
Inline Assembly

The asm statement can be used to embed code written in assembly inside a C or
XC function. For example, the add instruction can be written as follows:

asm("add %0, %1, %2" : "=r"(result) : "r"(a), "r"(b));

Colons separate the assembler template, the output operands and the input
operands. Commas separate operands within a group. Each operand is described
by an operand constraint string followed by an expression in parentheses. The
“r” in the operand constraint string indicates that the operand must be located in
a register. The “=” in the operand constraint string indicates that the operand is
written.

Each output operand expression must be an lvalue and must have “=” in its
constraint.

The location of an operand may be referred to in the assembler template using an
escape sequence of the form %num where num is the operand number. The escape
sequence “%=” can be used to emit a number that is unique to each expansion of
an asm statement. This can be useful for making local labels. To produce a literal
“%” you must write “%%”.

If code overwrites specific registers this can be described by using a third colon
after the input operands, followed by the names of the clobbered registers as a
comma-separated list of strings. For example:

asm ("get r11 , id\n\tmov %0, r11"
: "=r"(result)
: /* no inputs */
: "r11");

The compiler ensures none of input or output operands are placed in clobbered
registers.

If an asm statement has output operands, the compiler assumes the statement
has no side effects apart from writing to the output operands. The compiler may
remove the asm statement if the values written by the asm statement are unused.
To mark an asm statement as having side effects add the volatile keyword after
asm. For example:

asm volatile("in %0, res [%1]" : "=r"(result) : "r"(lock));

If the asm statement accesses memory, add “memory” to the list of clobber registers.
For example:

Publication Date: 2013/11/11 REV D

XMOS © 2013, All Rights Reserved



Inline Assembly 2/2

asm volatile("stw %0, dp[0]"
: /* no outputs */
: "r"(value));

This prevents the compiler caching memory values in registers around the asm
statement.

The earlyclobber constraint modifier “&” can be used to specify that an output
operand is modified before all input operands are consumed. This prevents
the compiler from placing the operand in the same register as any of the input
operands. For example:

asm("or %0, %1, %2\n"
"or %0, %0, %3\n"
: "=&r"(result)
: "r"(a), "r"(b), "r"(c));

Jumps from one asm statement to another are not supported. asm statements must
not be used to modify the event enabled status of any resource.

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV D


