
Assembly Programming Manual

IN THIS DOCUMENT

· Lexical Conventions

· Sections and Relocations

· Symbols

· Labels

· Expressions

· Directives

· Instructions

· Assembly Program

The XMOS assembly language supports the formation of objects in the Executable
and Linkable Format (ELF)1 with DWARF 32 debugging information. Extensions to
the ELF format are documented in the XMOS Application Binary Interface (see XM-
000967-PC).

1 Lexical Conventions

There are six classes of tokens: symbol names, directives, constants, operators, in-
struction mnemonics and other separators. Blanks, tabs, formfeeds and comments
are ignored except as they separate tokens.

1.1 Comments

The character # introduces a comment, which terminates with a newline. Comments
do not occur within string literals.

1.2 Symbol Names

A symbol name begins with a letter or with one of the characters ‘.’, ‘_’ or ‘$’,
followed by an optional sequence of letters, digits, periods, underscores and dollar
signs. Upper and lower case letters are different.

1.3 Directives

A directive begins with ‘.’ followed by one or more letters. Directives instruct the
assembler to perform some action (see §6).

1http://www.xmos.com/references/elf
2http://www.xmos.com/references/dwarf3

Publication Date: 2015/3/27 Document Number: X9432B

XMOS © 2015, All Rights Reserved

http://www.xmos.com/doc/XM-000967-PC/latest#xs1-abi
http://www.xmos.com/doc/XM-000967-PC/latest#xs1-abi
http://www.xmos.com/references/elf
http://www.xmos.com/references/dwarf3

Assembly Programming Manual 2/25

1.4 Constants

A constant is either an integer number, a character constant or a string literal.

· A binary integer is 0b or 0B followed by zero or more of the digits 01.

· An octal integer is 0 followed by zero or more of the digits 01234567.

· A decimal integer is a non-zero digit followed by zero or more of the digits
0123456789.

· A hexadecimal integer is 0x or 0X followed by one or more of the digits and
letters 0123456789abcdefABCDEF.

· A character constant is a sequence of characters surrounded by single quotes.

· A string literal is a sequence of characters surrounded by double quotes.

The C escape sequences may be used to specify certain characters.

2 Sections and Relocations

Named ELF sections are specified using directives (see §6.13). In addition, there is
a unique unnamed “absolute” section and a unique unnamed “undefined” section.
The notation {secname X} refers to an “offset X into section secname.”

The values of symbols in the absolute section are unaffected by relocations. For
example, address {absolute 0} is “relocated” to run-time address 0. The values of
symbols in the undefined section are not set.

The assembler keeps track of the current section. Initially the current section
is set to the text section. Directives can be used to change the current section.
Assembly instructions and directives which allocate storage are emitted in the
current section. For each section, the assembler maintains a location counter which
holds the current offset in the section. The active location counter refers to the
location counter for the current section.

3 Symbols

Each symbol has exactly one name; each name in an assembly program refers to
exactly one symbol. A local symbol is any symbol beginning with the characters
“.L”. A local symbol may be discarded by the linker when no longer required for
linking.

3.1 Attributes

Each symbol has a value, an associated section and a binding. A symbol is assigned
a value using the set or linkset directives (see §6.15), or through its use in a label
(see §4). The default binding of symbols in the undefined section is global; for all
other symbols the default binding is local.

X9432B

Assembly Programming Manual 3/25

4 Labels

A label is a symbol name immediately followed by a colon (:). The symbol’s value
is set to the current value of the active location counter. The symbol’s section is
set to the current section. A symbol name must not appear in more than one label.

5 Expressions

An expression specifies an address or value. The result of an expression must
be an absolute number or an offset into a particular section. An expression is a
constant expression if all of its symbols are defined and it evaluates to a constant.
An expression is a simple expression if it is one of a constant expression, a symbol,
or a symbol ± a constant. An expression may be encoded in the ELF-extended
expression section and its value evaluated by the linker (see §6.15); the encoding
scheme is determined by the ABI. The syntax of an expression is:

expression ::= unary-exp

| expression infix-op unary-exp

| unary-exp ? unary-exp $: unary-exp

| function-exp

unary-exp ::= argument

| prefix-op unary-exp

argument ::= symbol

| constant

| (expression)

function-exp ::= $overlay_region_ptr (symbol)
| $overlay_index (symbol)
| $overlay_physical_addr (symbol)
| $overlay_virtual_addr (symbol)
| $overlay_num_bytes (symbol)

infix-op ::= one of

+ - < > <= >= || << >> * $M $A & /

prefix-op ::= one of

- ~ $D

Symbols are evaluated to {section x} where section is one of a named section, the
absolute section or the undefined section, and x is a signed 2’s complement 32-bit
integer.

Infix operators have the same precedence and behavior as C, and operators with
equal precedence are performed left to right. In addition, the $M operator has
lowest precedence, and the $A operator has the highest precedence.

X9432B

Assembly Programming Manual 4/25

For the + and - operators, the set of valid operations and results is given in Figure 1.
For the $D operator, the argument must be a symbol; the result is 1 if the symbol
is defined and 0 otherwise.

Op Left Operand Right Operand Result

+ {section x} {absolute y} {section x+y}

+ {absolute x} {section y} {section x+y}

+ {absolute x} {absolute y} {absolute x+y}

- {section x} {section y} {absolute x-y}

- {section x} {absolute y} {section x-y}

- {absolute x} {absolute y} {absolute x-y}

Figure 1:

Valid
operations
for + and -
operators

The ? operator is used to select between symbols: if the first operand is non-zero
then the result is the second operand, otherwise the result is the third operand.

The operators $overlay_region_ptr, $overlay_index, $overlay_physical_addr,
$overlay_virtual_addr and $overlay_num_bytes can be used to query properties
of the overlay containing the overlay roots with the specified overlay key symbol
(see §6.21). The set of results of these operators is given in Figure 2.

Operator Result

$overlay_region_ptr Virtual address of the overlay region containing the overlay.

$overlay_index Index of the overlay in the overlay region.

$overlay_physical_addr Physical address of the overlay.

$overlay_virtual_addr Virtual (runtime) address of the overlay.

$overlay_num_bytes Size of the overlay in bytes.

Figure 2:

Operators for
querying

properties of
overlays.

For all other operators, both arguments must be absolute and the result is absolute.
The $M operator returns the maximum of the two operands and the $A operator
returns the value of the first operand aligned to the second.

Wherever an absolute expression is required, if omitted then {absolute 0} is as-
sumed.

6 Directives

Directives instruct the assembler to perform some action. The supported directives
are given in this section.

6.1 add_to_set

The add_to_set directive adds an expression to a set of expressions associated
with a key symbol. Its syntax is:

add-to-set-directive ::= .add_to_set symbol , expression

| .add_to_set symbol , expression , symbol

X9432B

Assembly Programming Manual 5/25

An optional predicate symbol may be specified as the 3rd argument. If this
argument is specified the expression will only be added to the set if the predicate
symbol is not eliminated from the linked object.

6.2 max_reduce, sum_reduce

The max_reduce directive computes the maximum of the values of the expres-
sions in a set. The sum_reduce directive computes the sum of the values of the
expressions in a set.

max-reduce-directive ::= .max_reduce symbol , symbol , expression

sum-reduce-directive ::= .sum_reduce symbol , symbol , expression

The first symbol is defined using the value computed by the directive. The second
symbol is the key symbol identifying the set of expressions (see §6.1). The
expression specifies the initial value for the reduction operation.

6.3 align

The align directive pads the active location counter section to the specified storage
boundary. Its syntax is:

align-directive ::= .align expression

The expression must be a constant expression; its value must be a power of 2.
This value specifies the alignment required in bytes.

6.4 ascii, asciiz

The ascii directive assembles each string into consecutive addresses. The asciiz
directive is the same, except that each string is followed by a null byte.

ascii-directive ::= .ascii string-list

| .asciiz string-list

string-list ::= string-list , string

| .asciiz string

X9432B

Assembly Programming Manual 6/25

6.5 byte, short, int, long, word

These directives emit, for each expression, a number that at run-time is the value
of that expression. The byte order is determined by the endianness of the target
architecture. The size of numbers emitted with the word directive is determined by
the size of the natural word on the target architecture. The size of the numbers
emitted using the other directives are determined by the sizes of corresponding
types in the ABI.

value-directive ::= value-size exp-list

value-size ::= .byte
| .short
| .int
| .long
| .word

exp-list ::= exp-list , expression

| expression

6.6 file

The file directive has two forms.

file-directive ::= .file string

| .file constant string

When used with one argument, the file directive creates an ELF symbol table entry
with type STT_FILE and the specified string value. This entry is guaranteed to be
the first entry in the symbol table.

When used with two arguments the file directive adds an entry to the DWARF 3
.debug_line file names table. The first argument is a unique positive integer to
use as the index of the entry in the table. The second argument is the name of the
file.

6.7 loc

The .loc directive adds a row to the DWARF 3 .debug_line line number matrix.

loc-directive ::= constant constant constantopt

| constant constant constant 〈loc-option〉∗

loc-option ::= basic_block
| prologue_end
| epilogue_begin
| is_stmt constant

| isa constant

X9432B

Assembly Programming Manual 7/25

The address register is set to active location counter. The first two arguments
set the file and line registers respectively. The optional third argument sets the
column register. Additional arguments set further registers in the .debug_line
state machine.

basic_block
Sets basic_block to true.

prologue_end
Sets prologue_end to true.

epilogue_begin
Sets epilogue_begin to true.

is_stmt
Sets is_stmt to the specified value, which must be 0 or 1.

isa
Sets isa to the specified value.

6.8 weak

The weak directive sets the weak attribute on the specified symbol.

weak-directive ::= .weak symbol

6.9 globl, global, extern, locl, local

The globl directive makes the specified symbols visible to other objects during
linking. The extern directive specifies that the symbol is defined in another object.
The locl directive specifies a symbol has local binding.

visibility ::= .globl
| .extern
| .locl
| .global
| .extern
| .local

vis-directive ::= visibility symbol

| visibility symbol , string

If the optional string is provided, an SHT_TYPEINFO entry is created in the ELF-
extended type section which contains the symbol and an index into the string table
whose entry contains the specified string. (If the string does not already exist in
the string table, it is inserted.) The meaning of this string is determined by the ABI.

The global and local directives are synonyms for the globl and locl directives.
They are provided for compatibility with other assemblers.

X9432B

Assembly Programming Manual 8/25

6.10 globalresource

globalresource-directive ::= .globalresource expression , string

| .globalresource expression , string , string

The globalresource directive causes the assembler to add information to the
binary to indicate that there was a global port or clock declaration. The first
argument is the resource ID of the port. The second argument is the name of the
variable. The optional third argument is the tile the port was declared on. For
example:

.globalresource 0x10200, p, tile[0]

specifies that the port p was declared on tile[0] and initialized with the resource
ID 0x10200.

6.11 typestring

The typestring adds an SHT_TYPEINFO entry in the ELF-extended type section which
contains the symbol and an index into the string table whose entry contains the
specified string. (If the string does not already exist in the string table, it is
inserted.) The meaning of this string is determined by the ABI.

typestring-directive ::= .typestring symbol , string

6.12 ident, core, corerev

Each of these directives creates an ELF note section named “.xmos_note.”

info-directive ::= .ident string

| .core string

| .corerev string

The contents of this section is a (name, type, value) triplet: the name is xmos; the
type is either IDENT, CORE or COREREV; and the value is the specified string.

X9432B

Assembly Programming Manual 9/25

6.13 section, pushsection, popsection

The section directives change the current ELF section (see §2).

section-directive ::= sec-or-push name

| sec-or-push name , flags sec-typeopt

| .popsection

sec-or-push ::= .section
| .pushsection

flags ::= string

sec-type ::= type

| type , flag-args

type ::= @progbits
| @nobits

flag-args ::= string

The code following a section or pushsection directive is assembled and appended
to the named section. The optional flags may contain any combination of the
following characters.

a section is allocatable

c section is placed in the global constant pool

d section is placed in the global data region

w section is writable

x section is executable

M section is mergeable

S section contains zero terminated strings

The optional type argument progbits specifies that the section contains data;
nobits specifies that it does not.

If the M symbol is specified as a flag, a type argument must be specified and an
integer must be provided as a flag-specific argument. The flag-specific argument
represents the entity size of data entries in the section. For example:

.section .cp.const4, "M", @progbits, 4

Sections with the M flag but not S flag must contain fixed-size constants, each flag-
args bytes long. Sections with both the M and S flags must contain zero-terminated
strings, each character flag-args bytes long. The linker may remove duplicates
within sections with the same name, entity size and flags.

X9432B

Assembly Programming Manual 10/25

Each section with the same name must have the same type and flags. The section
directive replaces the current section with the named section. The pushsection
directive pushes the current section onto the top of a section stack and then
replaces the current section with the named section. The popsection directive
replaces the current section with the section on top of the section stack and then
pops this section from the stack.

6.14 text

The text directive changes the current ELF section to the .text section. The section
type and attributes are determined by the ABI.

text-directive ::= .text

6.15 set, linkset

A symbol is assigned a value using the set or linkset directive.

set-directive ::= set-type symbol , expression

set-type ::= .set
| .linkset

The set directive defines the named symbol with the value of the expression. The
expression must be either a constant or a symbol: if the expression is a constant,
the symbol is defined in the absolute section; if the expression is a symbol, the
defined symbol inherits its section information and other attributes from this
symbol.

The linkset directive is the same, except that the expression is not evaluated;
instead one or more SHT_EXPR entries are created in the ELF-extended expression
section which together form a tree representation of the expression.

Any symbol used in the assembly code may be a target of an SHT_EXPR entry, in
which case its value is computed by the linker by evaluating the expression once
values for all other symbols in the expression are known. This may happen at any
incremental link stage; once the value is known, it is assigned to the symbol as
with set and the expression entry is eliminated from the linked object.

X9432B

Assembly Programming Manual 11/25

6.16 cc_top, cc_bottom

The cc_top and cc_bottom directives are used to mark the beginning and end of
elimination blocks.

cc-top-directive ::= .cc_top name , predicate

| .cc_top name

cc-directive ::= cc-top-directive

| .cc_bottom name

name ::= symbol

predicate ::= symbol

cc_top and cc_bottom directives with the same name refer to the same elimination
block. An elimination block must have precisely one cc_top directive and one
cc_bottom directive. The top and bottom of an elimination block must be in the
same section. The elimination block consists of the data and labels in this section
between the cc_top and cc_bottom directives. Elimination blocks must be disjoint;
it is illegal for elimination blocks to overlap.

An elimination block is retained in final executable if one of the following is true:

· A label inside the elimination block is referenced from a location outside an
elimination block.

· A label inside the elimination block is referenced from an elimination block
which is not eliminated

· The predicate symbol is defined outside an elimination block or is contained in
an elimination block which is not eliminated.

If none of these conditions are true the elimination block is removed from the final
executable.

6.17 scheduling

The scheduling directive enables or disables instruction scheduling. When schedul-
ing is enabled, the assembler may reorder instructions to minimize the number of
FNOPs. The default scheduling mode is determined by the command-line option
-fschedule (see XM-000927-PC).

scheduling-directive ::= .scheduling scheduling-mode

scheduling-mode ::= on
| off
| default

X9432B

http://www.xmos.com/doc/XM-000927-PC/latest#fschedule

Assembly Programming Manual 12/25

6.18 issue_mode

The issue_mode directive changes the current issue mode assumed by the as-
sembler. See §7 for details of how the issue mode affects how instructions are
assembled.

issue-mode-directive ::= issue_mode issue-mode

issue-mode ::= single
| dual

6.19 syntax

The syntax directive changes the current syntax mode. See §7 for details of how
assembly instructions are specified in each mode.

syntax-directive ::= .syntax syntax

syntax ::= default
| architectural

6.20 assert

assert-directive ::= .assert constant , symbol , string

The assert directive requires an assertion to be tested prior to generating an
executable object: the assertion fails if the symbol has a non-zero value. If the
constant is 0, a failure should be reported as a warning; if the constant is 1, a
failure should be reported as an error. The string is a message for an assembler or
linker to emit on failure.

6.21 Overlay Directives

The overlay directives control how code and data is partitioned into overlays that
are loaded on demand at runtime.

overlay-directive ::= .overlay_reference symbol , symbol

| .overlay_root symbol , symbol

| .overlay_root symbol

| .overlay_subgraph_conflict sym-list

sym-list ::= sym-list , symbol

| symbol

· The overlay_root directive specifies that the first symbol should be treated as
an overlay root. The optional second symbols specifies a overlay key symbol.
If no overlay key symbol is explictly specified the overlay root symbol is used
as the key symbol. Specifying the same overlay key symbol for multiple overlay
roots forces the overlay roots into the same overlay.

X9432B

Assembly Programming Manual 13/25

· The overlay_reference directive specifies that linker should assume that there
is a reference from the first symbol to the second symbol when it partitions the
program into overlays.

· The overlay_subgraph_conflict directive specifies that linker should not place
any code or data reachable from one the symbols into an overlay that is mapped
an overlay region that contains another overlay containing code or data reachable
from one of the other symbols.

6.22 Language Directives

The language directives create entries in the ELF-extended expression section; the
encoding is determined by the ABI.

xc-directive ::= globdir symbol , string

| globdir symbol , symbol , range-args , string

| .globpassesref symbol , symbol , string

| .call symbol , symbol

| .par symbol , symbol , string

range-args ::= expression , expression

globdir ::= .globread
| .globwrite
| .parwrite
| .globpassesref

For each directive, the string is an error message for the assembler or linker to
display on encountering an error attributed to the directive.

call
Both symbols must have function type. This directive sets the property that
the first function may make a call to the second function.

par
Both symbols must have function type. This directive sets the property that
the first function is invoked in parallel with the second function.

globread
The first symbol must have function type and the second directive must have
object type. This directive sets the property that the function may read the
object. When a range is specified, the first expression is the offset from the
start of the variable in bytes of the address which is read and the second
expression is the size of the read in bytes.

globwrite
The first symbol must have function type and the second directive must have
object type. This directive sets the property that the function may write the
object. When a range is specified, the first expression is the offset from the
start of the variable in bytes of the address which is written and the second
expression is the size of the write in bytes.

X9432B

Assembly Programming Manual 14/25

parwrite
The first symbol must have function type and the second directive must have
object type. This directive set the property that the function is called in an
expression which writes to the object where the order of evalulation of the
write and the function call is undefined. When a range is specified, the first
expression is the offset from the start of the variable in bytes of the address
which is written and the second expression is the size of the write in bytes.

globpassesref
The first symbol must have function type and the second directive must have
object type. This directive sets the property that the object may be passed by
reference to the function.

6.23 XMOS Timing Analyzer Directives

The XMOS Timing Analyzer directives add timing metadata to ELF sections.

xta-directive ::= .xtabranch exp-listopt

| .xtaendpoint string , source-location

| .xtacall string , source-location

| .xtalabel string , source-location

| .xtathreadstart
| .xtathreadstop
| .xtaloop constant

| .xtacommand string , source-location

source-location ::= string , string , constant

The first string of a source location is the compilation directory. The second string
is the path to the file. The path may be specified as either a relative path from
the compilation directory or as an absolute path. The third argument is the line
number.

· xtabranch specifies a comma-separated list of locations that may be branched
to from the current location.

· xtaendpoint marks the current location as an endpoint with the specified label.

· xtacall marks the current location as a function call with the specified label.

· xtalabel marks the current location using the specified label.

· xtathreadstart apecifies that a thread may be initialized to start executing at
the current location.

· xtathreadstop specifies that a thread executing the instruction at the current
location will not execute any further instructions.

· xtaloop specifies that the innermost loop containing the current location exe-
cutes the specified number of times.

X9432B

Assembly Programming Manual 15/25

· xtacommand specifies an XTA command to be executed when analyzing the
executable.

6.24 uleb128, sleb128

The following directives emit, for each expression in the comma-separated list of
expressions, a value that encodes either an unsigned or signed DWARF little-endian
base 128 number.

leb-directive ::= .uleb128 exp-list

| .sleb128 exp-list

6.25 space, skip

The space directive emits a sequence of bytes, specified by the first expression,
each with the fill value specified by the second expression. Both expressions must
be constant expressions.

space-or-skip ::= .space
| .skip

space-directive ::= space-or-skip expression

| space-or-skip expression , expression

The skip directive is a synonym for the space directive. It is provided for compati-
bility with other assemblers.

6.26 type

The type directive specifies the type of a symbol to be either a function symbol or
an object symbol.

type-directive ::= .type symbol , symbol-type

symbol-type ::= @function
| @object

6.27 size

The size directive specifies the size associated with a symbol.

size-directive ::= .size symbol , expression

X9432B

Assembly Programming Manual 16/25

6.28 jmptable, jmptable32

The jmptable and jmptable32 directives generate a table of unconditional branch
instructions. The target of each branch instruction is the next label in the list. The
size of the each branch instruction is 16 bits for the jmptable directive and 32 bits
for the jmptable32 directive.

jmptable-directive ::= .jmptable jmptable-listopt

| .jmptable32 jmptable-listopt

jmptable-list ::= symbol

| jmptable-list symbol

Each symbol must be a label. A maximum of 32 labels maybe specified. If the
unconditional branch distance does not fit into a 16-bit branch instruction, a
branch is made to a trampoline at the end of the table, which performs the branch
to the target label.

X9432B

Assembly Programming Manual 17/25

7 Instructions

Assembly instructions are normally inserted into an ELF text section. The syntax of
an instruction is:

instruction ::= mnemonic instruction-argsopt

instruction-args ::= instruction-args , instruction-arg

| instruction-arg

instruction-arg ::= symbol [expression]
| symbol [expression] : symbol

| expression

To target the dual issue execution mode of xCORE-200 devices, instructions may
be put in bundles:

separator ::= newline

| ;

instruction-bundle ::= { 〈separator〉∗ bundle-contents 〈separator〉∗ }

bundle-contents ::= instruction 〈separator〉+ instruction

| instruction

The current issue mode, as specifed by the issue_mode directive (see §6.18),
affects how the assembler assembles instructions. Initially the current issue mode
is single and instruction bundles cannot be used. If the current issue mode is
changed to dual then:

· Instruction bundles can be specified.

· 16-bit instructions not in an instruction bundle are implicitly placed in an
instruction bundle alongside a NOP instruction.

· The encoding of some operands may change. For example the assembler applies
a different scaling factor to the immediate operand of relative branch instructions
to match the different scaling factor that the processor uses at runtime when
the instruction is executed in dual issue mode.

The order in which instructions are listed in an instruction bundle is not significant.
The assembler may reorder the instructions in the bundle to satisfy architectural
constraints.

The assembly instructions are summarized below using the default assembly
syntax. The architecture manual (see X7879) documents the architectural syntax
of the instructions. The syntax directive is used to switch the syntax mode.

The following notation is used:

X9432B

http://www.xmos.com/docnum/X7879

Assembly Programming Manual 18/25

bitp one of: 1, 2, 3, 4, 5, 6, 7, 8, 16, 24 and 32
b register used as a base address

c register used as a conditional operand

d, e register used as a destination operand

i register used as a index operand

r register used as a resource identifier

s register used as a source operand

t register used as a thread identifier

us small unsigned constant in the range 0...11
ux unsigned constant in the range 0...(2x-1)

v, w, x, y registers used for two or more source operands

A register is one of: r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, sp, dp, cp and lr.
The instruction determines which of these registers are permitted.

Where there is choice of instruction formats, the assembler chooses the format
with the smallest size. To force a specific format, specify a mnemonic of the form
INSTRUCTION_format where the instruction and format names are as described in
the architecture manual. For example the LDWCP_ru6 mnemonic specifies the ru6
format of the LDWCP instruction.

X9432B

Assembly Programming Manual 19/25

7.1 Data Access

Mnemonic Operands Meaning

ld16s d, b[i] Load signed 16 bits

ld8u d, b[i] Load unsigned 8 bits

lda16 d, b[i] Add to 16-bit address

lda16 d, b[-i] Subtract from 16-bit address

ldap r11, u20 Load pc-relative address

ldap r11, -u20 Load pc-relative address

ldaw d, b[i] Add to a word address

ldaw d, b[-i] Subtract from a word address

ldaw d, b[us] Add to a word address immediate

ldaw d, b[-us] Subtract from a word address immediate

ldaw r11, cp[u16] Load address of word in constant pool

ldaw d, dp[u16] Load address of word in data pool

ldaw d, sp[u16] Load address of word on stack

ldd e, d, b[i] Load double word (xCORE-200 only)

ldd e, d, b[us] Load double word immediate (xCORE-200 only)

ldd e, d, sp[us] Load double from the stack (xCORE-200 only)

ldw et, sp[4] Load ET from the stack

ldw sed, sp[3] Load SED from the stack

ldw spc, sp[1] Load SPC from the stack

ldw ssr, sp[2] Load SSR from the stack

ldw d, b[i] Load word

ldw d, b[us] Load word immediate

ldw d, cp[u16] Load word from constant pool

ldw r11, cp[u20] Load word from constant pool

ldw d, dp[u16] Load word from data pool

ldw d, sp[u16] Load word from stack

set cp, s Set constant pool

set dp, s Set data pointer

set sp, s Set the stack pointer

st16 s, b[i] 16-bit store

st8 s, b[i] 8-bit store

std e, d, b[i] Store double word (xCORE-200 only)

std e, d, b[us] Store double word immediate (xCORE-200 only)

std y, x, sp[us] Store double word on the stack (xCORE-200 only)

stw sed, sp[3] Store SED on the stack

stw et, sp[4] Store ET on the stack

stw spc, sp[1] Store SPC on the stack

stw ssr, sp[2] Store SSR on the stack

stw s, b[i] Store word

stw s, b[us] Store word immediate

stw s, dp[u16] Store word in data pool

stw s, sp[u16] Store word on stack

X9432B

Assembly Programming Manual 20/25

7.2 Branching, Jumping and Calling

Mnemonic Operands Meaning

bau s Branch absolute unconditional

bf c, u16 Branch relative if false

bf c, -u16 Branch relative if false

bl u20 Branch and link relative

bl -u20 Branch and link relative

bla s Branch and link absolute via register

bla cp[u20] Branch and link absolute via CP

blat u16 Branch and link absolute via table

bru s Branch relative unconditional via register

bt c, u16 Branch relative if true

bt c, -u16 Branch relative if true

bu u16 Branch relative unconditional

bu -u16 Branch relative unconditional

dualentsp u16 Adjust stack, save link register and enable dual
issue (xCORE-200 only)

entsp u16 Adjust stack and save link register and enable
single issue

extdp u16 Extend data pointer

extsp u16 Extend stack pointer

retsp u16 Return

7.3 Data Manipulation

Mnemonic Operands Meaning

add d, x, y Add

add d, x, us Add immediate

and d, x, y Bitwise and

andnot d, s And not

ashr d, x, y Arithmetic shift right

ashr d, x, bitp Arithmetic shift right immediate

bitrev d, s Bit reverse

byterev d, s Byte reverse

clz d, s Count leading zeros

crc32 d, r, p Word CRC

crc32_inc d, e, x, y, bitp Word CRC with address increment (xCORE-200
only)

crc8 r, o, d, p 8-step CRC

crcn d, x, p, n Variable step CRC (xCORE-200 only)

divs d, x, y Signed division

divu d, x, y Unsigned division

eq c, x, y Equal

eq c, x, us Equal immediate

ladd e, d, x, y, v Long unsigned add with carry

ldc d, u16 Load constant

ldivu d, e, v, x, y Long unsigned divide

lextract d, x, y, u, bitp Bitfield extraction from register pair (xCORE-200
only)

(continued)

X9432B

Assembly Programming Manual 21/25

Mnemonic Operands Meaning

linsert d, e, x, y, bitp Inserts a bitfield into a pair of registers (xCORE-
200 only)

lmul d, e, x, y, v, w Long multiply

lsats d, x, y Saturate signed (xCORE-200 only)

lss c, x, y Less than signed

lsu c, x, y Less than unsigned

lsub e, d, x, y, v Long unsigned subtract

maccs d, e, x, y Mulitply and accumulate signed

maccu d, e, x, y Multiply and accumulate unsigned

mkmsk d, s Make mask

mkmsk d, bitp Make mask immediate

mul d, x, y Multiply

neg d, s Two’s complement negate

not d, s Bitwise not

or d, x, y Bitwise or

rems d, x, y Signed remainder

remu d, x, y Unsigned remainder

sext d, s Sign extend

sext d, bitp Sign extend immediate

shl d, x, y Shift left

shl d, x, bitp Shift left immediate

shr d, x, y Shift right

shr d, x, bitp Shift right immediate

sub d, x, y Subtract

sub d, x, us Subtract immediate

unzip d, e, x Unzips a pair of registers (xCORE-200 only)

xor d, x, y Bitwise exclusive or

xor4 d, e, x, y, v Bitwise exclusive or of four words (xCORE-200
only)

zext d, s Zero extend

zext s, bitp Zero extend immediate

zip d, e, x Zips together a pair of registers (xCORE-200 only)

7.4 Concurrency and Thread Synchronization

Mnemonic Operands Meaning

freet Free unsynchronized thread

get r11, id Get thread ID

getst d, res[r] Get synchronized thread

mjoin res[r] Master synchronize and join

msync res[r] Master synchronize

ssync Slave synchronize

init t[r]:cp, s Initialize thread’s CP

init t[r]:dp, s Initialize thread’s DP

init t[r]:lr, s Initialize thread’s LR

init t[r]:pc, s Initialize thread’s PC

init t[r]:sp, s Initialize thread’s SP

set t[r]:d, s Set register in thread

(continued)

X9432B

Assembly Programming Manual 22/25

Mnemonic Operands Meaning

start t[r] Start thread

tsetmr d, s Set register in master thread

7.5 Communication

Mnemonic Operands Meaning

chkct res[r], s Test for control token

chkct res[r], us Test for control token immediate

getn d, res[r] Get network

in d, res[r] Input data

inct d, res[r] Input control token

int d, res[r] Input token of data

out res[r], s Output data

outct res[r], s Output control token

outct res[r], us Output control token immediate

outt res[r], s Output token of data

setn res[r], s Set network

testlcl d, res[r] Test local

testct d, res[r] Test for control token

testwct d, res[r] Test for position of control token

7.6 Resource Operations

Mnemonic Operands Meaning

clrpt res[r] Clear port time

elate s Throw exception if too late (xCORE-200 only)

endin d, res[r] End a current input

freer res[r] Free a resource

getd d, res[r] Get resource data

getr d, us Allocate resource

gettime d Get the reference time (xCORE-200 only)

getts d, res[r] Get port timestamp

in d, res[r] Input data

inpw d, res[r], bitp Input a part word

inshr d, res[r] Input and shift right

out res[r], s Output data

outpw res[r], s, bitp Output a part word

outpw res[r], s, w Output a part word immediate (xCORE-200 only)

outshr res[r], s Output data and shift

peek d, res[r] Peek at port data

setc res[r], s Set resource control bits

setc res[r], u16 Set resource control bits immediate

setclk res[r], s Set clock for a resource

setd res[r], s Set data

setev res[r], r11 Set environment vector

setpsc res[r], s Set the port shift count

(continued)

X9432B

Assembly Programming Manual 23/25

Mnemonic Operands Meaning

setpt res[r], s Set the port time

setrdy res[r], s Set ready input for a port

settw res[r], s Set transfer width for a port

setv res[r], r11 Set event vector

syncr res[r] Synchronize a resource

7.7 Event Handling

Mnemonic Operands Meaning

clre Clear all events

clrsr u16 Clear bits in SR

edu res[r] Disable events

eef d, res[r] Enable events if false

eet d, res[r] Enable events if true

eeu res[r] Enable events

getsr r11, u16 Get bits from SR

setsr u16 Set bits in SR

waitef c Wait for event if false

waitet c Wait for event if true

waiteu Wait for event

7.8 Interrupts, Exceptions and Kernel Calls

Mnemonic Operands Meaning

clrsr u16 Clear bits in SR

ecallf c Raise exception if false

ecallt c Raise exception if true

get r11, ed Get ED into r11

get r11, et Get ET into r11

get r11, kep Get the kernel entry point

get r11, ksp Get the kernel stack pointer

getsr r11, u16 Get bits from SR

kcall s Kernel call

kcall u16 Kernel call immediate

kentsp u16 Switch to kernel stack

krestsp u16 Restore stack pointer from kernel stack

kret Kernel return

set kep, r11 Set the kernel entry point

setsr u16 Set bits in SR

7.9 Debugging

Mnemonic Operands Meaning

dcall Cause a debug interrupt

(continued)

X9432B

Assembly Programming Manual 24/25

Mnemonic Operands Meaning

dentsp Save and modify stack pointer for debug

dgetreg s Debug read of another thread’s register

drestsp Restore non debug stack pointer

dret Return from debug interrupt

get d, ps[r] Get processor state

set ps[r], s Set processor state

7.10 Pseudo Instructions

In the default syntax mode, the assembler supports a small set of pseudo instruc-
tions. These instructions do not exist on the processor, but are translated by the
assembler into xCORE instructions.

Mnemonic Operands Definition

mov d, s add d, s, 0
nop r0, r0, 0

X9432B

Assembly Programming Manual 25/25

8 Assembly Program

An assembly program consists of a sequence of statements.

program ::= 〈statement〉∗

statement ::= label-listopt dir-or-instopt separator

label-list ::= label

| label-list label

dir-or-inst ::= directive

| instruction

| instruction-bundle

directive ::= align-directive

| ascii-directive

| value-directive

| file-directive

| loc-directive

| weak-directive

| vis-directive

| text-directive

| set-directive

| cc-directive

| scheduling-directive

| syntax-directive

| assert-directive

| xc-directive

| xta-directive

| space-directive

| type-directive

| size-directive

| jmptable-directive

| globalresource-directive

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

X9432B

	Lexical Conventions
	Sections and Relocations
	Symbols
	Labels
	Expressions
	Directives
	Instructions
	Assembly Program

