.
and declares a local variable isGreen. Modify the select statement to accept an
input from this channel; when selected the colour is changed as follows:

case c :> int :
isGreen = !isGreen;
break;

Finally, modify the flash timeout body so that it illuminates either the green or red.
LED, depending on the value of isGreen. Compile and run this program on your XC-5.
Pressing a button should change the colour of the flashing LED as well as producing
an audible tone.

No two threads may attempt to write to the same variable in parallel; all communica-~

tions require the use of channels. This restriction prevents common programming
errors such as race conditions, and ensures that the two threads can be run on any
two cores, regardless of whether they share memory.

www.xmos.com



XC-5 Development Card Tutorial (9.9) 12/16

7 Interface with a host using a serial link

This part of the tutorial shows you how to implement a UART transmit function that
outputs characters to a console running on your host platform.

The UART protocol provides a simple way to transmit data over a serial link. Data is
sent at a fixed baud rate, requiring no clock signal to be transmitted. The transmit
procedure is illustrated in Figure 2. The quiescent state of the link is the high (1). A
byte is sent by first asserting a start bit (0), then the data bits and finally the stop bit
(1). Each of these values is asserted for an entire bit period.

START

Bit

STOP

Bit

Figure 2: UART Transmit Procedure

www.xmos.com



XC-5 Development Card Tutorial (9.9) 13/16

The program below serialises a byte of data and transmits its individual bits over a
1-bit port.

#include <platform.h>

#define BIT_RATE 115200
#define BIT_TIME XS1_TIMER_HZ / BIT_RATE

void txByte(out port TXD, int byte);

out port TXD=PORT_UART_TX;

int main () {
return 0;
}

void txByte(out port TXD, int byte) {
unsigned time;
timer t;

/* get initial time */
t :> time;

/* send start bit */
TXD <: 0;
time += BIT_TIME;
t when timerafter(time) :> void;

/* send data bits */
for (int i=0; i<8; i++) {
TXD <: >> byte;
time += BIT_TIME;
t when timerafter(time) :> void;
}

/* send stop bit */
TXD <: 1;
time += BIT_TIME;
t when timerafter(time) :> void;

}

The time between consecutive bits being sent is computed by dividing the reference
clock frequency by the UART baud rate.

www.xmos.com



XC-5 Development Card Tutorial (9.9) 14/16

#define BIT RATE 115200
#define BIT_TIME XS1-TIMER_HZ / BIT_RATE

The start bit is output to a port variable TXD using the following statement:

TXD <: 0;

The variable time is incremented by the value BIT_TIME and the conditional input
statement waits for that bit time to elapse, ensuring an entire bit period.

t when timerafter(time) :> time;

The data bits are output in the same way in a for loop. Finally the stop bit is also
output using the same approach.

The output statement in the for loop

TXD <: >> byte;

includes the modifier », which right-shifts the value of byte by the port width (1 bit)
after outputting the least significant port-width bits. This operation is performed
in the same instruction as the output, making it more efficient than performing the
shift as a separate operation afterwards.

The output-shift-right operator <: » requires the output expression to be a variable~

of type int.

The XC-5 has a chip that performs a USB-to-serial conversion. When the card is
connected to a PC using a USB cable, this chip presents a virtual COM port1 that can
be interfaced using a terminal emulator.

For your convenience, XMOS has uploaded a sample terminal listener to the XMOS
linkers community website2. XMOS linkers has an open-source code repository of
SDS programs, related software and reference designs.

Implement a main function that transmits “Hello World!” over a serial link (PORT_UART_TX)..
Compile and run this program on your XC-5 while running a terminal emulator con-
nected to the virtual COM port installed by the XC-5. The terminal should display
this text.

1Currently on MAC PCs, the virtual COM port cannot be supported at the same time as the JTAG
interface.

2http://www.xmoslinkers.org/tag_search?tag=uart

www.xmos.com



XC-5 Development Card Tutorial (9.9) 15/16

8 XC-5 Board Layout and Further Reading

A block diagram of the XC-5 is illustrated below.

Onboard I/O User Expansion I/O

1V

TDO

RST_N

CLK

PORT_UART_TX

DEBUG

3V3

5V

TDI
TMS
TCK

TRST_N

PORT_CLOCKLED_0/1/2

PORT_SPEAKER

PORT_BUTTON [A:D]

PORT_BUTTONLED [A:D]

U
SB

20MHz
XTO

PORT_UART_RX

PORT_SPI_MISO
PORT_SPI_SS
PORT_SPI_CLK
PORT_SPI_MOSI RST_N

PSU

XS1-L1

SPI
Flash

Memory

Information on pin/port mappings and the initialisers to use to access features of
the XC-5 board, see the XC-5 Hardware Manual [3].

Further information on the XC language can be found in Programming XC on XMOS
Devices [1].

Information on the tools is available in the XMOS Tools User Guide .

Information on the XS1 architecture is available in The XMOS XS1 Architecture [4].

See also:

• http://www.xmos.com

www.xmos.com



XC-5 Development Card Tutorial (9.9) 16/16

Bibliography

[1] Douglas Watt. Programming XC on XMOS Devices. XMOS Limited, Sep 2009.
http://www.xmos.com/published/xc_en.

[2] Brian W. Kernighan and Dennis M. Ritchie. The C programming language. Prentice
Hall Press, Upper Saddle River, NJ, USA, 1988.

[3] XMOS Ltd. XC-5 Hardware Manual. Website, 2009. http://www.xmos.com/
published/xc5hw.

[4] David May. The XMOS XS1 Architecture. XMOS Limited, 2009. http://www.xmos.
com/published/xs1_en.

Disclaimer

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively,
the “Information”) and is providing it to you “AS IS” with no warranty of any kind,
express or implied and shall have no liability in relation to its use. XMOS Ltd. makes
no representation that the Information, or any particular implementation thereof, is
or will be free from any claims of infringement and again, shall have no liability in
relation to any such claims.

www.xmos.com

http://www.xmos.com/published/xc_en
http://www.xmos.com/published/xc5hw
http://www.xmos.com/published/xc5hw
http://www.xmos.com/published/xs1_en
http://www.xmos.com/published/xs1_en

	Introduction
	Illuminate an LED: port, <:
	Flash an LED: timer, :>
	Flash and cycle LEDs at different rates: select
	Respond to a button concurrently: par
	Use a button to change the LED colour: chan, chanend
	Interface with a host using a serial link
	XC-5 Board Layout and Further Reading
	Bibliography

