Use xTIMEcomposer to debug a program

IN THIS DOCUMENT

» Launch the debugger

Control program execution

Set a breakpoint

>
» Examine a suspended program
>
>

View disassembled code

Figure 1:

Debug
perspective

The xCORE Debugger lets you see what’s going on “inside” your program while it
executes on hardware or on the simulator. It can help you identify the cause of any
erroneous behavior.

File Edit Novigate Search Project Run Tools Window Help

H-O- QA vElvt oD
0> | 2. @ & % = |i% B 7 = Ot Variables 52 =4 Modules B & % % ¥ = O|[(it Registers X %@~ =8
4 B app_sk_gpio_simple_demo_Debug [XCore Application] Name. Value Name -
4 & XMOS Debugger (10/12/12 2:19 PM) (Suspended) - time 533908717
o tile[0] corel0] (Suspended) - toggle 0
> P tilel0] corel1] (Suspended) 0t 1
4 o tile(1] corel0] (Suspended) (8 datal 0:0001e88
5 app_other() main.xc:165 0x000103a6 0 ade_value 2016442698 £
4 _main_xm_20 0x000103b2 - button_press 1 2
3 par_outlined0) 0:0001081e o bulon o
2_memaind00000() 0:00010802 @4 SoNtee
= 1 <symbol is not available> Oxdfcdebde - button_press_ 2 2
4 o tile[1] core[1] (Suspended: Breakpoint hit) et 1027143520
4 app_manager() main.xc:137 00001018¢c 0 index o
3 _main_xm_30 0:00010368 o0 led_value "
2 par_outlined 10 0x00010826 -
1_Dokxception() 0x00010880
4 xgdb (10/12/12 2:19 PM) J o | o
8 c g sk_gpio_simple_ (23 "\027', 43 '+1} B] -
‘ i v
« i V||« (K y
kg mainxc 83\ [2ch | b i2c-mmaxc | (8 commonh & Makefile | [€] = B/ Outline | Signals 2= 527 Developer Column | _Enter location here + w@~ =0
break; B . Ry bt A
app_manager+204 bu (u6) oxla
case !button => t when timerafter(time+2000000) :>time: if (button_press_1 == BUTTON_PRESS_
app_manager+206 ldw (rué) 0, sp[Oxic]
p_PORT_BUT_1:> button_press_2; -
>_PORT_BUT _:] = app_manager+208 eq (2rus) x0, x0, Ox1
if (button_press_l==button_press_2) Stn managert210 Bt (eus g
if (button_press_1 == BUTTON_PRESS_VALUE) PP_nanag (zu8) L
A I - - - app_manager+212 bu (u6) ox1d
printstrin("Bucton 1 Pressed® s app_manager+21¢ ldc (rué) r1, 0x11
ey printstrin("Button 1 Pressed")
B = - 2pp_managers216 ldaw (1rué) 0, dp[ox2e)
led_value=led_value<<i: -
. < =0x0" : app_manager+220 bl (1ul0) 0x413
led_value|=0x01; >
led_value=led value & OXOF; p_led<: (led value):
lf(;ed value : app_manager+224 1dw (1rué) rl, dp[0x41]
¢ - : app_manager+228 ldw (ru6) r2, sp[0x10]
Led valuesoxoEs 2pp_menager+230 out (r2r) res(r1], x2 *
R L 138 led_value=led_value<<i;
) 00010124: app manager+232 ldw (rué) rl, sp[0x10]) ‘
app_manager+234 shl (2rus) rl, rl, Oxl1 E
VALUE- 3
if (button_press_1 == BUTTON_PRESS_VALUE-1) app_managers236 sctw (rus) 21, spioxio) ‘
datal [0]=0;datal [1]=05 | app_manager+238 mimsk (rus) 22; :xl . oxons U
i2c_master_rx(0x28, datal, 2, i2cOne ’ i 10 - . g“ xoL
printstrin("Reading Temperature value X app_mnaqu:zqz Dzw(ns rl' b 'orlo
dacal[0]=datal[0]€0X0F; 4 P app_manager s (xu6) b ot
- . led _value=led value & OxOF;
adc_value=(datal[0]<<6) | (datal[1]>>2); N -
- app_manager+244 zext (rus) rl, Ox4
printstr("Temperature is :"); - 246 stw (rué) 11, sp[0x10]
printintln(linear_interpolation (adc_value)): R r e
R - e app_managers2¢¢ mimsk (rus) 2, ox4
S if (led_value == 15) o
ay m v Ci F—] »
2 Console |] Tasks | B Waves (2 Problems | Q) Executables | § Memory &3 St
Monitors 4 % %% (00001788 : 0AFESS <Hex> 53\ 4 New Rendering: 0:0001e88 : O:IFESS <Signed Integer> 53 <> New Renderings..
% 0:0001fe38 Address 0 -3 -7 -3 c-F || rdaress o0 -3 4-7 e-3 c-r a
0001FES0 0E000000 B686CFE7 172875CA 13D39FBD 0001FES0 14 -2016442698 -898290921 -1113599213
0001FES0 00000000 01000000 00000000 00000000 0001FES0 O 1 o o
0001FEAO0 00000000 FOE1DD72 6DBDCD22 02000000 (1] 0001FEA0 O 1927143920 583908717 2 |
0001FEBO 02000000 01000000 00000000 B8030100 0001FEBO 2 1 o 66488
0001FECO 01000000 26080100 64983602 80080100 0001FECO 1 67622 37132388 67712
0001FEDO 03000000 00000000 DOFE0100 03000000 . || 0001FEDO 3) 130768 3 o

Publication Date: 2013/11/11 REV B
XMOS © 2013, All Rights Reserved

XMOS

Use xTIMEcomposer to debug a program 2/6

1

A

For full visibility of your program, you must compile it with debugging enabled
(see XM-000927-PC). This causes the compiler to add symbols to the executable
that let the debugger make direct associations back to the source code. Note
that compiling with optimizations enabled (see XM-000927-PC) can also make
debugging more difficult.

Launch the debugger

%]

To load a program under control of the debugger, follow these steps:
1. Select a project in the Project Explorer.
2. Choose Run » Debug Configurations.

3. In the left panel, double-click XCore Application. xTIMEcomposer creates a
new configuration and displays the default settings in the right panel.

4. In the Name text box, enter a name for the configuration.

5. xTIMEcomposer tries to identify the target project and executable for you. To
select one yourself, click Browse to the right of the Project text box and select
your project in the Project Selection dialog box. Then click Search Project and
select the executable file in the Program Selection dialog box.

You must have previously compiled your program without any errors for the
executable to be available for selection.

6. If you have a development board connected to your system, in the the Device
options panel check the hardware option and select your debug adapter from
the Adapter list. Alternatively, check the simulator option to run your program
on the simulator.

7. To save the configuration and launch the debugger, click Debug. If you are
asked whether to open the Debug perspective, check Remember my decision
and click Yes.

XTIMEcomposer loads your program in the debugger and opens it in the Debug
perspective.

xTIMEcomposer remembers the configuration last used to load your program. To
debug the program later using the same settings, just click the Debug button. To
use a different configuration, click the arrow to the right of the Debug button and
select a configuration from the drop-down list.

2 Control program execution

0]
2

Once launched, the debugger runs the program until either an exception is raised
or you suspend execution by clicking the Suspend button .

Click the Resume button to continue executing a suspended program, or use one
of the step controls to advance the core selected in the Debug view incrementally:

REV B

XMOS

http://www.xmos.com/doc/XM-000927-PC/latest/page27#xcc-manual-option-g
http://www.xmos.com/doc/XM-000927-PC/latest/page27#xcc-manual-optimization-options

Use xTIMEcomposer to debug a program 3/6

<

» Step Into: Executes a single line of source code on the core selected in the
Debug view. If the next line of code is a function call, the debugger suspends
at the first statement in the called function. All other cores are resumed.

» Step over: Executes a single line of source code on the core selected in the
Debug view. All other cores are resumed.

» Step return: Steps the core selected in the Debug view until the current function
returns. If the next line of code is a function call, the debugger executes the
entire function. All other cores are resumed.

» Step through: Switches the debugger context to the corresponding input core
of a channel output statement. This is useful for following the path of data as it
flows between cores. No cores are resumed.

When debugging optimized code, a step operation is not guaranteed to advance to
the next line in the source code, since the compiler may have reordered instruction
execution to improve performance.

3 Examine a suspended program

Figure 2:
Debug view

Once a program is suspended, you can query the state of each core and can inspect
the values held in registers and memory.

» Examine a core’s call stack: The Debug view displays a list of software tasks,
each of which can be expanded to show its call stack, as shown in Figure 2.

(wits [|3y Or Qur | &2 | &1+ G140 v v [%% Debug =D
%5 Debug X{“\ Ok - DR i Y= 5 (eo= Varia 53 % Brea\| 08 Regi \|) Modu\‘ = g)
Vv [MyProject [XCore Application] ot 2 f‘f =
v é@ XMOS Debugger (5/5/10 9:45 AM) (Suspended) Name Value
v tile[0] core[0] (Suspended: Breakpoint hit.) 052 to_cl 258
= 4 send_data() fworkspace/MyProject/debug.xc:25 0x000100be 0= 4
=3 __main_xm_0(fworkspace/MyProject/debug.xc:13 0x00010: ()= resultl 0
= 2 _mcmain() 0x0001010e
= 1 hasEndReg0{) 0x00010222 L e —— =) <>
> tile[0] corel0] (Suspended) Y €
——————————————————————————— B <>
[xd debug.xc 53\\ = 0| EE Qutline I Signals |M Disassembly 23\\ v = El‘
J0void send_data(chanend to_cl) { 0:000100bc <send_data+16=: bu (ué) 0xlc
21 int i = 45 14+ @
int resultl = 0; 200x000100be <send_data+l8=: ldw (rué) r@, sp[®z1]
O 0x000100c® <send_data+20=: add (2rus) r, rd, Ozl
while (1) { Dx000100c2 <send_data+22=: stw (rud) rd, sp[0x1]
14+ A to_cl <: 1i;
2, to_cl <t is <3 0x000100c4 <send_data+24=: ldw (rud r@, sp[0x0]
- - : L DAL O = PRSP R PRI, 7 PP S S . | S S] A W
—— =) <>
El console X{-\:‘/—: Tasks‘| -Wa\les‘l & Problems| Q Execulables‘] i} Memor\/‘] O] x B &8 2 Byrgy =0
del le [XCore Application] /workspace/MyProject/Debug/deb! le.xe (5/5/10 10:40 AM)

REV B

XMOS

Use xTIMEcomposer to debug a program 4/6

Figure 3:

Variables
view

In the example above, the tile tile[0] is suspended at a breakpoint in the
function send_data on line 25 of the file debug.xc.

» Examine Variables: The Variables view displays variables and their values. In

the Debug view click on any function in a core’s call stack to view its variables,
as shown in Figure 3.

(09= Variables 53 3 o SESHE)
Mame Value
04 x 3
¢52p 66048
642 to_c1 <value optimized out>

o

To view a global variable, right-click in the Variables view, select Add Global
Variables from the pop-up menu to open a dialog box and select the global
variable to add to the view.

Compiling a program without optimizations guarantees that every variable is
held in memory for the duration of its scope so that its value can always be
displayed. If optimizations are enabled, a variable may not be available to be
examined, resulting in the message <value optimized out>.

You can do the following with variables:

» Display a variable’s value in hexadecimal format: Right-click on a variable

to bring up a menu and choose Format » Hexadecimal. You can also choose
binary, decimal or normal. The normal format is determined by the type of the
variable.

Change a variable’s value: Click on a value to highlight it, enter a new value
and press Enter. The table entry is highlighted yellow to indicate its value has
changed. This allows you to test what happens under what-if scenarios.

Prevent the debugger from reading a variable: Right-click on a variable and
choose Disable from the contextual menu. This is useful if the variable’s type is
qualified with volatile. To apply settings to multiple variables at once, press
Ctrl (Windows, Linux) or 8 (Mac) while you click on multiple variables, then
right-click and select an option from the contextual menu.

Examine Memory: The Memory view provides a list of memory monitors, each
representing a section of memory. To open the Memory view, choose Window »
Show View » Memory. In the Debug view click on any core to view the contents
of its memory, as shown in Figure 3.

To specify a memory location to view, click the Add button to open the Memory
Monitor dialog box, enter a memory location and click OK. You can enter either
an absolute address or a C/XC expression. To view the contents of an array just
enter its name.

REV B

XMOS

Use xTIMEcomposer to debug a program 5/6

Figure 4:
Memory view

Monitors * B 5% ,test_array:DxlFDCC <Hesxs SS--""\\'-H-' NewRenderings..,]

@ test_array Address 0-3 4-7 8-8B C-F
POB1FDCO @ODFODDBA POF@DDBA POOORORO MDFODDBA
0OBLFDDO @DFODDBA PDFODDBA @DFODDBA GDFODDBA O
0OB1FDED OOFODDBA OGDFBDDBA OOFODDBA = ODFODDBA
0OBLFDFO ODFODDBA OGDFGDDBA ODFODDBA ODFODDBA

Annarran AT AREO AREARROE AP A PR AREARCA

A

To display the memory contents in a different format such as Hex or ASCII, click the
New Renderings tab, select a format and click Add Renderings. xTIMEcomposer
adds new tabs in the panel to the right of the Memory view, each showing a
different interpretation of the values in memory.

4 Set a breakpoint

A breakpoint is a marker in the program that instructs the debugger to interrupt
execution so that you can investigate the state of the program. You can add a
breakpoint to any executable line of code, causing execution to suspend before
that line of code executes.

To add a breakpoint, double-click the marker bar in the left margin of the code
editor next to the line at which you wish to suspend execution. A blue dot is
displayed to indicate the presence of the breakpoint. Note that the breakpoint
applies to every core that executes the function.

Breakpoints are also displayed in the Breakpoints view. To open the Breakpoints
view, choose Window » Show » View » Breakpoints. Double-click on a breakpoint
to locate the corresponding line in the source code editor.

Here are some other things can do with breakpoints:

» Set a conditional breakpoint: Right-click on a breakpoint marker to bring up
a contextual menu, and choose Breakpoint Properties to display a properties
dialog box. Click the Common option in the left panel and enter a C/XC condi-
tional expression in the Condition text box in the right panel. The expression
can contain any variables in the scope of the breakpoint.

» Set a conditional breakpoint: Right-click on a breakpoint marker to bring up
a contextual menu, and choose Breakpoint Properties to display a properties
dialog box. Click the Common option in the left panel and enter a C/XC condi-
tional expression in the Condition text box in the right panel. The expression
can contain any variables in the scope of the breakpoint.

» Set a watchpoint on a global variable: A watchpoint is a special breakpoint
that suspends execution whenever the value of an expression changes (without
specifying where it might happen). Right-click anywhere in the Breakpoints view
and choose Add Watchpoint C/XC from the contextual menu. Enter a C/XC

REV B

XMOS

Use xTIMEcomposer to debug a program

6/6

expression in the dialog box, for example a[MAX]. Select Write to break when

the expression is written, and Read to break when the expression is read.

» Disable a breakpoint: In the Breakpoints view, clear the checkbox next to a
breakpoint. Enable the checkbox to re-enable the breakpoint.

» Remove a breakpoint: Double-click on a breakpoint marker in the code editor
to remove it. Alternatively, right-click a breakpoint in the Breakpoints view and
select Remove from the contextual menu; to remove all breakpoints, select
Remove All.

5 View disassembled code

Figure 5:

Disassembly
view

The Disassembly view displays the assembly instructions that are executed on the
target platform. To open the Disassembly view, choose Window » Show View »
Disassembly.

Ox000100ba
Ox000100bc
i++;
[2:2%000100be
Ox000100c0
Ox000100c2

Ox000100c4
Dx000100c6
Dx000100c8
OxB0d10dca
Ox0O10dcc
Ox000100ce
OxOO100d0
Ox0O100d2
Ox000100d4
Ox0OO100d6
Ox000100d3
to_cl
Ox000100da

lo10 Disassembly £3

~

<send_data+lds:
=<send_data+l6s:

=<send_data+l8s:
<send_data+20s:
<send_data+22s:
to_cl =: 1;
<send_data+2ds:
<send_data+26=:
=send_data+28=:
<send_data+30=:
<send_data+32=:
<send_data+3d=:
<send_data+36=:
<send_data+38=:
<send_data+dds:
<send_data+d2s:
<send_data+dds:
= resultl;

<send_data+dbs:

- = E
brft (rud) r@, 1 0zl
brfu (ud) i Bxlc
ldwsp Crug) r@, sp[i 9xz1]
add (2rus) r@, rd, 1 0zl
stwsp (rud) r@, sp[i 9x1]
ldwsp (rud) r@, sp[i 0x0]
outct (rus) res[r®], 1 Ox1
ldwsp (rud) r@, sp[i 0x0]
chket (rus) res[r®], 1 Ox1
ldwsp (rug) rl, sp[i Oxz0]
ldwsp (rud) r@, sp[i Ox1]
out (r2r) res(rl], r@®
ldwsp (rud) r@, sp[i Oxz0]
outct (rus) res[r®], 1 Ox1
ldwsp (rud) r@, sp[i Oxz0]
chket (rus) res[r®], 1 Ox1
ldwsp (rud) r@, sp[i Ox0] v

XMOS

XTIMEcomposer automatically enables instruction stepping mode whenever the
Disassembly view has focus. Alternatively, click the Instruction Stepping Mode
button to enable. Once enabled, click the Step button to advance the program by
a single assembly instruction.

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any

such claims.

REV B

	Launch the debugger
	Control program execution
	Examine a suspended program
	Set a breakpoint
	View disassembled code

