
XC Implementation-Defined Behavior

A conforming XC implementation is required to document its choice of behavior for all parts
of the language specification that are designated implementation-defined. In the following
section, all choices that depend on an externally determined application binary interface are listed
as “determined by ABI,” and are documented in the Application Binary Interface Specification
(see XM-000967-PC).

· The value of a multi-character constant (§1.5.2).

The value of a multi-character constant is the same as the value of its first character; all other
characters are ignored.

· Whether identical string literals are distinct (§1.6).

Identical string literals are not distinct; they are implemented in a single location in memory.

· The available range of values that may be stored into a char and whether the value is
signed (§3.2).

The size of char is 8 bits. Whether values stored in a char variable are signed or not is
determined by the ABI.

· The number of pins interfaced to a port and used for communicating with the environ-
ment; and the value of a port or clock not declared extern and not explicitly initialized
(§3.2, §7.7).

The number of pins connected to a port for communicating with the environment is defined
either by the explicit initializer for its declarator. If no initializer is provided, the compiler
produces an error message.

· The notional transfer type of a port, the notional counter type of a port, and the notional
counter type of a timer (§3.2).

The notional types are determined by the ABI.

· The value of an integer converted to a signed type such that its value cannot be repre-
sented in the new type (§5.2).

When any integer is converted to a signed type and its value cannot be represented in the new
type, its value is truncated to the width of the new type and sign extended.

· The handing of overflow, divide check, and other exceptions in expression evaluation
(§6).

All conditions (divide by zero, mod zero and overflow of signed divide / mod) result in undefined
behaviour.

· The notion of alignment (§6.3.4).

An alignment of 2n guarantees that the least significant n bits of the address in memory are 0.
The specific alignment of the types is determined by the ABI.

Publication Date: 2013/11/11 REV B

XMOS © 2013, All Rights Reserved

http://www.xmos.com/doc/XM-000967-PC/latest#xs1-abi


XC Implementation-Defined Behavior 2/3

· The value and the type of the result of sizeof (§6.4.6).

The value of the result of the sizeof operator is determined by the ABI. The type of the result is
unsigned int.

· Attempted run-time division by zero (§6.6).

Attempted run-time division by zero results in a trap.

· The extent to which suggestions made by using the inline function specifier are effective
(§7.3).

The inline function specifier is taken as a hint to inline the function. The compiler tries to
inline the function at all optimization levels above -O0.

· The extent to which suggestions made by using the register storage class specifier are
effective (§7.7.4).

The register storage class specifier causes the register allocator to try and place the variable in
a register within the function. However, the allocator is not guaranteed to place it in a register.

· The supported predicate functions for input operations (§8.3).

The set of supported predicate functions is documented in XM-000969-PC.

· The meaning of inputs and outputs on ports (§8.3.2).

The inputs and outputs on ports map to in and out instructions on port resources, the behaviour
of which is defined in the XS1 Ports Specification (see X1373).

· The extent to which the underlying communication protocols are optimized for transac-
tion communications (§8.9).

The communication protocols are determined by the ABI.

· Whether a transaction is invalidated if a communication occurs such that the number of
bytes output is unequal to the number of byte input, and the value communicated (§11).

This is determined by the ABI.

· The behavior of an invalid operation (§12).

Except as described below, all invalid operations are either reported as compilation errors or
cause a trap at run-time.

· The behavior of an invalid master transaction statement is undefined; an invalid slave
transaction always traps.

· The unsafe pragma (see XM-000959-PC) can be used to disable specific safety checks,
resulting in undefined behavior for invalid operations.

REV B

http://www.xmos.com/doc/XM-000969-PC/latest#xs1lib-port-predicate-functions
http://www.xmos.com/docnum/X1373
http://www.xmos.com/doc/XM-000959-PC/latest#pragma-unsafe


XC Implementation-Defined Behavior 3/3

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV B


