
XC-2 Development Board Tutorial

IN THIS DOCUMENT

· Introduction

· Illuminate an LED

· Flash an LED

· Interface with a host over a serial link

· Run tasks concurrently

· Flash multiple LEDs in sequence

· Add a button controller to the token ring

· Ping your XC-2 from a PC over its Ethernet connection

· What to read next

1 Introduction

The XC-2 Ethernet Kit is a rapid and cost effective route for developing Ethernet-
based products such as audio/video bridging applications and industrial control
systems. The XC-2 comprises a single XS1-G4 device, 10/100-BASE-T Ethernet PHY,
4Mbits SPI flash memory, 10 LEDs and two press-buttons. I/O expansion areas are
provided for connecting additional components, and an XSYS debugging interface.

This tutorial shows you how to write some simple XC programs that control and
respond to the XC-2 board components. In this tutorial you learn how to:

· illuminate an LED on the board

· flash an LED at a fixed rate

· send the message “Hello World”’ to your PC over a serial link

· create multiple concurrent threads that flash LEDs at different rates

· send a token between multiple threads, each flashing an LED in sequence

· add a button listener thread that changes the token direction

· ping the IP address of your XC-2 from a PC, causing it to flash an LED

2 Illuminate an LED

This part of the tutorial shows you how to illuminate an LED on your XC-2, using
an XC port and an output statement.

Publication Date: 2012/2/29 Document Number: X8118A

XMOS © 2012, All Rights Reserved

XC-2 Development Board Tutorial 2/15

2.1 Create an application

2.2 Add the application code

The program below illuminates an LED on an XC-2.

#include <xs1.h>

out port x0ledb = XS1_PORT_1J;

int main () {
x0ledb <: 1;
while (1)

;
return 0;

}

To add this code to your application, follow these steps:

1. Click Select All in the code window above to highlight the code.

2. Click and hold the highlighted code, drag the cursor to the editor and release.

The XDE copies this code into the editor.

3. Choose File · Save () to save your changes to file.

2.3 Examine the application code

Take a look at the application code in the editor. The declaration

out port x0ledb = XS1_PORT_1J;

declares an output port named x0ledb, which refers to the 1-bit port 1J. On the
XC-2, the I/O pin of port 1J is connected to the LED next to Button B.

X8118A

XC-2 Development Board Tutorial 3/15

Show image of port map..

RED LEDS:
PORT_LED_0_0/1

BUTTONS:
PORT_BUTTON_A/B

XCORE0

XCORE1

GREEN LEDS:
PORT_BUTTON_LED_0/1

SPI
FLASH

PORT_UART_TX

PORT_UART_RX

XCORE3

ETHERNET PHY RJ45

XCORE2

RED LEDS:
PORT_LED_3_0/1

RED LEDS:
PORT_LED_2_0/1

RED LEDS:
PORT_LED_1_0/1

X
S

Y
S

 C
O

N
N

E
C

T

XS1-G4

XC input and output statements make it easy to express I/O operations on ports.
The statement

x0ledb <: 1;

causes the value specified to the right of <: to be output to the port specified to
its left (x0ledb). The port then drives the LED high causing the LED to illuminate
green.

The empty while loop prevents the program from terminating, which ensures that
the LED remains illuminated.

2.4 Build and run your application

To build and run your application, follow these steps:

1. In the Project Explorer, click your project to select it, and then choose the

menu option Project · Build Project ().

The XDE displays its progress in the Console. When the build is complete, the
XDE adds the compiled binary file to the application subfolder bin/Debug.

X8118A

XC-2 Development Board Tutorial 4/15

2. Choose Run · Run Configurations.

3. In the Run Configurations dialog, in the left panel, double-click XCore Appli-
cation.

4. In the right panel, in Name, enter the name illuminate.

5. In Project, ensure that your project is displayed. If not, click Browse to open
the Project Selection dialog, select your project, and then click OK.

6. In C/C++ Application, click Search Project to open the Program Selection
dialog, select your application binary, and then click OK.

7. In Device options, in Run on, select the option hardware, and in Target,
ensure that the option “XMOS XC-2 Board” is selected.

If your hardware is not displayed, ensure that your XC-2 is connected to your
PC, and then click Refresh list.

8. Click Run to save your configuration and run it.

The XDE loads the application binary onto your XC-2, displaying its progress in
the Console. When the binary is loaded, the Console is cleared.

9. On your XC-2, verify that the LED is illuminated green.

10. In the Console, click the Terminate button () to stop your application running.

X8118A

XC-2 Development Board Tutorial 5/15

3 Flash an LED

This part of the tutorial shows you how to flash an LED at a fixed rate, using an XC
timer and an input statement.

3.1 Create a second application

The XDE lets you work with multiple applications at the same time. You can group
related applications into a single project, making them easy to organize and move
around together.

To create a second application in your existing project, follow these steps:

3.2 Add the application code

The program below flashes a single LED on an XC-2.

#include <xs1.h>

#define FLASH_PERIOD 20000000

out port x0ledb = XS1_PORT_1J;

int main (void) {
timer tmr;
unsigned ledOn = 1;
unsigned t;
tmr :> t;
while (1) {

x0ledb <: ledOn;
t += FLASH_PERIOD;
tmr when timerafter (t) :> void;
ledOn = !ledOn;

}
return 0;

}

To add this code to your application, follow these steps:

1. Click Select All in the code window above to highlight the code.

2. Right-click in the code window and select Copy from the pop-up menu.

3. Right-click in the editor window and select Paste from the pop-up menu.

The XDE copies this code into the editor.

4. Choose File · Save () to save your changes to file.

3.3 Examine the application code

Take a look at the application code in the editor. The declaration

X8118A

XC-2 Development Board Tutorial 6/15

timer tmr;

declares a variable named tmr, and allocates an available hardware timer. The L1
provides 10 timers, which can be used to determine when an event happens, or to
delay execution until a particular time. Each timer contains a 32-bit counter that is
incremented at 100MHz and whose value can be input at any time.

The statement

tmr :> t;

inputs the value of the tmr counter into the variable t. Having recorded the current
time, the statement

t += FLASH_PERIOD;

increments this value by the required delay, and the statement

tmr when timerafter(t) :> void;

delays inputting a value until the specified time is reached. The input value is not
needed, which is expressed as an input to void.

3.4 Build and run your application

To build and run your application, follow these steps:

1. In the Project Explorer, click your project to select it, and then choose the

menu option Project · Build Project ().

The XDE builds all applications in your project, displaying its progress in the
Console. When the build is complete, the XDE adds the compiled binary file to
the application subfolder bin/Debug.

2. Create a new Run Configuration for your application named flash, and run it.

Show reminder..

Follow these steps:

3. Choose Run · Run Configurations.

4. In the Run Configurations dialog, in the left panel, double-click XCore Appli-
cation.

5. In the right panel, in Name, enter the name flash.

6. In Project, ensure that your project is displayed. If not, click Browse to open
the Project Selection dialog, select your project, and then click OK.

7. As there are now two applications in your project, the XDE is unable to select
one automatically. To select, in C/C++ Application, click Search Project to
open the Program Selection dialog, select your application binary, and then
click OK.

X8118A

XC-2 Development Board Tutorial 7/15

8. In Device options, in Run on, select the option hardware, and in Target,
ensure that the option “XMOS XC-2 Board” is selected.

9. Click Run to save your configuration and run it.

The XDE loads the application binary onto your XC-2, displaying its progress in
the Console. When the binary is loaded, the Console is cleared.

10. On your XC-2, verify that the LED is flashing on-off, and then click the Terminate
button () to stop your application running.

3.5 Switch between applications

The Run button () can be used to switch between applications. To complete
this part of the tutorial, follow these steps:

1. Click the arrow to the right of the Run button and select the Run Configuration
named illuminate.

2. On your XC-2, verify that the LED is illuminated.

3. Click the arrow to the right of the Run button and select the Run Configuration
named flash.

4. On your XC-2, verify that the LED is flashing on-off.

5. Modify the source of the flashing LED application to change the value of
FLASH_PERIOD from 20000000 to 40000000.

6. To build and run, just click the Run button.

The XDE launches the Run Configuration you most recently selected.

7. On your XC-2, verify that the LED is flashing on-off at half the rate it was flashing
previously, and then click the Terminate button () to stop your application
running.

3.6 Disable an application from the build

By default when you build or run an application, the XDE checks whether the source
code has changed in any application in your project and rebuilds all applications
that have changed. On some systems, the time taken to inspect all folders can
produce a noticable increase in the build time.

During development, you can control which applications are included in the build.
To disable an application from the build, open the project-level Makefile in the
editor and uncheck the application from the build list.

X8118A

XC-2 Development Board Tutorial 8/15

3.7 Rename your project

Now that you have two applications in your project, you may wish to rename your
project to represent the fact that it is a container for a collection of applications.
To complete this part of the tutorial, follow these steps:

1. In the Project Explorer, right-click on your project and select Rename.

2. In the Rename Resource dialog, enter the name xc-2 examples and click OK.

3. Verify that your project is renamed.

4 Interface with a host over a serial link

This part of the tutorial shows you how to implement a UART protocol that transmits
a message from the XS1-G4 to your PC over a serial link. The XC-1A has a chip
that performs a USB-to-serial conversion. When the board is connected to a PC
using a USB cable, this chip presents a virtual COM port that can be interfaced
using a terminal emulator. (Currently on MACs, the virtual COM port cannot be
supported at the same time as the JTAG interface, preventing you from completing
the following exercise.)

4.1 Create an application

The program below serializes a byte of data and transmits its individual bits over a
1-bit port using the UART transmission protocol:

#include <platform.h>

#define BIT_RATE 115200
#define BIT_TIME XS1_TIMER_HZ / BIT_RATE

void txByte(out port TXD , int byte) {
unsigned time;
timer t;

/* input initial time */
t :> time;

/* output start bit */
TXD <: 0;
time += BIT_TIME;
t when timerafter(time) :> void;

/* output data bits */
for (int i=0; i<8; i++) {

TXD <: >> byte;
time += BIT_TIME;
t when timerafter(time) :> void;

}

/* output stop bit */

X8118A

XC-2 Development Board Tutorial 9/15

TXD <: 1;
time += BIT_TIME;
t when timerafter(time) :> void;

}

Before continuing to the next part of this tutorial, create a new application using
this code.

Show reminder..

Follow these steps:

1. Choose File · New · XDE Application ().

2. In the New Application dialog, in Application Name, enter a name for the
application.

3. In Project, ensure that your project is selected.

4. In Target Hardware, select the option XC-2 Development Board.

5. In Application Sofware, select the option Empty XC File.

6. Click Finish to create an empty source file.

7. Copy and paste the code in the window above into your new source file, and
save.

4.2 Examine the application code

A UART translates data between parallel and serial forms for transmission over
a serial link. Each bit of data is driven for a fixed period, during which time the
receiver must sample the data. The diagram below shows the transmission of a
single byte of data at a rate of 115200 bits/s, which means that each bit is driven
for 8.68us.

TXD
start
bit

stop
bit

8.68µs 8.68µs 8.68µs 8.68µs 8.68µs 8.68µs 8.68µs 8.68µs 8.68µs 8.68µs

B0 B1 B2 B3 B5 B6 B7B4

The function txByte outputs a byte by first outputting a start bit, following by a
conditional input on a timer that waits for the bit time to elapse; the data bits and
stop bit are output in the same way.

The output statement in the for loop

TXD <: >> byte;

X8118A

XC-2 Development Board Tutorial 10/15

includes the modifier >>, which right-shifts the value of byte by the port width
(1 bit) after outputting the least significant port-width bits. This operation is
performed in the same instruction as the output, making it more efficient than
shifting the value as a separate operation afterwards.

4.3 Exercise

To complete this part of the tutorial, perform the following tasks:

1. Load a terminal emulator program on your PC and connect it to the virtual COM
port provided by the XC-2. A simple terminal emulator is available from the
XCore community website<http:/www.xcore.com/tag_search?tag=uart>_

2. Complete the program above by declaring a port for the UART and by writing a
main function that outputs the message Hello World! to this port.

Show a tip..

You can find the relevant port in the XC-1A Hardware Manual.

3. Build your application, create a new Run Configuration, and run it.

4. Verify that the terminal receives and displays the message, and then click the
Terminate button () to stop your application running.

5 Run tasks concurrently

This part of the tutorial shows you how to flash multiple LEDs driven by different
processors on your XC-2, using the xc par and on statements.

5.1 Create an application

The program below creates four concurrent threads, each running an instance of a
function that flashes an LED:

#include <platform.h>

#define FLASH_PERIOD 20000000

on stdcore [0] : out port x0ledB = PORT_LED_0_1;
on stdcore [0] : out port x0ledA = PORT_LED_0_0;
on stdcore [1] : out port x1ledB = PORT_LED_1_1;
on stdcore [1] : out port x1ledA = PORT_LED_1_0;

void flashLED(out port led , int delay);

int main(void) {
par {

on stdcore [0]: flashLED(x0ledB , FLASH_PERIOD);
on stdcore [0]: flashLED(x0ledA , FLASH_PERIOD);
on stdcore [1]: flashLED(x1ledB , FLASH_PERIOD);
on stdcore [1]: flashLED(x1ledA , FLASH_PERIOD);

X8118A

XC-2 Development Board Tutorial 11/15

}
return 0;

}

5.2 Examine the application code

Take a look at the application code in the editor.

The header file platform.h provides a declaration of the global variable stdcore,
which can be used to specify the placement of port declarations and threads.

The par statement provides a simple way to create concurrent threads that can run
independently of one another. The on statement instructs the compiler on which
processor each port is connected and each thread is executed.

An‘‘on‘‘ statement may only be used with threads created by main, in which case
main may contain only channel declarations, a single par statement and an optional
return statement.

5.3 Exercise 1

To complete this part of the tutorial, perform the following tasks:

1. Modify the code from Section sec:flash to form the body of the function
flashLED.

2. Compile and run this program on your XC-2.

Four LEDs on one side of the XS1-G4 should continually flash at a fixed rate.

3. In the Console, click the Terminate button () to stop your application running.

5.4 Exercise 2

Experiment with different period values for each of the threads so that the threads
can be seen to be operating independently of one another.

5.5 Exercise 3

Extend this program to flash the LEDs on both sides of the XS-G4.

Note that the LEDs on processor 3 are in reverse order on the XC-2.

6 Flash multiple LEDs in sequence

This part of the tutorial shows you how to use XC channels to flash eight of the
LEDs on your XC-2 in the round robin sequence illustrated below:

CORE0

CORE1

CORE3

CORE2

PORT_LED_0_0

PORT_LED_0_1

PORT_LED_0_2

PORT_LED_3_2

PORT_LED_3_1

PORT_LED_3_0

PORT_LED_2_0

PORT_LED_2_1

PORT_LED_2_2

PORT_LED_1_2

PORT_LED_1_1

PORT_LED_1_0

X8118A

XC-2 Development Board Tutorial 12/15

6.1 Create an application

The function below implements a component of the token ring illustrated above,
repeatedly inputting a token from its left neighbor, flashing an LED and outputting
the token to its right neighbor.

CORE0

CORE1

CORE3

CORE2

PORT_LED_0_0

PORT_LED_0_1

PORT_LED_0_2

PORT_LED_3_2

PORT_LED_3_1

PORT_LED_3_0

PORT_LED_2_0

PORT_LED_2_1

PORT_LED_2_2

PORT_LED_1_2

PORT_LED_1_1

PORT_LED_1_0

void tokenFlash(chanend left , chanend right ,
out port led , int delay , int isMaster) {

timer tmr;
unsigned t;
if (isMaster) / * master inserts token into ring */

right <: 1;
while (1) {

int token;
left :> token; /* input token from left neighbor */
led <: 1;
tmr :> t;
tmr when timerafter(t+delay) :> void;
led <: 0;
right <: token; /* output token to right neigbor */

}
}

6.2 Examine the application code

The first two function parameters are channel ends, the third an LED port and the
fourth a Boolean value indicating whether or not the thread executing the function
is the designated master. The master inserts a token into the ring.

The xc input and output statements are used to communicate the token between
threads. As channels are synchronous, each output operation blocks until a match-
ing input operation is ready, ensuring that precisely one thread has possession of
the token at any time.

X8118A

XC-2 Development Board Tutorial 13/15

The function below constructs part of the token ring:

int main(void) {
chan c0, c1, c2, ...;
par {

on stdcore [0]: tokenFlash(c0, c1 , x0ledA , PERIOD , 1);
on stdcore [0]: tokenFlash(c1, c2 , x0ledB , PERIOD , 0);
...

}
return 0;

}

A channel is declared using the keyword chan. The locations of its two channel
ends are established through its use in two statements of the par.

A total of eight channels are required to complete this program, each of which
must be used in two threads: once as a left argument and once as a right argument
to the function tokenFlash.

6.3 Exercise

Complete this program, compile and run it on your XC-2.

As the token cycles around the eight threads, the eight LEDs should each flash in
sequence.

7 Add a button controller to the token ring

This part of the tutorial shows you how to detect a button press and respond to it,
using the xc select statement.

7.1 Create an application

A select statement is used to respond to one of a set of inputs, depending on
which becomes ready first. If more than one of input becomes ready at the same
time, only one is executed.

The function below waits for either a token to be received, in which case it passes
it on, or for a button to be pressed, in which case it holds the token when received
until the button is pressed again:

void buttonListener(chanend left , chanend right , port button) {
int token;
while (1)

select {
case left :> token :

/* pass token on */
right <: token;
break;

case button when pinsneq (0xf):> void :

X8118A

XC-2 Development Board Tutorial 14/15

/* wait for token , then hold until button is pressed */
left :> token;
button when pinsneq (0xf):> void; /* push down */
button when pinseq (0xf):> void; /* release */
right <: token;
break;

}
}

The guarded input statement:

case left :> token :

becomes ready when the token arrives, in which case it is input and passed to the
next thread. The guard:

case button when pinsneq(0xf):> void :

becomes ready when the value on the pins connected to the port button is not
equal to the bit pattern 0xf. This signifies that the button was pressed. The body
of this case then waits for the button to be pressed again and released before
continuing.

7.2 Exercise 1

Add the function buttonListener to the token ring from the previous section that
responds to either one of the two press-buttons. You can find their ports in the
diagram at the end of this tutorial on page sec:portmap.

Compile and run this program on your XC-2.

Verify that the LED stops cycling after a full cycle when one of the buttons is
pressed. Pressing the button again causes the next cycle to commence.

7.3 Exercise 2

Modify the program so that pressing a button changes the cycle direction.

The simplest solution is to add a select statement to the function “flashLED‘ that
inputs from either its left or right neighbor, and extend buttonListener similarly.

8 Ping your XC-2 from a PC over its Ethernet connection

This part of the tutorial shows you how to integrate the XMOS Ethernet controller
into your own design. The 10/100-BASE-T Ethernet interface on the XC-2 is
implemented using a standard physical layer interface device. The MAC and MII
level protocols are implemented in software.

X8118A

XC-2 Development Board Tutorial 15/15

8.1 Download the Ethernet software

The software can be downloaded as a ZIP file from http://www.xmos.com/xc2/, and
imported directly into the XDE as a pre-configured project (for instructions see the
Tools User Guide) or uncompressed and built using the provided Makefile.

Open the file test.xc and change the preprocessor value OWN_IP_ADDRESS to an IP
address that your network can route.

Compile and run this program on your XC-2.

You should be able to ping and receive a response from the board.

Note that you may need to disable your firewall.

8.2 Exercise

Modify the function demo in the file test.xc so that it flashes one of the green LEDs
each time it receives a ping request.

9 What to read next

Congratulations, you’re now ready to start building Ethernet-based products using
XC and your XC-2. For information on how to incorporate this software into your
own design, refer to the files README.txt and API.txt.

Copyright © 2012, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

X8118A

http://www.xmos.com/xc2/

	Introduction
	Illuminate an LED
	Flash an LED
	Interface with a host over a serial link
	Run tasks concurrently
	Flash multiple LEDs in sequence
	Add a button controller to the token ring
	Ping your XC-2 from a PC over its Ethernet connection
	What to read next

