XTIMECOMPOSER TOOLS

A QUICK INTRODUCTION

20 AUGUST 2020

AMOS

1. INTRODUCTION

XCORE is a family of cross-over processors for the 10T and AloT, helping you to get to market fast,
with products that stand out from the competition. With xcore multiple cores are available for the
execution of real-time inferencing, decisioning at the edge, signal processing, control and
communications - all wrapped up in a single chip. This means that Product Designers no longer
need to rely on a costly applications processor or a microcontroller with additional components.

The xTIMEcomposer tools help our customers and partners get to market fast with xcore based
designs. The tools help our users to develop, debug and understand the performance of their
designs, even before hardware exists. The tools then support the deployment and debug of those
designs onto target hardware.

The xcore is the only processing resource needed in many applications - designs

for xcore frequently combine Al, DSP, control and 10 processing in a highly integrated and cost-
effective solution. xTIMEcomposer is the only embedded processor tool suite that enables co-
development of all four of these classes of processing in a single environment, thereby enabling
significant time to market benefits.

xTIMEcomposer is designed to be very familiar and easy to use for any embedded
programmer. Indeed, in many cases the same open-source tools are used as are frequently used
for platforms like the ARM Cortex M-series.

2. THE XTIMECOMPOSER TOOLS

The xTIMEcomposer tools include:

e TOOLCHAIN: stack usage aware LLVM-based C/C++ compiler1, assembler and linker

e DEVELOPMENT TOOLS: debugger, hardware debug adaptor with high-bandwidth SW debug
probe capability.

e SIMULATION: SoC-level cycle accurate simulation

e DEPLOYMENT: generator and writer of flash images for secure boot of user applications

3. PROGRAMMING IN C

Page 2) MOS 20082020

C developers new to the xcore can leverage their existing skills using the
powerful xcore platform and the open-source LLVM compiler supplied with xTIMEcomposer.

The LLVM Clang C/C++ compiler is directly suitable for generation and rigorous optimisation of
the xcore instruction set. System libraries containing APIs and macros that allow complete use of
the xcore hardware in the C language are provided.

For instance, here is a trivial “Hello world” example:

#include

uih WN R

}

<stdio.h>

int main(void) {
printf("Hello world\n");

Forking and joining a pair of truly parallel tasks each onto their own xcore core is equally simple:

1. #include <stdio.h>

2. #include <xcore/parallel.h>

3.

4. DECLARE_JOB(print_int_sum, (int, int));
5. void print_int_sum(int a, int b)

6. {

7. int result = a + b;

8. printf("Int sum is: %d\n", result);

9. }

10.

11. DECLARE_JOB(print_float_sum, (float, float));
12. void print_float_sum(float a, float b)

13. {

14. float result = a + b;

15. printf("

16. }
17.

'Float sum is: %.1f\n", result);

18. int main(void)

19. {

20. PAR_JOBS(
21. PJOB(print_int_sum, (1@, 5)),
22. PJOB(print_float_sum, (10.0, 5.0))

23,);
24. }

Creating event handlers with lightning-fast response times is similarly straightforward. The following
“‘lap timer” example counts timer events until the button is pressed at which point it prints and
resets the counter. A guard pauses counting whilst the button is down:

#include
#include
#include
#include
#include

VWoOoONOOTUVTEAWNER

<platform.h>
<stdio.h>
<xcore/hwtimer.h>
<xcore/port.h>
<xcore/select.h>

static const long unsigned timer_interval = 100000;

void lap_timer(port_t button_port, hwtimer_t timer)

Page 3

y 4 MOS 20082020

10. {

11. unsigned counter = 0;

12. unsigned long port_value = port_peek(button_port),

13. button_mask = 0x1;

14.

15. port_set_trigger_in_not_equal(button_port, port_value);

16. hwtimer_set_trigger_ time(timer, hwtimer_get_time(timer) + timer_interval);
17.

18. SELECT_RES_ORDERED(

19. CASE_THEN(button_port, on_button_change),

20. CASE_GUARD_THEN(timer, port_value & button_mask, on_timer_tick))
21, {

22. on_timer_tick:

23. hwtimer_change_trigger_time(timer, hwtimer_get_time(timer) + timer_interval);
24. counter += 1;

25. continue;

26.

27. on_button_change:

28. port_value = port_in(button_port);

29. port_set_trigger_value(button_port, port_value);
30.

31. if (~port_value & button_mask)

32. {

33. printf("Counter value: %u\n", counter);

34. counter = 0;

35, }

36.

37. continue;

38. }

39. }

40.

41. int main(void)

42. {

43, hwtimer_t timer = hwtimer_alloc();
44 port_t button_port = XS1_PORT_4D;
45. port_enable(button_port);

46.

47. lap_timer(button_port, timer);

48.

49. port_disable(button_port);

50. hwtimer_free(timer);

51. }

4. AVOIDING STACK OVERFLOW

Ensuring against stack overflow in a complex parallel program is notoriously difficult. When it does
occur, it can be incredibly time-consuming and costly to debug. If these issues remain resident in
production firmware, expensive product recalls may be required. For this reason,

the xTIMEcomposer toolchain performs callgraph analysis, stack size calculation

and constraint checking. Compilation and linking of the parallel program above, for instance,
generates the following guidance:

$ xcc -target=XCORE-AI-EXPLORER -report -g main.c -o main.xe
Constraint check for tile[@]:
Memory available: 524288, used: 22664 . OKAY
(Stack: 1644, Code: 19728, Data: 1292)
Constraints checks PASSED.

Page 4 V4 MOS 20082020

Even the stack usage of indirect function calls can be managed with the xTIMEcomposer toolchain
using a concept known as “function pointer groups” — a function call via a function pointer is
assumed to require the greatest stack of the members of the associated function pointer group.

5. PLATFORM-LEVEL SUPPORT

The xTIMEcomposer tools have an inbuilt understanding of the xcore processor itself, the other on-
chip resources and the typical configurations in which it is likely to be used.

This allows developers to focus on the application, not the time-consuming (but still

essential) boilerplate functionality around it. For instance, without recompilation, you can take your
already proven application and deploy it in a secure flash-booted multi-chip network using

the xTIMEcomposer’s xflash tool.

©. SEAMLESS SIMULATION

The xTIMEcomposer tools include the xsim simulator. xsim simulates one or more xcore.ai chips in
a network with optional external flash and LPDDR devices (xcore.ai only). For deployments of

the xcore alongside user-supplied external devices, an APl is provided to allow the simulation to
incorporate the entire system.

The xsim simulator is straightforward to invoke and invaluable when wanting to understand
detailed processing, IO or memory interactions. Detailed logs of every instruction are produced
with cycle-accurate results in most cases allowing a level of insight into your running program not
available by running on the hardware directly.

/. SQUASHING BUGS

The xTIMEcomposer xgdb tool is a multi-core extension of the popular gdb debugger. Familiar
usage is enhanced with some additional commands. In the example below, we debug the parallel
application above on an xsim simulated target, first setting a breakpoint in one of the parallel
functions:

$ xgdb main.xe

(gdb) connect -s

0x00080000 in _start ()

(gdb) break print_float_sum

Breakpoint 1 at 0x80128: file main.c, line 14.

Page 5 2 MOS 20082020

(gdb) run
[Switching to tile[@] core[1]]

Breakpoint 1, print_float_sum (a=10, b=5) at main.c:14
14 float result = a + b;
(gdb) info threads
3 tile[1] core[@] ©x00080006 in _start ()
* 2 tile[@] core[1l] print_float_sum (a=10, b=5) at main.c:14
1 tile[@] core[@] ©0x0008010e in print_int_sum (a=10, b=5) at main.c:8
(gdb) where
#0 print_float_sum (a=10, b=5) at main.c:14
#1 0x000801e8 in _ xcore_ugs_shim_print_float_sum (__xcore_pargs_=0x84e08) at main.c:11
#2 0©x00081e90 in memmove ()
Backtrace stopped: frame did not save the PC
(gdb) thread 1
[Switching to thread 1 (tile[@] core[@])]#0 ©x0008010e in print_int_sum (a=1@, b=5) at
main.c:8
8 printf("Int sum is: %d\n", result);
(gdb) where
#0 0x0008010e in print_int_sum (a=1@, b=5) at main.c:8
#1 0x000801cO® in main () at main.c:20

The ability to stop and debug a running real-time application is not always useful or even relevant,
as it immediately breaks real-time behaviour. For that reason, the xscope high bandwidth
debugging interface is provided as an inbuilt capability of the xtag hardware debugging interface.

Simple code annotations with negligible real-time overhead allow for detailed off and online tracing
and analysis. The example overleaf uses xscope_float() to instrument a dummy piece of code:

#include <math.h>
#include <platform.h>
#include <xscope.h>

#define NUM_SAMPLES 1000
float samples[NUM_SAMPLES];

typedefenum {
ch_continuous_e=0,
10. }xscope_channels_t;

© 0N A WN =

12. voidxscope_user_init(void)

13. |

14. xscope_register(1,

15. XSCOPE_CONTINUQOUS, "Data0", XSCOPE_FLOAT, 'Data");
16. }

19. voidprepare_samples()

20. {

21. floatpi =2*asinf(1);

22. floatstep =(2*pi))/NUM_SAMPLES;

24. for(unsignedi=0;i<NUM_SAMPLES;i++){
25. samples]i] = sinf(i*step);

26. }

27. }

29. voidoutput_samples()

30. {
31. for(unsignedi=0;i<NUM_SAMPLES;i++){

Page 6 Y 4 MOS 20082020

32. xscope_float(ch_continuous_e, samples|i]);
33. }

34. }

35.

36. intmain()

37. {

38. xscope_mode_lossless();
39.

40. prepare_samples();

41.

42. output_samples();

43.

44. return0;

45.)

When the example is built and run with the appropriate command line options, a file in the IEEE
VCD format is produced. GTKWave or a similar 3rd-party VCD viewer can be used to interrogate
the output:

®

File Edit Seach Time Markers View Help |
g0 ﬂ ©\ (D\ Q LH %H p E‘ From:|0 sec To:|1391390 ns @ Marker: -- | Cursor: 0 sec |
- SST Signals Waves

Time
Probe0o

Type |Signa|s

wire Missing_Data B
i Missing_Data
real Probe0 <

Filter:

AppendI Insen| Replace| 1 3]

8. SUMMARY

xTIMEcomposer is a full suite of development tools available for all three generations of

the xcore processor. These tools allow users a unique opportunity to combine Al, DSP, control and
IO processing together to expedite their time to market and deliver the most integrated and
economical solutions. The capabilities of xcore, and the ease-of-use of

the xTIMEcomposer tools represent a distinct advantage for those developing a diverse range

of solutions for the 10T and AloT.

Visit xmos.com for more information.

Page 7 4 MOS 20082020

Copyright © 2020, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing it to you
“AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos Ltd. makes no
representation that the Information, or any particular implementation thereof, is or will be free from any claims of infringement and

Page 8)\MOS 20082020

