
XMOS AVB-DC Design Guide

Document Number: XM005270A

Publication Date: 2014/3/28

XMOS © 2014, All Rights Reserved.

XMOS AVB-DC Design Guide 2/80

Table of Contents

1 Overview 3
1.1 Summary . 3

1.1.1 XMOS AVB-DC Key Features . 3

2 XMOS AVB-DC specification 5

3 Ethernet AVB standards 6
3.1 802.1AS . 6
3.2 802.1Qav . 6
3.3 802.1Qat . 7
3.4 IEC 61883-6 . 7
3.5 IEEE 1722 . 7
3.6 IEEE 1722.1 . 7

4 Hardware development platforms 8

5 System description 9
5.1 High level system architecture . 9
5.2 Ethernet MAC component . 10

5.2.1 1722 packet routing . 11
5.3 Precision Timing Protocol component . 11
5.4 Audio components . 12

5.4.1 AVB streams, channels, talkers and listeners 12
5.4.2 Internal routing, media FIFOs . 13
5.4.3 Talker units . 14
5.4.4 Listener units . 14
5.4.5 Media FIFOs to XC channels . 15
5.4.6 Audio hardware interfaces . 15

5.5 Media clocks . 15
5.5.1 Driving an external clock generator . 16

5.6 Device Discovery, Connection Management and Control 17
5.6.1 The control task . 17
5.6.2 1722.1 . 17

5.7 Resource usage . 18
5.7.1 Available chip resources . 18
5.7.2 Ethernet component . 18
5.7.3 PTP component . 18
5.7.4 Media clock server . 19
5.7.5 Audio component(s) . 19
5.7.6 Configuration/control . 20

6 Programming guide 21
6.1 Getting started . 21

6.1.1 Obtaining the latest firmware . 21
6.1.2 Installing xTIMEcomposer Tools Suite . 21
6.1.3 Importing and building the firmware . 21
6.1.4 Installing the application onto flash memory 22
6.1.5 Using the Command Line Tools . 22
6.1.6 Using Command Line Tools . 22

XM005270A

XMOS AVB-DC Design Guide 3/80

6.2 Source code structure . 23
6.2.1 Directory Structure . 23
6.2.2 Key Files . 24

6.3 Entity Firmware Upgrade (EFU) . 24
6.3.1 Introduction . 24
6.3.2 SPI Flash IC Requirements and Configuration 25
6.3.3 Installing the factory image to the device . 25
6.3.4 Using the avdecc-lib CLI Controller to upgrade firmware 26

7 API Reference 27
7.1 Configuration defines . 27

7.1.1 Demo and hardware specific . 27
7.1.2 Core AVB parameters . 27
7.1.3 Ethernet . 28
7.1.4 Audio subsystem . 28
7.1.5 1722.1 . 29

7.2 Component tasks and functions . 30
7.2.1 Core components . 31
7.2.2 Audio components . 43

7.3 AVB API . 47
7.3.1 General control functions . 47
7.3.2 Multicast Address Allocation commands . 50
7.3.3 MAAP application hooks . 51
7.3.4 AVB Control API . 51
7.3.5 1722.1 Controller commands . 67
7.3.6 1722.1 Discovery commands . 69
7.3.7 1722.1 application hooks . 70

7.4 1722.1 descriptors . 74
7.4.1 Editing descriptors . 74
7.4.2 Adding and removing descriptors . 76

7.5 PTP client API . 76
7.5.1 Time data structures . 76
7.5.2 Getting PTP time information . 76
7.5.3 Converting timestamps . 79

XM005270A

1 Overview

IN THIS CHAPTER

· Summary

1.1 Summary

The XMOS Audio Video Bridging Daisy Chain endpoint (AVB-DC) is a two-port
Ethernet MAC relay implementation that provides time-synchronized, low latency
streaming services through IEEE 802 networks.

1.1.1 XMOS AVB-DC Key Features

· 2 x 100 Mbit/s full duplex Ethernet interface via MII

XM005270A

XMOS AVB-DC Design Guide 5/80

· Support for 1722.1 discovery, enumeration, command and control: ADP, AECP
(AEM) and ACMP

· Simultaneous 1722 Talker and Listener support for sourcing and sinking audio

· 1722 MAAP support for Talker stream MAC address allocation

· 802.1Q Stream Reservation Protocols for QoS including MSRP and MVRP

· 802.1AS Precision Time Protocol server for synchronization

· I2S audio interface for connection to external codecs and DSPs

· Media clock recovery and interface to a PLL clock source for high quality audio
clock reproduction

XM005270A

2 XMOS AVB-DC specification

Supported Standards

Ethernet IEEE 802.3 (via MII)

AVB QoS IEEE 802.1Qav, 802.1Qat

Precision Timing Protocol IEEE 802.1AS-2011

Audio Stream Encapsulation IEEE 1722-2011

Audio Format IEC 61883-6 AM824

Enumeration and control IEEE 1722.1-2013

Supported Devices

XMOS Devices XS1-L16A-128-QF124-C10

Requirements

Development Tools xTIMEComposer suite v13.0.2 or
later

Ethernet 2 x MII compatible 100Mbit PHY

Audio Audio input/output device
(e.g. Audio CODEC)
Cirrus CS2100-CP PLL/Frequency
synthesizer to generate CODEC
master clock

Boot/Storage Compatible SPI Flash Device

Licensing and Support

Reference code provided without charge under license from XMOS. Support
via http://www.xmos.com/secure/tickets. Reference code is maintained
by XMOS Limited.

XM005270A

http://www.xmos.com/secure/tickets

3 Ethernet AVB standards

IN THIS CHAPTER

· 802.1AS

· 802.1Qav

· 802.1Qat

· IEC 61883-6

· IEEE 1722

· IEEE 1722.1

Ethernet AVB consists of a collection of different standards that together allow
audio and video to be streamed over Ethernet. The standards provide synchronized,
uninterrupted streaming with multiple talkers and listeners on a switched network
infrastructure.

3.1 802.1AS

802.1AS defines a Precision Timing Protocol based on the IEEE 1558v2 protocol.
It allows every device connected to the network to share a common global clock.
The protocol allows devices to have a synchronized view of this clock to within
microseconds of each other, aiding media stream clock recovery to phase align
audio clocks.

The IEEE 802.1AS-2011 standard document1 is available to download free of charge
via the IEEE Get Program.

3.2 802.1Qav

802.1Qav defines a standard for buffering and forwarding of traffic through the
network using particular flow control algorithms. It gives predictable latency
control on media streams flowing through the network.

The XMOS AVB solution implements the requirements for endpoints defined by
802.1Qav. This is done by traffic flow control in the transmit arbiter of the Ethernet
MAC component.

The 802.1Qav specification is available as a section in the IEEE 802.1Q-2011
standard document2 and is available to download free of charge via the IEEE Get
Program.

1http://standards.ieee.org/getieee802/download/802.1AS-2011.pdf
2http://standards.ieee.org/getieee802/download/802.1Q-2011.pdf

XM005270A

http://standards.ieee.org/getieee802/download/802.1AS-2011.pdf
http://standards.ieee.org/getieee802/download/802.1Q-2011.pdf

XMOS AVB-DC Design Guide 8/80

3.3 802.1Qat

802.1Qat defines a stream reservation protocol that provides end-to-end reserva-
tion of bandwidth across an AVB network.

The 802.1Qat specification is available as a section in the IEEE 802.1Q-2011
standard document3.

3.4 IEC 61883-6

IEC 61883-6 defines an audio data format that is contained in IEEE 1722 streams.
The XMOS AVB solution uses IEC 61883-6 to convey audio sample streams.

The IEC 61883-6:2005 standard document4 is available for purchase from the IEC
website.

3.5 IEEE 1722

IEEE 1722 defines an encapsulation protocol to transport audio streams over
Ethernet. It is complementary to the AVB standards and in particular allows
timestamping of a stream based on the 802.1AS global clock.

The XMOS AVB solution handles both transmission and receipt of audio streams
using IEEE 1722. In addition it can use the 802.1AS timestamps to accurately
recover the audio master clock from an input stream.

The IEEE 1722-2011 standard document5 is available for purchase from the IEEE
website.

3.6 IEEE 1722.1

IEEE 1722.1 is a system control protocol, used for device discovery, connection
management and enumeration and control of parameters exposed by the AVB
endpoints.

The IEEE 1722.1-2013 standard document6 is available for purchase from the IEEE
website.

3http://standards.ieee.org/getieee802/download/802.1Q-2011.pdf
4http://webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/46793
5http://standards.ieee.org/findstds/standard/1722-2011.html
6http://standards.ieee.org/findstds/standard/1722.1-2013.html

XM005270A

http://standards.ieee.org/getieee802/download/802.1Q-2011.pdf
http://webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/46793
http://standards.ieee.org/findstds/standard/1722-2011.html
http://standards.ieee.org/findstds/standard/1722.1-2013.html

4 Hardware development platforms

For initial evaluation and development of AVB-DC applications the following XMOS
development platform is recommended:

· XK-SK-AVB-DC sliceKIT development platform7

This development kit consists of:

· 2x XP-SKC-L2 core board

· 2x XA-SK-AUDIO-PLL

· 2x XA-SK-E100

· 2x XA-XTAG2

· 2x XA-SK-XTAG2

· 2x PSU (12V 2.5A)

· 2x USB extension cable 1m

· 2x Ethernet cable 1m

For developing an application specific board for AVB please refer to the hardware
guides for the above boards which contain example schematics, BOMs and design
guidelines.

7http://www.xmos.com/products/reference-designs/avb

XM005270A

http://www.xmos.com/products/reference-designs/avb

5 System description

IN THIS CHAPTER

· High level system architecture

· Ethernet MAC component

· Precision Timing Protocol component

· Audio components

· Media clocks

· Device Discovery, Connection Management and Control

· Resource usage

The following sections describe the system architecture of the XMOS AVB software
platform.

This software design guide assumes the reader is familiar with the XC language
and XMOS XS1 devices.

5.1 High level system architecture

An endpoint consists of five main interacting components:

· The Ethernet MAC

· The Precision Timing Protocol (PTP) engine

· Audio streaming components

· The media clock server

· Configuration and other application components

The following diagram shows the overall structure of an XMOS AVB endpoint.

XM005270A

XMOS AVB-DC Design Guide 11/80

5.2 Ethernet MAC component

The MAC component provides two-port Ethernet connectivity to the AVB-DC solu-
tion. To use the component, two Ethernet PHYs must be attached to the xCORE
ports via MII.

The XMOS Ethernet MAC component supports two features that are necessary to
implement AVB standards with precise timing and quality constraints:

· Timestamping - allows receipt and transmission of Ethernet frames to be times-
tamped with respect to a clock (for example a 100 MHz reference clock can
provide a resolution of 10 ns).

· Time sensitive traffic shaping - allows traffic bandwidth to be reserved and
shaped on egress to provide a steady and guaranteed flow of outgoing me-
dia stream packets. The implementation provides flow control to satisfy the
requirements of an AVB endpoint as specified in the IEEE 802.1Qav standard.

The two-port 100 Mbps component consists of seven logcial cores, each running
at 50 MIPS or more, that must be run on the same tile. These logcial cores handle
both the receipt and transmission of Ethernet frames. The MAC component can be
linked via channels to other components/logcial cores in the system. Each link can
set a filter to control which packets are conveyed to it via that channel.

XM005270A

XMOS AVB-DC Design Guide 12/80

All configuration of the channel is managed by a client C/XC API, which configures
and registers the filters. Details of the API used to configure MAC channels can be
found in the Ethernet MAC component documentation8. This API is used for direct
(layer-2) access to the MAC. For AVB applications it is more likely that interaction
with the Ethernet stack will be via the main AVB API (see Section §7.3).

5.2.1 1722 packet routing

The AVB enabled Ethernet MAC also includes a IEEE 1722 packet router that routes
audio packets to the listener components in the system. It controls the routing by
stream ID. This requires no configuration and is controlled implicitly via the AVB
API described in Section §7.3.

5.3 Precision Timing Protocol component

The Precision Timing Protocol (PTP) component enables a system with a notion of
global time on a network. The component implements the IEEE 802.1AS protocol.
It allows synchronization of the presentation and playback rate of media streams
across a network.

to MAC
to client threads

PTP server

8https://www.xmos.com/resources/xsoftip?component=module_ethernet

XM005270A

https://www.xmos.com/resources/xsoftip?component=module_ethernet

XMOS AVB-DC Design Guide 13/80

The timing component consists of two logcial cores. It connects to the Ethernet MAC
component and provides channel ends for clients to query for timing information.
The component interprets PTP packets from the MAC and maintains a notion of
global time. The maintenance of global time requires no application interaction
with the component.

The PTP component can be configured at runtime to be a potential PTP grandmaster
or a PTP slave only. If the component is configured as a grandmaster, it supplies a
clock source to the network. If the network has several grandmasters, the potential
grandmasters negotiate between themselves to select a single grandmaster. Once
a single grandmaster is selected, all units on the network synchronize a global time
from this source and the other grandmasters stop providing timing information.
Depending on the intermediate network, this synchronization can be to sub-
microsecond level resolution.

Client tasks connect to the timing component via channels. The relationship
between the local reference counter and global time is maintained across this
channel, allowing a client to timestamp with a local timer very accurately and then
convert it to global time, giving highly accurate global timestamps.

Client tasks can communicate with the server using the API described in Section
§7.5.

· The PTP system in the endpoint is self-configuring, it runs automatically and
gives each endpoint an accurate notion of a global clock.

· The global clock is not the same as the audio word clock, although it can be
used to derive it. An audio stream may be at a rate that is independent of the
PTP clock but will contain timestamps that use the global PTP clock domain as a
reference domain.

5.4 Audio components

5.4.1 AVB streams, channels, talkers and listeners

Audio is transported in streams of data, where each stream may have multiple
channels. Endpoints producing streams are called Talkers and those receiving
them are called Listeners. Each stream on the network has a unique 64-bit stream
ID.

A single endpoint can be a Talker, a Listener or both. In general each endpoint will
have a number of sinks with the capacity to receive a number of incoming streams
and a number of sources with the capacity to transmit a number of streams.

Routing is done using layer 2 Ethernet addresses. Each stream is sent from a
particular source MAC address to a particular destination MAC address. The
destination MAC address is a multicast address so that several Listeners may
receive it. In addition, AVB switches can reserve an end-to-end path with guaranteed
bandwidth for a stream. This is done by the Talker endpoint advertising the stream
to the switches and the Listener(s) registering to receive it. If sufficient bandwidth
is not available, this registration will fail.

XM005270A

XMOS AVB-DC Design Guide 14/80

Streams carry their own presentation time, the time that samples are due to be
output, allowing multiple Listeners that receive the same stream to output in sync.

· Streams are encoded using the 1722 AVB transport protocol.

· All channels in a stream must be synchronized to the same sample clock.

· All the channels in a stream must come from the same Talker.

· Routing of audio streams uses Ethernet layer 2 routing based on a multicast
destination MAC address

· Routing of channels is done at the stream level. All channels within a stream
must be routed to the same place. However, a stream can be multicast to several
Listeners, each of which picks out different channels.

· A single end point can be both a Talker and Listener.

· Information such as stream ID and destination MAC address of a Talker stream
should be communicated to Listeners via 1722.1. (see Section §5.6).

5.4.2 Internal routing, media FIFOs

1722 Stream

1722 Stream

audio outmedia output FIFOs

media input FIFOs audio in

As described in the previous section, an IEEE 1722 audio stream may consist of
many channels. These channels need to be routed to particular audio I/Os on
the endpoint. To achieve maximum flexibility the XMOS design uses intermediate
media FIFOs to route audio. Each FIFO contains a single channel of audio.

The above figure shows the breakdown of 1722 streams into local FIFOs. The
figure shows four points where transitions to and from media FIFOs occur. For
audio being received by an endpoint:

1. When a 1722 stream is received, its channels are mapped to output media
FIFOs. This mapping can be configured dynamically so that it can be changed
at runtime by the configuration component.

2. The digital hardware interface maps media FIFOs to audio outputs. This mapping
is fixed and is configured statically in the software.

For audio being transmitted by an endpoint:

XM005270A

XMOS AVB-DC Design Guide 15/80

1. The digital hardware interface maps digital audio inputs to local media FIFOs.
This mapping is fixed and cannot be changed at runtime.

2. Several input FIFOs can be combined into a 1722 stream. This mapping is
dynamic.

The configuration of the mappings is handled through the API describe in §7.3.

Media FIFOs use shared memory to move data between tasks, thus the filling and
emptying of the FIFO must be on the same tile.

5.4.3 Talker units

to MAC input FIFOs

Talker

A talker unit consists of one logcial core which creates IEEE 1722 packets and passes
the audio samples onto the MAC. Audio samples are passed to this component
via input media FIFOs. Samples are pushed into this FIFO from a different task
implementing the audio hardware interface. The Talker task removes the samples
and combines them into IEEE 1722 Ethernet packets to be transmitted via the MAC
component.

When the packets are created the timestamps are converted to the time domain of
the global clock provided by the PTP component, and a fixed offset is added to the
timestamps to provide the presentation time of the samples (i.e the time at which
the sample should be played by a Listener).

A system may have several Talker units. However, since samples are passed via a
shared memory interface a talker can only combine input FIFOs that are created on
the same tile as the talker. The instantiating of talker units is performed via the
API described in Section §7.2. Once the talker unit starts, it registers with the main
control task and is controlled via the main AVB API described in Section §7.3.

5.4.4 Listener units

from MAC output FIFOs

Listener

XM005270A

XMOS AVB-DC Design Guide 16/80

A Listener unit takes IEEE 1722 packets from the MAC and converts them into a
sample stream to be fed into a media FIFO. Each audio Listener component can
listen to several IEEE 1722 streams.

A system may have several Listener units. The instantiating of Listener units is
performed via the API described in Section §7.2. Once the Listener unit starts,
it registers with the main control task and is controlled via the main AVB API
described in Section §7.3.

5.4.5 Media FIFOs to XC channels

Sometimes it is useful to convert the audio stream in a media FIFO into a sample
stream over an XC channel. This may be needed to move samples off tile or if
the audio interface task requires samples over a channel. Several functions are
provided to do this and are described in Section §7.2.

5.4.6 Audio hardware interfaces

The audio hardware interface components drive external audio hardware, pull
audio out of media output FIFOs and push into media input FIFOs.

Different interfaces interact in different ways, some directly push and pull from
the media FIFOs, whereas some for performance reasons require samples to be
provided over an XC channel.

The following diagram shows one potential layout of the I2S component which
pushes its input directly to media input FIFOs but takes output FIFOs from an XC
channel. The diagram shows the supporting task that takes samples out of the
media output FIFOs and serializes them over an XC channel:

output FIFOs

input FIFOs

I2S

output_fifo_to_xc_channel

5.5 Media clocks

A media clock controls the rate at which information is passed to an external media
playing device. For example, an audio word clock that governs the rate at which
samples should be passed to an audio CODEC. An XMOS AVB endpoint can keep
track of several media clocks.

A media clock can be synchronized to one of two sources:

XM005270A

XMOS AVB-DC Design Guide 17/80

· An incoming clock signal on a port.

· The word clock of a remote endpoint, derived from an incoming IEEE 1722 audio
stream.

A hardware interface can be tied to a particular media clock, allowing the media
output from the XMOS device to be synchronized with other devices on the network.

All media clocks are maintained by the media clock server component. This
component maintains the current state of all the media clocks in the system. It
then periodically updates other components with clock change information to keep
the system synchronized. The set of media clocks is determined by an array passed
to the server at startup.

The media clock server component also receives information from the audio listener
component to track timing information of incoming IEEE 1722 streams. It then
sends control information back to ensure the listening component honors the
presentation time of the incoming stream.

Multiple media clocks require multiple hardware PLLs. AVB-DC hardware supports
a single media clock.

5.5.1 Driving an external clock generator

A high quality, low jitter master clock is often required to drive an audio CODEC and
must be synchronized with an AVB media clock. The XS1 chip cannot provide this
clock directly but can provide a lower frequency source for a frequency synthesizer
chip or external PLL chip. The frequency synthesizer chip must be able to generate
a high frequency clock based on a lower frequency signal, such as the Cirrus Logic
CS2100-CP. The recommended configuration is as in the block diagram below:

XS1
Device

CODECbclk, lrclk

rate, ctl

mclk

FREQ
SYNTH

The XS1 device provides control to the frequency synthesizer and the frequency
synthesizer provides the audio master clock to the CODEC and XS1 device. The
sample bit and word clocks are then provided to the CODEC by the XS1 device.

XM005270A

XMOS AVB-DC Design Guide 18/80

5.6 Device Discovery, Connection Management and Control

5.6.1 The control task

In addition to components described in previous sections, an AVB endpoint ap-
plication requires a task to control and configure the system. This control task
varies across applications but the protocol to provide device discovery, connection
management and control services has been standardised by the IEEE in 1722.1.

5.6.2 1722.1

The 1722.1 standard defines four independent steps that can be used to connect
end stations that use 1722 streams to transport media across a LAN. The steps
are:

1. Discovery

2. Enumeration

3. Connection Management

4. Control

These steps can be used together to form a system of end stations that interoperate
with each other in a standards compliant way. The application that will use these
individual steps is called a Controller and is the third member in the Talker, Listener
and Controller device relationship.

A Controller may exist within a Talker, a Listener, or exist remotely within the
network in a separate endpoint or general purpose computer.

The Controller can use the individual steps to find, connect and control entities on
the network but it may choose to not use all of the steps if the Controller already
knows some of the information (e.g. hard coded values assigned by user/hardware
switch or values from previous session establishment) that can be gained in using
the steps. The only required step is connection management because this is
the step that establishes the bandwidth usage and reservations across the AVB
network.

The four steps are broken down as follows:

· Discovery is the process of finding AVB endpoints on the LAN that have services
that are useful to the other AVB endpoints on the network. The discovery process
also covers the termination of the publication of those services on the network.

· Enumeration is the process of the collection of information from the AVB end-
point that could help an 1722.1 Controller to use the capabilities of the AVB
endpoint. This information can be used for connection management.

· Connection management is the process of connecting or disconnecting one or
more streams between two or more AVB endpoint.

XM005270A

XMOS AVB-DC Design Guide 19/80

· Control is the process of adjusting a parameter on the endpoint from another
endpoint. There are a number of standard types of controls used in media
devices like volume control, mute control and so on. A framework of basic
commands allows the control process to be extended by the endpoint.

The XMOS endpoint provides full support for Talker and Listener 1722.1 services.
It is expected that Controller software will be available on the network for handling
connection management and control.

To assist in this task a unified control API is presented in Section §7.3.

5.7 Resource usage

5.7.1 Available chip resources

Each XMOS device has a set of resources detailed in the following table. The
resources are split amongst different tiles on the device which may affect how
resources can be used:

Device Logical
Cores

MIPS/CoreMemory
(KB)

Ports

XS1-L16A-128-QF124-C10 16 1000 128 32 x 1bit
12 x 4bit
7 x 8bit
3 x 16bit

Note that some ports overlap on the device so, for example, using a 16 bit port
may make some 1 bit ports unavailable. See the device datasheets for details.

The following sections detail the resource required for each component. Please
note that the memory requirements for code size should be taken as a rough
guide since exact memory usage depends on the integration of components (which
components are on which tile etc.) in the final build of the application.

5.7.2 Ethernet component

Each endpoint requires an Ethernet MAC layer.

Component Logical
Cores

MIPS/Core Memory
(KB)

Ports

Dual-port
Ethernet
with SMI

7 50 15 code, 1.5
per buffer

10 x 1bit, 4
x 4bit

5.7.3 PTP component

Every AVB endpoint must include a PTP component.

XM005270A

XMOS AVB-DC Design Guide 20/80

Component Logical Cores MIPS/Core Memory (KB) Ports

PTP 1 50 7 None

5.7.4 Media clock server

Every AVB endpoint must include a media clock server.

Component Logical Cores MIPS/Core Memory (KB) Ports

Media Clock Server 1 50 1 None

If the endpoint drives an external PLL, a PLL driver component is required.

Component Logical Cores MIPS/Core Memory (KB) Ports

PLL driver 0 - 1 50 0.5 1 x 1bit + ports
to configure PLL

PTP, Media Clock Server and PLL driver components may be combined into a single
logical core running at 100 MIPS if the number of channels is constrained to 2.

5.7.5 Audio component(s)

Each endpoint may have several listener and talker components. Each listen-
er/talker component is capable of handling four IEEE 1722 streams and up to 12
channels of audio.

Component Logical Cores MIPS/Core Memory (KB) Ports

1722 listener unit 1 50 5 None

1722 talker unit 1 50 5 None

The Talker and Listener components may be combined into a single logical core
running at 100 MIPS if the number of streams is 1 and the number of channels is
<= 4.

The amount of resource required for audio processing depends on the interface
and the number of audio channels required. The overheads for the interface are:

Component Logical Cores MIPS/Core Memory(KB) Ports

I2S 1 50 0.5 3 x 1bit
1 x 1bit per stereo chan-
nel

The following table shows that number of channels an interface can handle per
logical core:

XM005270A

XMOS AVB-DC Design Guide 21/80

Component Sample Rate (kHz) Channels

I2S 44.1/48 8 in and 8 out

I2S 88.2/96 4 in and 4 out

Note that several instances of the audio interface component can be made e.g.
you could use 2 logical cores to handle 16 channels of I2S. The following table
shows how much buffering memory is required depending on the number of audio
channels.

Sample Rate (kHz) Audio Channels Memory (KB)

44.1 n in/m out 0.5 x (n+m)

48 n in/m out 0.5 x (n+m)

88.2 n in/m out 1 x (n+m)

96 n in/m out 1 x (n+m)

5.7.6 Configuration/control

In addition to the other components there are application dependant tasks that
control other I/O. For general configuration and slow I/O a minimum of 1 logical
core (50 MIPS) should be reserved.

XM005270A

6 Programming guide

IN THIS CHAPTER

· Getting started

· Source code structure

· Entity Firmware Upgrade (EFU)

6.1 Getting started

6.1.1 Obtaining the latest firmware

1. Log into xmos.com and access My XMOS · Reference Designs

2. Request access to the XMOS AVB-DC Software Release by clicking the Request Access link under
AVB DAISY-CHAIN KIT. An email will be sent to your registered email address when access is
granted.

3. A Download link will appear where the Request Access link previously appeared. Click and
download the firmware zip.

6.1.2 Installing xTIMEcomposer Tools Suite

The AVB-DC software requires xTIMEcomposer version 13.0.2 or greater. It can be downloaded at
the following URL

· https://www.xmos.com/en/support/downloads/xtimecomposer

6.1.3 Importing and building the firmware

To import and build the firmware, open xTIMEcomposer Studio and follow these steps:

1. Choose File · Import.

2. Choose General · Existing Projects into Workspace and click Next.

3. Click Browse next to ‘Select archive file‘ and select the firmware .zip file downloaded in
section 1.

4. Make sure that all projects are ticked in the Projects list.

5. Click Finish.

6. Select the app_daisy_chain project in the Project Explorer and click the Build icon in the main
toolbar.

XM005270A

https://www.xmos.com/en/support/downloads/xtimecomposer

XMOS AVB-DC Design Guide 23/80

6.1.4 Installing the application onto flash memory

1. Connect the xTAG-2 debug adapter (XA-SK-XTAG2) to the first sliceKIT core board.

2. Connect the xTAG-2 to the debug adapter.

3. Plug the xTAG-2 into your development system via USB.

4. Plug in the 12V power adapter and connect it to the sliceKIT core board.

5. In xTIMEcomposer, right-click on the binary within the app_daisy_chain/bin folder of the
project.

6. Choose Flash As · Flash Configurations.

7. Double click xCORE Application in the left panel.

8. Choose hardware in Device options and select the relevant xTAG-2 adapter.

9. Click on Apply if configuration has changed.

10. Click on Flash. Once completed, disconnect the power from the sliceKIT core board.

11. Repeat steps 1 through 8 for the second sliceKIT.

6.1.5 Using the Command Line Tools

1. Open the XMOS command line tools (Command Prompt) and execute the following command:

xrun --xscope <binary >.xe

2. If multiple xTAG-2s are connected, obtain the adapter ID integer by executing:

xrun -l

3. Execute the xrun command with the adapter ID flag

xrun --id <id > --xscope <binary >.xe

6.1.5.1 Installing the application onto flash via Command Line

1. Connect the xTAG-2 debug adapter to the relevant development board, then plug the xTAG-2
into your PC or Mac.

6.1.6 Using Command Line Tools

1. Open the XMOS command line tools (Command Prompt) and execute the following command:

xflash <binary >.xe

XM005270A

XMOS AVB-DC Design Guide 24/80

2. If multiple xTAG-2s are connected, obtain the adapter ID integer by executing:

xrun -l

3. Execute the xflash command with the adapter ID flag

xflash --id <id> <binary >.xe

6.2 Source code structure

6.2.1 Directory Structure

The source code is split into several top-level directories which are presented as separate projects
in xTIMEcomposer Studio. These are split into modules and applications.

Applications build into a single executable using the source code from the modules. The modules
used by an application are specified using the USED_MODULES variable in the application Makefile.
For more details on this module structure please see the XMOS build system document Using
XMOS Makefiles (X6348).

The AVB-DC source package contains a simple demonstration application app_daisy_chain.

Core AVB modules are presented in the sc_avb repository. Some support modules originate in
other repositories:

Directory Description Repository

module_ethernet Ethernet MAC sc_ethernet

module_ethernet_board_support Hardware specific board
configuration for Ethernet MAC

sc_ethernet

module_ethernet_smi SMI interface for reading/writing
registers to the Ethernet PHY

sc_ethernet

module_otp_board_info Interface for reading serial number
and MAC addresses from OTP
memory

sc_otp

module_i2c_simple Two wire configuration protocol
code.

sc_i2c

module_random Random number generator sc_util

module_logging Debug print library sc_util

module_slicekit_support sliceKIT core board support sc_slicekit_support

The following modules in sc_avb contain the core AVB code and are needed by every application:

XM005270A

XMOS AVB-DC Design Guide 25/80

Directory Description

module_avb Main AVB code for control and configuration.

module_avb_1722 IEEE 1722 transport (listener and talker functionality).

module_avb_1722_1 IEEE P1722.1 AVB control protocol.

module_avb_1722_maap IEEE 1722 MAAP - Multicast address allocation code.

module_avb_audio Code for media FIFOs and audio hardware interfaces (I2S).

module_avb_flash Flash access for firmware upgrade

module_avb_media_clock Media clock server code for clock recovery.

module_avb_srp 802.1Qat stream reservation (SRP/MRP/MVRP) code.

module_avb_util General utility functions used by all modules.

module_gptp 802.1AS Precision Time Protocol code.

6.2.2 Key Files

File Description

avb_api.h Header file containing declarations for the core AVB control API.

avb_1722_1_app_hooks.h Header file containing declarations for hooks into 1722.1

ethernet_rx_client.h Header file for clients that require direct access to the ethernet
MAC (RX).

ethernet_tx_client.h Header file for clients that require direct access to the ethernet
MAC (TX).

gptp.h Header file for access to the PTP server.

audio_i2s.h Header file containing the I2S audio component.

6.3 Entity Firmware Upgrade (EFU)

6.3.1 Introduction

The EFU loader is a flash device firmware upgrade mechanism for AVB endpoints.

The firmware upgrade implementation for XMOS AVB devices uses a subset of the Memory Object
Upload mechanism described in Annex D of the 1722.1-2013 standard:

http://standards.ieee.org/findstds/standard/1722.1-2013.html

Supported functionality:

· Upload of new firmware to AVB device

· Reboot of device on firmware upgrade via the 1722.1 REBOOT command

xTIMEcomposer v13.0.2 or later is required to generate flash images compatible with the AVB-DC
flash interface.

XM005270A

http://standards.ieee.org/findstds/standard/1722.1-2013.html

XMOS AVB-DC Design Guide 26/80

6.3.2 SPI Flash IC Requirements and Configuration

The current version of the AVB-DC EFU functionality supports boot flashes with the following
properties only:

· A page size of 256 bytes

· Total flash size greater than or equal to the size required to store the boot loader, factory
image and maximum sized upgrade image.

Other flash specific configuration parameters may be changed via avb_flash_conf.h:

FLASH_SECTOR_SIZE

FLASH_SPI_CMD_ERASE

FLASH_NUM_PAGES

FLASH_MAX_UPGRADE_IMAGE_SIZE

6.3.3 Installing the factory image to the device

Once the AVB-DC application has been built:

1. Open the XMOS command line tools (Command Prompt) and execute the following command:

xflash --boot -partition -size 262144 <binary >.xe

2. If multiple xTAG-2s are connected, obtain the adapter ID integer by executing:

xrun -l

3. Execute the xflash command with the adapter ID flag

xflash --id <id> --boot -partition -size 262144 <binary >.xe

Ignore the following warning which is informative only:

Warning: F03098 Factory image and boot loader cannot be write-protected on flash device on node "0"

This programs the factory default firmware image into the flash device.

To use the firmware upgrade mechanism you need to build a firmware upgrade image:

1. Edit the aem_entity_strings.h.in file and increment the AVB_1722_1_FIRMWARE_VERSION_STRING
and AVB_1722_1_ADP_MODEL_ID in avb_conf.h.

2. Rebuild the application

To generate the firmware upgrade image run the following command:

XM005270A

XMOS AVB-DC Design Guide 27/80

xflash --factory -version 13 --upgrade 1 <binary >.xe -o upgrade_image.bin

You should now have the firmware upgrade file upgrade_image.bin which can be transferred to
the AVB end station.

6.3.4 Using the avdecc-lib CLI Controller to upgrade firmware

..note ::
See the XMOS document AVB System Requirements Guide for installation details of the
avdecccmdline tool.

1. To program the new firmware, first run avdecccmdline and select the interface number that
represents the Ethernet interface that the AVB network is connected to:

Enter the interface number (1-7): 1

2. Use the list command to view all AVB end stations on the network:

$ list

End Station | Name | Entity ID | Firmware Version | MAC

C 0 | AVB 4in/4out | 0x002297fffe005279 | 1.0.0 | 002297005279

3. Select the end station that you wish to upgrade using the select command with the integer ID
shown in the End Station column of the list output and two additional zeroes indicating the
Entity and Configuration indices:

$ select 0 0 0

4. Begin the firmware upgrade process using the upgrade command with the full path of the
upgrade_image.bin file:

$ upgrade /path/to/upgrade_image.bin
Erasing image ...
Successfully erased.
Uploading image ...
##
Successfully upgraded image.
Do you want to reboot the device? [y/n]: y

5. The device should now reboot and re-enumerate with an upgraded Firmware Version string.
Test this using the list command:

$ list

End Station | Name | Entity ID | Firmware Version | MAC

C 0 | AVB 4in/4out | 0x002297fffe005279 | 1.1.0 | 002297005279

XM005270A

7 API Reference

IN THIS CHAPTER

· Configuration defines

· Component tasks and functions

· AVB API

· 1722.1 descriptors

· PTP client API

7.1 Configuration defines

7.1.1 Demo and hardware specific

Demo parameters and hardware port definitions are set in a header configuration file named
app_config.h within the src/ directory of the application.

AVB_DEMO_ENABLE_TALKER

Global switch to enable or disable AVB Talker functionality in the demo.

AVB_DEMO_ENABLE_LISTENER

Global switch to enable or disable AVB Listener functionality in the demo.

AVB_DEMO_NUM_CHANNELS

Number of input/output audio channels in the demo application For simplicity,
input and output is identical in size but can be configured differently in avb_conf.h.

7.1.2 Core AVB parameters

Each application using the AVB modules must include a header configuration file named avb_conf.h
within the src/ directory of the application and this file must set the #defines in the following two
sections.

See the demo application for a realistic example.

Defaults for these #defines are assigned in their absence, but may cause compilation failure or
unpredictable/erroneous behaviour.

XM005270A

XMOS AVB-DC Design Guide 29/80

7.1.3 Ethernet

See the Ethernet documentation for detailed information on its parameters:

https://www.xmos.com/published/xmos-layer-2-ethernet-mac-component?version=latest

7.1.4 Audio subsystem

AVB_MAX_AUDIO_SAMPLE_RATE

The maximum sample rate in Hz of audio that is to be input or output.

AVB_NUM_SOURCES

The total number of AVB sources (streams that are to be transmitted).

AVB_NUM_TALKER_UNITS

The total number or Talker components (typically the number of tasks running the
avb_1722_talker() function).

AVB_MAX_CHANNELS_PER_TALKER_STREAM

The maximum number of channels permitted per 1722 Talker stream.

AVB_NUM_MEDIA_INPUTS

The total number of media inputs (typically number of I2S input channels).

AVB_NUM_SINKS

The total number of AVB sinks (incoming streams that can be listened to).

AVB_NUM_LISTENER_UNITS

The total number or listener components (typically the number of tasks running the
avb_1722_listener() function).

AVB_MAX_CHANNELS_PER_LISTENER_STREAM

The maximum number of channels permitted per 1722 Listener stream.

AVB_NUM_MEDIA_OUTPUTS

The total number of media outputs (typically the number of I2S output channels).

XM005270A

https://www.xmos.com/published/xmos-layer-2-ethernet-mac-component?version=latest

XMOS AVB-DC Design Guide 30/80

AVB_NUM_MEDIA_UNITS

The number of components in the endpoint that will register and initialize media
FIFOs (typically an audio interface component such as I2S).

AVB_NUM_MEDIA_CLOCKS

The number of media clocks in the endpoint.

Typically the number of clock domains, each with a separate PLL and master clock.

7.1.5 1722.1

AVB_ENABLE_1722_1

Enable 1722.1 AVDECC on the entity.

AVB_1722_1_TALKER_ENABLED

Enable the 1722.1 Talker functionality.

AVB_1722_1_LISTENER_ENABLED

Enable the 1722.1 Listener functionality.

AVB_1722_1_CONTROLLER_ENABLED

Enable 1722.1 Controller functionality on the entity.

Descriptor specific strings can be modified in a header configuration file named aem_entity_strings.h.in
within the src/ directory. It is post-processed by a script in the build stage to expand strings to
64 octet padded with zeros.

XM005270A

XMOS AVB-DC Design Guide 31/80

Define Description

AVB_1722_1_ENTITY_NAME_STRING A string (64 octet max) containing an Entity name

AVB_1722_1_FIRMWARE_VERSION_STRING A string (64 octet max) containing the firmware
version of the Entity

AVB_1722_1_GROUP_NAME_STRING A string (64 octet max) containing the group name
of the Entity

AVB_1722_1_SERIAL_NUMBER_STRING A string (64 octet max) containing the serial number
of the Entity

AVB_1722_1_VENDOR_NAME_STRING A string (64 octet max) containing the vendor name
of the Entity

AVB_1722_1_MODEL_NAME_STRING A string (64 octet max) containing the model name
of the Entity

7.2 Component tasks and functions

The following functions provide components that can be combined in the top-level main. For
details on the Ethernet component, see the Ethernet Component Guide9.

9http://github.xcore.com/sc_ethernet/index.html

XM005270A

http://github.xcore.com/sc_ethernet/index.html

XMOS AVB-DC Design Guide 32/80

7.2.1 Core components

avb_manager()

Core AVB API management task that can be combined with other AVB tasks such as
SRP or 1722.1.

Type

[[combinable]]
void avb_manager(server interface avb_interface i_avb[num_avb_clients],

unsigned num_avb_clients,
client interface srp_interface i_srp,
chanend c_media_ctl[],
chanend(& ?c_listener_ctl)[],
chanend(& ?c_talker_ctl)[],
chanend c_mac_tx,
client interface media_clock_if ?i_media_clock_ctl,
chanend c_ptp)

Parameters

i_avb[] array of avb_interface server interfaces connected to clients of
avb_manager

num_avb_clients
number of client interface connections to the server and the
number of elements of i_avb[]

i_srp client interface of type srp_interface into an srp_task() task

c_media_ctl[]
array of chanends connected to components that register/control
media FIFOs

c_listener_ctl[]
array of chanends connected to components that register/control
IEEE 1722 sinks

c_talker_ctl[]
array of chanends connected to components that register/control
IEEE 1722 sources

c_mac_tx chanend connection to the Ethernet TX server

i_media_clock_ctl
client interface of type media_clock_if connected to the media
clock server

c_ptp chanend connection to the PTP server

avb_srp_info_t

XM005270A

XMOS AVB-DC Design Guide 33/80

Struct containing fields required for SRP reservations.

Fields

unsigned stream_id
64-bit Stream ID of the stream

unsigned char dest_mac_addr
Stream destination MAC address.

short vlan_id
VLAN ID for Stream.

short tspec_max_frame_size
Maximum frame size sent by Talker.

short tspec_max_interval
Maximum number of frames sent per class measurement interval.

unsigned char tspec
Data Frame Priority and Rank fields.

unsigned accumulated_latency
Latency at ingress port for Talker registrations, or latency at end of
egress media for Listener Declarations.

srp_interface

register_stream_request()

Used by a Talker application entity to issue a request to the MSRP Participant
to initiate the advertisement of an available Stream.

Type

void register_stream_request(avb_srp_info_t stream_info)

Parameters

stream_info Struct of type avb_srp_info_t containing parameters of
the stream to register

XM005270A

XMOS AVB-DC Design Guide 34/80

deregister_stream_request()

Used by a Talker application entity to request removal of the Talker’s adver-
tisement declaration, and thus remove the advertisement of a Stream, from
the network.

Type

void deregister_stream_request(unsigned stream_id[2])

Parameters

stream_id two int array containing the Stream ID of the stream to
deregister

register_attach_request()

Used by a Listener application entity to issue a request to attach to the
referenced Stream.

Type

void register_attach_request(unsigned stream_id[2])

Parameters

stream_id two int array containing the Stream ID of the stream to
register

deregister_attach_request()

Used by a Listener application entity to remove the request to attach to the
referenced Stream.

Type

void deregister_attach_request(unsigned stream_id[2])

Parameters

stream_id two int array containing the Stream ID of the stream to
deregister

XM005270A

XMOS AVB-DC Design Guide 35/80

avb_srp_task()

SRP task that implements MSRP and MVRP protocols.

Can be combined with other combinable tasks.

Type

[[combinable]]
void avb_srp_task(client interface avb_interface i_avb,

server interface srp_interface i_srp,
chanend c_mac_rx,
chanend c_mac_tx)

Parameters

i_avb client interface of type avb_interface into the avb_manager() for
API control of the stack

i_srp server interface of type srp_interface that offers client tasks
access to SRP reservation functionality

c_mac_rx chanend into the Ethernet RX server

c_mac_tx chanend into the Ethernet TX server

avb_1722_1_aecp_aem_status_code

Values

AECP_AEM_STATUS_SUCCESS
The AVDECC Entity successfully performed the command and has
valid results.

AECP_AEM_STATUS_NOT_IMPLEMENTED
The AVDECC Entity does not support the command type.

AECP_AEM_STATUS_NO_SUCH_DESCRIPTOR
A descriptor with the descriptor_type and descriptor_index specified
does not exist.

AECP_AEM_STATUS_ENTITY_LOCKED
The AVDECC Entity has been locked by another AVDECC Controller.

AECP_AEM_STATUS_ENTITY_ACQUIRED
The AVDECC Entity has been acquired by another AVDECC Controller.

AECP_AEM_STATUS_NOT_AUTHENTICATED
The AVDECC Controller is not authenticated with the AVDECC Entity.

XM005270A

XMOS AVB-DC Design Guide 36/80

AECP_AEM_STATUS_AUTHENTICATION_DISABLED
The AVDECC Controller is trying to use an authentication command
when authentication isn’t enable on the AVDECC Entity.

AECP_AEM_STATUS_BAD_ARGUMENTS
One or more of the values in the fields of the frame were deemed to
be bad by the AVDECC Entity (unsupported, incorrect combination,
etc).

AECP_AEM_STATUS_NO_RESOURCES
The AVDECC Entity cannot complete the command because it does
not have the resources to support it.

AECP_AEM_STATUS_IN_PROGRESS
The AVDECC Entity is processing the command and will send a
second response at a later time with the result of the command.

AECP_AEM_STATUS_ENTITY_MISBEHAVING
The AVDECC Entity is generated an internal error while trying to
process the command.

AECP_AEM_STATUS_NOT_SUPPORTED
The command is implemented but the target of the command is not
supported.

For example trying to set the value of a read-only Control.

AECP_AEM_STATUS_STREAM_IS_RUNNING
The Stream is currently streaming and the command is one which
cannot be executed on an Active Stream.

avb_1722_1_control_callbacks

XM005270A

XMOS AVB-DC Design Guide 37/80

get_control_value()

This function events on a GET_CONTROL 1722.1 command received from a
Controller.

Type

unsigned char get_control_value(unsigned short control_index,
unsigned short &values_length,
unsigned char values[AEM_MAX_CONTROL_VALUES_LENGTH_BYTES])

Parameters

control_index
the index of the CONTROL descriptor

values_length
a reference to the length in bytes of the values array

values an array of values to return to the Controller The contents
of this field are dependent on the Control being fetched.

Returns

an AEM status code of enum avb_1722_1_aecp_aem_status_code for the
GET_CONTROL response

set_control_value()

This function events on a SET_CONTROL 1722.1 command received from a
Controller.

The response should always contain the current value (i.e. it contains the
new value if the commands succeeds, or the old value if it fails)

Type

unsigned char set_control_value(unsigned short control_index,
unsigned short values_length,
unsigned char values[AEM_MAX_CONTROL_VALUES_LENGTH_BYTES])

Parameters

control_index
the index of the CONTROL descriptor

values_length
the length in bytes of the values array

values an array of values to set from the Controller. The con-
tents of this field are dependent on the Control being
addressed.

Returns

an AEM status code of enum avb_1722_1_aecp_aem_status_code for the
SET_CONTROL response

XM005270A

XMOS AVB-DC Design Guide 38/80

avb_1722_1_task()

1722.1 task that runs ADP, ACMP and AECP protocols and interacts with the rest of
the AVB stack.

Can be combined with other combinable tasks.

Type

[[combinable]]
void avb_1722_1_task(otp_ports_t &otp_ports,

client interface avb_interface i_avb,
client interface avb_1722_1_control_callbacks i_1722_1_entity,
client interface spi_interface i_spi,
chanend c_mac_rx,
chanend c_mac_tx,
chanend c_ptp)

Parameters

otp_ports reference to an OTP ports structure of type otp_ports_t

i_avb client interface of type avb_interface into avb_manager()

i_1722_1_entity
client interface of type avb_1722_1_control_callbacks

i_spi client interface of type spi_interface into avb_srp_task()

c_mac_rx chanend into the Ethernet RX server

c_mac_tx chanend into the Ethernet TX server

c_ptp chanend into the PTP server

fl_spi_ports

Struct containing ports and clocks used to access a flash device.

Fields

buffered in port:8 spiMISO
Master input, slave output (MISO) port.

out port spiSS
Slave select (SS) port.

buffered out port:32 spiCLK
Serial clock (SCLK) port.

buffered out port:8 spiMOSI
Master output, slave input (MOSI) port.

XM005270A

XMOS AVB-DC Design Guide 39/80

clock spiClkblk
Clock block for use with SPI ports.

spi_interface

command_status()

This function issues a single command without parameters to the SPI, and
reads up to 4 bytes status value from the device.

Type

int command_status(int cmd, unsigned returnBytes)

Parameters

cmd command value - listed above

returnBytes The number of bytes that are to be read from the device
after the command is issued. 0 means no bytes will be
read.

Returns

the read bytes, or zero if no bytes were requested. If multiple bytes are
requested, then the last byte read is in the least-significant byte of the
return value.

XM005270A

XMOS AVB-DC Design Guide 40/80

command_address_status()

This function issues a single command with a 3-byte address parameter and
an optional data-set to be output to or input form the device.

Type

void command_address_status(int cmd,
unsigned int address,
unsigned char data[],
int returnBytes)

Parameters

cmd command value - listed above

address the address to send to the SPI device. Only the least
significant 24 bits are used.

data an array of data that contains either data to be written to
the device, or which is used to store that that is read from
the device.

returnBytes If positive, then this is the number of bytes that are to be
read from the device, into data. If negative, then this is
(minus) the number of bytes to be written to the device
from data. 0 means no bytes will be read or written.

spi_task()

Task that implements a SPI interface to serial flash, typically the boot flash.

Can be combined or distributed into other tasks.

Type

[[distributable]]
void spi_task(server interface spi_interface i_spi,

fl_spi_ports &spi_ports)

Parameters

i_spi server interface of type spi_interface

spi_ports reference to a fl_spi_ports structure containing the SPI flash
ports and clockblock

XM005270A

XMOS AVB-DC Design Guide 41/80

ptp_server()

This function runs the PTP server.

It takes one thread and runs indefinitely

Type

void ptp_server(chanend mac_rx,
chanend mac_tx,
chanend ptp_clients[],
int num_clients,
enum ptp_server_type server_type)

Parameters

mac_rx chanend connected to the ethernet server (receive)

mac_tx chanend connected to the ethernet server (transmit)

client an array of chanends to connect to clients of the ptp server

num_clients The number of clients attached

server_type The type of the server (PTP_GRANDMASTER_CAPABLE or
PTP_SLAVE_ONLY)

XM005270A

XMOS AVB-DC Design Guide 42/80

media_clock_server()

The media clock server.

Type

void media_clock_server(server interface media_clock_if media_clock_ctl,
chanend ?ptp_svr,
chanend(& ?buf_ctl)[num_buf_ctl],
unsigned num_buf_ctl,
out buffered port:32 p_fs[])

Parameters

media_clock_ctl
server interface of type media_clock_if connected to the
avb_manager() task and passed into avb_init()

ptp_svr chanend connected to the PTP server

buf_ctl[] array of links to listener components requiring buffer manage-
ment

num_buf_ctl size of the buf_ctl array

p_fs output port to drive PLL reference clock

c_rx chanend connected to the ethernet server (receive)

c_tx chanend connected to the ethernet server (transmit)

c_ptp[] an array of chanends to connect to clients of the ptp server

num_ptp The number of PTP clients attached

server_type The type of the PTP server (PTP_GRANDMASTER_CAPABLE or
PTP_SLAVE_ONLY)

XM005270A

XMOS AVB-DC Design Guide 43/80

avb_1722_listener()

An AVB IEEE 1722 audio listener thread.

This thread implements a listener. It takes IEEE 1722 packets from the ethernet
MAC and splits them into output FIFOs. The buffer fill level of these streams is
set in conjunction with communication to the media clock server. This thread is
dynamically configured using the AVB control API.

Type

void avb_1722_listener(chanend c_mac_rx,
chanend ?c_buf_ctl,
chanend ?c_ptp_ctl,
chanend c_listener_ctl,
int num_streams)

Parameters

c_mac_rx receive link to the ethernet MAC

c_buf_ctl buffer control link to the media clock server

c_ptp_ctl PTP server link for retrieving PTP time info

c_listener_ctl
channel to configure the listener (given to avb_init())

num_streams the number of streams the unit will handle

avb_1722_talker()

An AVB IEEE 1722 audio talker thread.

This thread implements a talker, taking media input FIFOs and combining them into
1722 packets to be sent to the ethernet component. It is dynamically configured
using the AVB control API.

Type

void avb_1722_talker(chanend c_ptp,
chanend c_mac_tx,
chanend c_talker_ctl,
int num_streams)

Parameters

c_ptp link to the PTP timing server

c_mac_tx transmit link to the ethernet MAC

c_talker_ctl
channel to configure the talker (given to avb_init())

num_streams the number of streams the unit controls

XM005270A

XMOS AVB-DC Design Guide 44/80

7.2.2 Audio components

The following types are used by the AVB audio components:

media_output_fifo_t

This type provides a handle to a media output FIFO.

media_output_fifo_data_t

This type provides the data structure used by a media output FIFO.

media_input_fifo_t

This type provides a handle to a media input fifo.

media_input_fifo_data_t

This type provides the data structure used by a media input fifo.

The following functions implement AVB audio components:

init_media_input_fifos()

Initialize media input fifos.

This function intializes media input FIFOs and ties the handles to their associated
data structures. It should be called before the main component function on a thread
to setup the FIFOs.

Type

void init_media_input_fifos(media_input_fifo_t ififos[],
media_input_fifo_data_t ififo_data[],
int n)

Parameters

ififos an array of media input FIFO handles to initialize

ififo_data an array of associated data structures

n the number of FIFOs to initialize

XM005270A

XMOS AVB-DC Design Guide 45/80

init_media_output_fifos()

Initialize media output FIFOs.

This function initializes media output FIFOs and ties the handles to their associated
data structures. It should be called before the main component function on a thread
to setup the FIFOs.

Type

void init_media_output_fifos(media_output_fifo_t ofifos[],
media_output_fifo_data_t ofifo_data[],
int n)

Parameters

ofifos an array of media output FIFO handles to initialize

ofifo_data an array of associated data structures

n the number of FIFOs to initialize

XM005270A

XMOS AVB-DC Design Guide 46/80

i2s_master()

Input and output audio data using I2S format with the XCore acting as master.

This function implements a task that can handle several synchronous I2S interfaces.
It inputs and outputs 24-bit data packed into 32 bits.

This function can handle up to 8in and 8out at 48KHz.

Type

static void i2s_master(i2s_ports_t &ports,
in buffered port:32(& ?p_din)[],
int num_in,
out buffered port:32(& ?p_dout)[],
int num_out,
int master_to_word_clock_ratio,
media_input_fifo_t(& ?input_fifos)[],
media_output_fifo_t(& ?output_fifos)[],
chanend media_ctl,
int clk_ctl_index)

Parameters

ports a reference to a structure of type i2s_ports_t containing the I2S
port definitions

p_din array of ports to input data from

num_in number of input ports

p_dout array of ports to output data to

num_out number of output ports

master_to_word_clock_ratio
the ratio of the master clock to the word clock; must be one of
128, 256 or 512

input_fifos a map from the inputs to local talker streams. The channels of
the inputs are interleaved, for example, if you have two input
ports, the map {0,1,0,1} w would map to the two stereo local
talker streams 0 and 1.

output_fifos
a map from the outputs to local Listener streams

media_ctl a media clock control chanend connected to an avb_manager()
task

clk_ctl_index
the index of the clock control, default 0

XM005270A

XMOS AVB-DC Design Guide 47/80

media_output_fifo_to_xc_channel()

Output audio streams from media fifos to an XC channel.

This function outputs samples from several media output FIFOs over an XC channel
over the streaming chanend samples_out.

The protocol over the channel is that the thread expects a timestamp to be sent to
it and then it will output num_channels samples, pulling from the ofifos array. It
will then expect another timestamp before the next set of samples.

Type

void media_output_fifo_to_xc_channel(streaming chanend samples_out,
media_output_fifo_t ofifos[],
int num_channels)

Parameters

samples_out the chanend on which samples are output

ofifos array of media output FIFOs to pull from

num_channels
the number of channels (or FIFOs)

media_output_fifo_to_xc_channel_split_lr()

Output audio streams from media FIFOs to an XC channel, splitting left and right
pairs.

This function outputs samples from several media output FIFOs over an XC channel
over the streaming chanend samples_out. The media FIFOs are assumed to be
grouped in left/right stereo pairs which are then split.

The protocol over the channel is that the thread expects a timestamp to be sent
to it and then it will first output num_channels/2 samples, pulling from all the even
indexed elements of the ofifos array and then output all the odd elements. It will
then expect another timestamp before the next set of samples.

Type

void media_output_fifo_to_xc_channel_split_lr(streaming chanend samples_out,
media_output_fifo_t output_fifos[],
int num_channels)

Parameters

samples_out the chanend on which samples are output

output_fifos
array of media output fifos to pull from

num_channels
the number of channels (or FIFOs)

XM005270A

XMOS AVB-DC Design Guide 48/80

7.3 AVB API

7.3.1 General control functions

avb_get_control_packet()

Receives an 802.1Qat SRP packet or an IEEE 1722 control packet.

This function receives an AVB control packet from the ethernet MAC. It is selectable
so can be used in a select statement as a case.

Type

void avb_get_control_packet(chanend c_rx,
unsigned int buf[],
unsigned int &nbytes,
unsigned int &port_num)

Parameters

c_rx chanend connected to the ethernet component

buf buffer to retrieve the packet into; buffer must have length at
least MAX_AVB_CONTROL_PACKET_SIZE bytes

nbytes a reference parameter that is filled with the length of the received
packet

XM005270A

XMOS AVB-DC Design Guide 49/80

avb_process_srp_control_packet()

Process an AVB SRP control packet.

This function processes an 802.1Qat ethernet packet

This function should always be called on the buffer filled by
avb_get_control_packet().

Type

void avb_process_srp_control_packet(client interface avb_interface i_avb,
unsigned int buf[],
unsigned len,
chanend c_tx,
unsigned int port_num)

Parameters

i_avb client interface of type avb_interface into avb_manager()

buf the incoming message buffer

len the length (in bytes) of the incoming buffer

c_tx chanend connected to the ethernet mac (TX)

port_num the id of the Ethernet interface the packet was received

XM005270A

XMOS AVB-DC Design Guide 50/80

avb_process_1722_control_packet()

Process an AVB 1722 control packet.

This function processes a 1722 ethernet packet with the control data bit set

This function should always be called on the buffer filled by
avb_get_control_packet().

Type

void avb_process_1722_control_packet(unsigned int buf[],
unsigned nbytes,
chanend c_tx,
client interface avb_interface i_avb,
client interface avb_1722_1_control_callbacks i_1722_1_entity,
client interface spi_interface i_spi)

Parameters

buf the incoming message buffer

nbytes the length (in bytes) of the incoming buffer

c_tx chanend connected to the ethernet mac (TX)

i_avb client interface of type avb_interface into avb_manager()

i_1722_1_entity
client interface of type avb_1722_1_control_callbacks

i_spi client interface of type spi_interface into avb_srp_task()

XM005270A

XMOS AVB-DC Design Guide 51/80

7.3.2 Multicast Address Allocation commands

avb_1722_maap_request_addresses()

Request a range of multicast addresses.

This function requests a range of multicast addresses to use as destination ad-
dresses for IEEE 1722 streams. It starts the reservation process according to the
1722 MAAP protocol. If the reservation is successful it is reported via the status
return value of avb_periodic().

Type

void avb_1722_maap_request_addresses(int num_addresses,
char(& ?start_address)[])

Parameters

num_addresses
number of addresses to try and reserve; will be reserved in a
contiguous range

start_address
an optional six byte array specifying the required start address
of the range NOTE: must be within the MAAP reserved pool; if
argument is null then the start address will be picked at random
from the MAAP reserved pool

avb_1722_maap_rerequest_addresses()

Re-request a claim on the existing address range.

If there is a current address reservation, this will reset the state machine into
the PROBE state, in order to cause the protocol to re-probe and re-allocate the
addresses.

Type

void avb_1722_maap_rerequest_addresses()

avb_1722_maap_relinquish_addresses()

Relinquish the reserved MAAP address range.

This function abandons the claim to the reserved address range

Type

void avb_1722_maap_relinquish_addresses()

XM005270A

XMOS AVB-DC Design Guide 52/80

7.3.3 MAAP application hooks

avb_talker_on_source_address_reserved()

MAAP has indicated that a multicast address has been successfully reserved for this
Talker stream.

Type

void avb_talker_on_source_address_reserved(client interface avb_interface i_avb,
int source_num,
unsigned char mac_addr[6])

Parameters

i_avb client interface of type avb_interface into avb_manager()

source_num The local source ID of the Talker

mac_addr The destination MAC address reserved for this Talker

7.3.4 AVB Control API

device_media_clock_type_t

Values

DEVICE_MEDIA_CLOCK_INPUT_STREAM_DERIVED

DEVICE_MEDIA_CLOCK_LOCAL_CLOCK

device_media_clock_state_t

Values

DEVICE_MEDIA_CLOCK_STATE_DISABLED

DEVICE_MEDIA_CLOCK_STATE_ENABLED

avb_interface

initialise()

Type

void initialise(void)

XM005270A

XMOS AVB-DC Design Guide 53/80

_get_source_info()

Intended for internal use within client interface get and set extensions only.

Type

avb_source_info_t _get_source_info(unsigned source_num)

_set_source_info()

Intended for internal use within client interface get and set extensions only.

Type

void _set_source_info(unsigned source_num, avb_source_info_t info)

_get_sink_info()

Intended for internal use within client interface get and set extensions only.

Type

avb_sink_info_t _get_sink_info(unsigned sink_num)

_set_sink_info()

Intended for internal use within client interface get and set extensions only.

Type

void _set_sink_info(unsigned sink_num, avb_sink_info_t info)

_get_media_clock_info()

Intended for internal use within client interface get and set extensions only.

Type

media_clock_info_t _get_media_clock_info(unsigned clock_num)

_set_media_clock_info()

Intended for internal use within client interface get and set extensions only.

Type

void _set_media_clock_info(unsigned clock_num, media_clock_info_t info)

XM005270A

XMOS AVB-DC Design Guide 54/80

get_source_format()

Get the format of an AVB source.

Type

int get_source_format(unsigned source_num,
enum avb_stream_format_t &format,
int &rate)

Parameters

source_num the local source number

format the format of the stream

rate the sample rate of the stream in Hz

set_source_format()

Set the format of an AVB source.

The AVB source format covers the encoding and sample rate of the source.
Currently the format is limited to a single encoding MBLA 24 bit signed
integers.

This setting will not take effect until the next time the source state moves
from disabled to potential.

Type

int set_source_format(unsigned source_num,
enum avb_stream_format_t format,
int rate)

Parameters

source_num the local source number

format the format of the stream

rate the sample rate of the stream in Hz

get_source_channels()

Get the channel count of an AVB source.

Type

int get_source_channels(unsigned source_num, int &channels)

Parameters

source_num the local source number

channels the number of channels

XM005270A

XMOS AVB-DC Design Guide 55/80

set_source_channels()

Set the channel count of an AVB source.

Sets the number of channels in the stream.

This setting will not take effect until the next time the source state moves
from disabled to potential.

Type

int set_source_channels(unsigned source_num, int channels)

Parameters

source_num the local source number

channels the number of channels

get_source_sync()

Get the media clock of an AVB source.

Type

int get_source_sync(unsigned source_num, int &sync)

Parameters

source_num the local source number

sync the media clock number

set_source_sync()

Set the media clock of an AVB source.

Sets the media clock of the stream.

Type

int set_source_sync(unsigned source_num, int sync)

Parameters

source_num the local source number

sync the media clock number

XM005270A

XMOS AVB-DC Design Guide 56/80

get_source_presentation()

Get the presentation time offset of an AVB source.

Type

int get_source_presentation(unsigned source_num, int &presentation)

Parameters

source_num the local source number to set

presentation
the presentation offset in ms

set_source_presentation()

Set the presentation time offset of an AVB source.

Sets the presentation time offset of a source i.e. the time after sampling
that the stream should be played. The default value for this is 2ms.

This setting will not take effect until the next time the source state moves
from disabled to potential.

Type

int set_source_presentation(unsigned source_num, int presentation)

Parameters

source_num the local source number to set

presentation
the presentation offset in ms

get_source_vlan()

Get the destination vlan of an AVB source.

Type

int get_source_vlan(unsigned source_num, int &vlan)

Parameters

source_num the local source number

vlan the destination vlan id, The media clock number

XM005270A

XMOS AVB-DC Design Guide 57/80

set_source_vlan()

Set the destination vlan of an AVB source.

Sets the vlan that the source will transmit on. This defaults to 2.

This setting will not take effect until the next time the source state moves
from disabled to potential.

Type

int set_source_vlan(unsigned source_num, int vlan)

Parameters

source_num the local source number

vlan the destination vlan id, The media clock number

get_source_state()

Get the current state of an AVB source.

Type

int get_source_state(unsigned source_num, enum avb_source_state_t &state)

Parameters

source_num the local source number

state the state of the source

set_source_state()

Set the current state of an AVB source.

Sets the current state of an AVB source. You cannot set the state to ENABLED.
Changing the state to AVB_SOURCE_STATE_POTENTIAL turns the stream on and
it will automatically change to ENABLED when connected to a listener and
streaming.

Type

int set_source_state(unsigned source_num, enum avb_source_state_t state)

Parameters

source_num the local source number

state the state of the source

XM005270A

XMOS AVB-DC Design Guide 58/80

get_source_map()

Get the channel map of an avb source.

Type

int get_source_map(unsigned source_num, int map[], int &len)

Parameters

source_num the local source number to set

map the map, an array of integers giving the input FIFOs that
make up the stream

len the length of the map; should be equal to the number of
channels in the stream

set_source_map()

Set the channel map of an avb source.

Sets the channel map of a source i.e. the list of input FIFOs that constitute
the stream.

This setting will not take effect until the next time the source state moves
from disabled to potential.

Type

int set_source_map(unsigned source_num, int map[len], unsigned len)

Parameters

source_num the local source number to set

map the map, an array of integers giving the input FIFOs that
make up the stream

len the length of the map; should be equal to the number of
channels in the stream

XM005270A

XMOS AVB-DC Design Guide 59/80

get_source_dest()

Get the destination address of an avb source.

Type

int get_source_dest(unsigned source_num, unsigned char addr[], int &len)

Parameters

source_num the local source number

addr the destination address as an array of 6 bytes

len the length of the address, should always be equal to 6

set_source_dest()

Set the destination address of an avb source.

Sets the destination MAC address of a source. This setting will not take
effect until the next time the source state moves from disabled to potential.

Type

int set_source_dest(unsigned source_num,
unsigned char addr[len],
unsigned len)

Parameters

source_num the local source number

addr the destination address as an array of 6 bytes

len the length of the address, should always be equal to 6

get_source_id()

Type

int get_source_id(unsigned source_num, unsigned int id[2])

get_sink_id()

Get the stream id that an AVB sink listens to.

Type

int get_sink_id(unsigned sink_num, unsigned int stream_id[2])

Parameters

sink_num the number of the sink

stream_id int array containing the 64-bit of the stream

XM005270A

XMOS AVB-DC Design Guide 60/80

set_sink_id()

Set the stream id that an AVB sink listens to.

Sets the stream id that an AVB sink listens to.

This setting will not take effect until the next time the sink state moves from
disabled to potential.

Type

int set_sink_id(unsigned sink_num, unsigned int stream_id[2])

Parameters

sink_num the number of the sink

stream_id int array containing the 64-bit of the stream

get_sink_format()

Get the format of an AVB sink.

Type

int get_sink_format(unsigned sink_num,
enum avb_stream_format_t &format,
int &rate)

Parameters

sink_num the local sink number

format the format of the stream

rate the sample rate of the stream in Hz

XM005270A

XMOS AVB-DC Design Guide 61/80

set_sink_format()

Set the format of an AVB sink.

The AVB sink format covers the encoding and sample rate of the sink.
Currently the format is limited to a single encoding MBLA 24 bit signed
integers.

This setting will not take effect until the next time the sink state moves from
disabled to potential.

Type

int set_sink_format(unsigned sink_num,
enum avb_stream_format_t format,
int rate)

Parameters

sink_num the local sink number

format the format of the stream

rate the sample rate of the stream in Hz

get_sink_channels()

Get the channel count of an AVB sink.

Type

int get_sink_channels(unsigned sink_num, int &channels)

Parameters

sink_num the local sink number

channels the number of channels

set_sink_channels()

Set the channel count of an AVB sink.

Sets the number of channels in the stream.

This setting will not take effect until the next time the sink state moves from
disabled to potential.

Type

int set_sink_channels(unsigned sink_num, int channels)

Parameters

sink_num the local sink number

channels the number of channels

XM005270A

XMOS AVB-DC Design Guide 62/80

get_sink_sync()

Get the media clock of an AVB sink.

Type

int get_sink_sync(unsigned sink_num, int &sync)

Parameters

sink_num the local sink number

sync the media clock number

set_sink_sync()

Set the media clock of an AVB sink.

Sets the media clock of the stream.

Type

int set_sink_sync(unsigned sink_num, int sync)

Parameters

sink_num the local sink number

sync the media clock number

get_sink_vlan()

Get the virtual lan id of an AVB sink.

Type

int get_sink_vlan(unsigned sink_num, int &vlan)

Parameters

sink_num the number of the sink

vlan the vlan id of the sink

XM005270A

XMOS AVB-DC Design Guide 63/80

set_sink_vlan()

Set the virtual lan id of an AVB sink.

Sets the vlan id of the incoming stream.

This setting will not take effect until the next time the sink state moves from
disabled to potential.

Type

int set_sink_vlan(unsigned sink_num, int vlan)

Parameters

sink_num the number of the sink

vlan the vlan id of the sink

get_sink_addr()

Get the incoming destination mac address of an avb sink.

Type

int get_sink_addr(unsigned sink_num, unsigned char addr[], int &len)

Parameters

sink_num The local sink number

addr The mac address as an array of 6 bytes.

len The length of the address, should always be equal to 6.

set_sink_addr()

Set the incoming destination mac address of an avb sink.

Set the incoming destination mac address of a sink. This needs to be set
if the address is a multicast address so the endpoint can register for that
multicast group with the switch.

This setting will not take effect until the next time the sink state moves from
disabled to potential.

Type

int set_sink_addr(unsigned sink_num, unsigned char addr[len], unsigned len)

Parameters

sink_num The local sink number

addr The mac address as an array of 6 bytes.

len The length of the address, should always be equal to 6.

XM005270A

XMOS AVB-DC Design Guide 64/80

get_sink_state()

Get the state of an AVB sink.

Type

int get_sink_state(unsigned sink_num, enum avb_sink_state_t &state)

Parameters

sink_num the number of the sink

state the state of the sink

set_sink_state()

Set the state of an AVB sink.

Sets the current state of an AVB sink. You cannot set the state to ENABLED.
Changing the state to POTENTIAL turns the stream on and it will automatically
change to ENABLED when connected to a talker and receiving samples.

Type

int set_sink_state(unsigned sink_num, enum avb_sink_state_t state)

Parameters

sink_num the number of the sink

state the state of the sink

get_sink_map()

Get the map of an AVB sink.

Type

int get_sink_map(unsigned sink_num, int map[], int &len)

Parameters

sink_num the number of the sink

map array containing the media output FIFOs that the stream
will be split into

len the length of the map; should equal to the number of
channels in the stream

XM005270A

XMOS AVB-DC Design Guide 65/80

set_sink_map()

Set the map of an AVB sink.

Sets the map i.e. the mapping from the 1722 stream to output FIFOs.

This setting will not take effect until the next time the sink state moves from
disabled to potential.

Type

int set_sink_map(unsigned sink_num, int map[len], unsigned len)

Parameters

sink_num the number of the sink

map array containing the media output FIFOs that the stream
will be split into

len the length of the map; should equal to the number of
channels in the stream

get_device_media_clock_rate()

Get the rate of a media clock.

Type

int get_device_media_clock_rate(int clock_num, int &rate)

Parameters

clock_num the number of the media clock

rate the rate of the clock in Hz

set_device_media_clock_rate()

Set the rate of a media clock.

Sets the rate of the media clock.

Type

int set_device_media_clock_rate(int clock_num, int rate)

Parameters

clock_num the number of the media clock

rate the rate of the clock in Hz

XM005270A

XMOS AVB-DC Design Guide 66/80

get_device_media_clock_state()

Get the state of a media clock.

Type

int get_device_media_clock_state(int clock_num,
enum device_media_clock_state_t &state)

Parameters

clock_num the number of the media clock

state the state of the clock

set_device_media_clock_state()

Set the state of a media clock.

This function can be used to enabled/disable a media clock.

Type

int set_device_media_clock_state(int clock_num,
enum device_media_clock_state_t state)

Parameters

clock_num the number of the media clock

state the state of the clock

get_device_media_clock_source()

Get the source of a media clock.

Type

int get_device_media_clock_source(int clock_num, int &source)

Parameters

clock_num the number of the media clock

source the output FIFO number to base the clock on

XM005270A

XMOS AVB-DC Design Guide 67/80

set_device_media_clock_source()

Set the source of a media clock.

For clocks that are derived from an output FIFO. This function gets/sets
which FIFO the clock should be derived from.

Type

int set_device_media_clock_source(int clock_num, int source)

Parameters

clock_num the number of the media clock

source the output FIFO number to base the clock on

get_device_media_clock_type()

Get the type of a media clock.

Type

int get_device_media_clock_type(int clock_num,
enum device_media_clock_type_t &clock_type)

Parameters

clock_num the number of the media clock

clock_type the type of the clock

set_device_media_clock_type()

Set the type of a media clock.

Type

int set_device_media_clock_type(int clock_num,
enum device_media_clock_type_t clock_type)

Parameters

clock_num the number of the media clock

clock_type the type of the clock

XM005270A

XMOS AVB-DC Design Guide 68/80

7.3.5 1722.1 Controller commands

avb_1722_1_controller_connect()

Setup a new stream connection between a Talker and Listener entity.

The Controller shall send a CONNECT_RX_COMMAND to the Listener Entity. The
Listener Entity shall then send a CONNECT_TX_COMMAND to the Talker Entity.

Type

void avb_1722_1_controller_connect(const_guid_ref_t talker_guid,
const_guid_ref_t listener_guid,
int talker_id,
int listener_id,
chanend c_tx)

Parameters

talker_guid the GUID of the Talker being targeted by the command

listener_guid
the GUID of the Listener being targeted by the command

talker_id the unique id of the Talker stream source to connect. For entities
using AEM, this corresponds to the id of the STREAM_OUTPUT
descriptor

listener_id the unique id of the Listener stream source to connect. For enti-
ties using AEM, this corresponds to the id of the STREAM_INPUT
descriptor

c_tx a transmit chanend to the Ethernet server

XM005270A

XMOS AVB-DC Design Guide 69/80

avb_1722_1_controller_disconnect()

Disconnect an existing stream connection between a Talker and Listener entity.

The Controller shall send a DISCONNECT_RX_COMMAND to the Listener Entity. The
Listener Entity shall then send a DISCONNECT_TX_COMMAND to the Talker Entity.

Type

void avb_1722_1_controller_disconnect(const_guid_ref_t talker_guid,
const_guid_ref_t listener_guid,
int talker_id,
int listener_id,
chanend c_tx)

Parameters

talker_guid the GUID of the Talker being targeted by the command

listener_guid
the GUID of the Listener being targeted by the command

talker_id the unique id of the Talker stream source to disconnect. For enti-
ties using AEM, this corresponds to the id of the STREAM_OUTPUT
descriptor

listener_id the unique id of the Listener stream source to disconnect. For en-
tities using AEM, this corresponds to the id of the STREAM_INPUT
descriptor

c_tx a transmit chanend to the Ethernet server

avb_1722_1_controller_disconnect_all_listeners()

Disconnect all Listener sinks currently connected to the Talker stream source with
talker_id.

Type

void avb_1722_1_controller_disconnect_all_listeners(int talker_id,
chanend c_tx)

Parameters

talker_id the unique id of the Talker stream source to disconnect its lis-
teners. For entities using AEM, this corresponds to the id of the
STREAM_OUTPUT descriptor

c_tx a transmit chanend to the Ethernet server

XM005270A

XMOS AVB-DC Design Guide 70/80

avb_1722_1_controller_disconnect_talker()

Disconnect the Talker source currently connected to the Listener stream sink with
listener_id.

Type

void avb_1722_1_controller_disconnect_talker(int listener_id,
chanend c_tx)

Parameters

listener_id the unique id of the Listener stream source to disconnect its
Talker. For entities using AEM, this corresponds to the id of the
STREAM_INPUT descriptor

c_tx a transmit chanend to the Ethernet server

7.3.6 1722.1 Discovery commands

avb_1722_1_adp_announce()

Start advertising information about this entity via ADP.

Type

void avb_1722_1_adp_announce(void)

avb_1722_1_adp_depart()

Stop advertising information about this entity via ADP.

Type

void avb_1722_1_adp_depart(void)

avb_1722_1_adp_discover()

Ask to discover the information for a specific entity GUID.

Type

void avb_1722_1_adp_discover(const_guid_ref_t guid)

Parameters

guid The GUID of the entity to discover

avb_1722_1_adp_discover_all()

Ask to discover all available entities via ADP.

Type

void avb_1722_1_adp_discover_all(void)

XM005270A

XMOS AVB-DC Design Guide 71/80

avb_1722_1_entity_database_flush()

Remove all discovered entities from the database.

Type

void avb_1722_1_entity_database_flush(void)

7.3.7 1722.1 application hooks

These hooks are called on events that can be acted upon by the application. They can be
overridden by user defined hooks of the same name to perform custom functionality not present
in the core stack.

avb_1722_1_entity_record

Fields

guid_t guid

unsigned int vendor_id

unsigned int entity_model_id

unsigned int capabilities

unsigned short talker_stream_sources

unsigned short talker_capabilities

unsigned short listener_stream_sinks

unsigned short listener_capabilities

unsigned int controller_capabilities

unsigned int available_index

gmid_t gptp_grandmaster_id

unsigned char gptp_domain_number

unsigned short identify_control_index

unsigned int association_id

unsigned timeout

XM005270A

XMOS AVB-DC Design Guide 72/80

avb_entity_on_new_entity_available()

A new AVDECC entity has advertised itself as available.

It may be an entity starting up or a previously seen entity that had timed out.

Type

void avb_entity_on_new_entity_available(client interface avb_interface i_avb,
const_guid_ref_t my_guid,
avb_1722_1_entity_record *entity,
chanend c_tx)

Parameters

i_avb client interface of type avb_interface into avb_manager()

my_guid The GUID of this entity

entity The information advertised by the remote entity

c_tx A transmit channel end to the Ethernet server

avb_talker_on_listener_connect()

A Controller has indicated that a Listener is connecting to this Talker stream source.

Type

void avb_talker_on_listener_connect(client interface avb_interface i_avb,
int source_num,
const_guid_ref_t listener_guid)

Parameters

i_avb client interface of type avb_interface into avb_manager()

source_num The local id of the Talker stream source

listener_guid
The GUID of the Listener entity that is connecting

XM005270A

XMOS AVB-DC Design Guide 73/80

avb_talker_on_listener_disconnect()

A Controller has indicated that a Listener is disconnecting from this Talker stream
source.

Type

void avb_talker_on_listener_disconnect(client interface avb_interface i_avb,
int source_num,
const_guid_ref_t listener_guid,
int connection_count)

Parameters

i_avb client interface of type avb_interface into avb_manager()

source_num The local id of the Talker stream source

listener_guid
The GUID of the Listener entity that is disconnecting

connection_count
The number of connections a Talker thinks it has on it’s stream
source, i.e. the number of connect TX stream commands it has
received less the number of disconnect TX stream commands it
has received. This number may not be accurate since an AVDECC
Entity may not have sent a disconnect command if the cable was
disconnected or the AVDECC Entity abruptly powered down.

XM005270A

XMOS AVB-DC Design Guide 74/80

avb_listener_on_talker_connect()

A Controller has indicated to connect this Listener sink to a Talker stream.

Type

avb_1722_1_acmp_status_t avb_listener_on_talker_connect(client interface avb_interface i_avb,
int sink_num,
const_guid_ref_t talker_guid,
unsigned char dest_addr[6],
unsigned int stream_id[2],
const_guid_ref_t my_guid)

Parameters

i_avb client interface of type avb_interface into avb_manager()

sink_num The local id of the Listener stream sink

talker_guid The GUID of the Talker entity that is connecting

dest_addr The destination MAC address of the Talker stream

stream_id The 64 bit Stream ID of the Talker stream

my_guid The GUID of this entity

avb_listener_on_talker_disconnect()

A Controller has indicated to disconnect this Listener sink from a Talker stream.

Type

void avb_listener_on_talker_disconnect(client interface avb_interface i_avb,
int sink_num,
const_guid_ref_t talker_guid,
unsigned char dest_addr[6],
unsigned int stream_id[2],
const_guid_ref_t my_guid)

Parameters

i_avb client interface of type avb_interface into avb_manager()

sink_num The local id of the Listener stream sink

talker_guid The GUID of the Talker entity that is disconnecting

dest_addr The destination MAC address of the Talker stream

stream_id The 64 bit Stream ID of the Talker stream

my_guid The GUID of this entity

XM005270A

XMOS AVB-DC Design Guide 75/80

7.4 1722.1 descriptors

The XMOS AVB reference design provides an AVDECC Entity Model (AEM) consisting of descriptors
to describe the internal components of the Entity. For a complete overview of AEM, see section 7
of the 1722.1 specification.

An AEM descriptor is a fixed field structure followed by variable length data which describes an
object in the AEM Entity model. The maximum length of a descriptor is 508 octets.

All descriptors share two common fields which are used to uniquely identify a descriptor by a type
and an index. AEM defines a number of descriptors for specific parts of the Entity model. The
descriptor types that XMOS currently provide in the reference design are listed in the table below.

7.4.1 Editing descriptors

The descriptors are declared in the a header configuration file named aem_descriptors.h.in
within the src/ directory of the application. The XMOS Reference column in the table refers to the
array names of the descriptors in this file.

This file is post-processed by a script in the build stage to expand strings to 64 octet padded with
zeros.

XM005270A

XMOS AVB-DC Design Guide 76/80

Name Description XMOS Reference

ENTITY This is the top level descriptor
defining the Entity.

desc_entity

CONFIGURATION This is the descriptor defining a
configuration of the Entity.

desc_configuration_0

AUDIO_UNIT This is the descriptor defining
an audio unit.

desc_audio_unit_0

STREAM_INPUT This is the descriptor defining
an input stream to the Entity.

desc_stream_input_0

STREAM_OUTPUT This is the descriptor defining
an output stream from the
Entity.

desc_stream_output_0

JACK_INPUT This is the descriptor defining
an input jack on the Entity.

desc_jack_input_0

JACK_OUTPUT This is the descriptor defining
an output jack on the Entity.

desc_jack_output_0

AVB_INTERFACE This is the descriptor defining
an AVB interface.

desc_avb_interface_0

CLOCK_SOURCE This is the descriptor
describing a clock source.

desc_clock_source_0..1

LOCALE This is the descriptor defining a
locale.

desc_locale_0

STRINGS This is the descriptor defining
localized strings.

desc_strings_0

STREAM_PORT_INPUT This is the descriptor defining
an input stream port on a unit.

desc_stream_port_input_0

STREAM_PORT_OUTPUT This is the descriptor defining
an output stream port on a unit.

desc_stream_port_output_0

EXTERNAL_PORT_INPUT This is the descriptor defining
an input external port on a unit.

desc_external_input_port_0

EXTERNAL_PORT_OUTPUT This is the descriptor defining
an output external port on a
unit.

desc_external_output_port_0

AUDIO_CLUSTER This is the descriptor defining a
cluster of channels within an
audio stream.

desc_audio_cluster_0..N

AUDIO_MAP This is the descriptor defining
the mapping between the
channels of an audio stream
and the channels of the audio
port.

desc_audio_map_0..N

CLOCK_DOMAIN This is the descriptor
describing a clock domain.

desc_clock_domain_0

XM005270A

XMOS AVB-DC Design Guide 77/80

7.4.2 Adding and removing descriptors

Descriptors are indexed by a descriptor list named aem_descriptor_list in the aem_descriptors.h.in
file.

The format for this list is as follows:

Descriptor type

Number of descriptors of type (N)

Size of descriptor 0 (bytes)

Address of descriptor 0

...
Size of descriptor N (bytes)

Address of descriptor N

For example:

AEM_ENTITY_TYPE, 1, sizeof(desc_entity), (unsigned)desc_entity

7.5 PTP client API

The PTP client API can be used if you want extra information about the PTP time domain. An
application does not need to directly use this to control the AVB endpoint since the talker, listener
and media clock server units communicate with the PTP server directly.

7.5.1 Time data structures

ptp_timestamp

This type represents a timestamp in the gptp clock domain.

Fields

unsigned int seconds

unsigned int nanoseconds

7.5.2 Getting PTP time information

ptp_time_info

This type is used to relate local XCore time with gptp time.

It can be retrieved from the PTP server using the ptp_get_time_info() function.

ptp_time_info_mod64

XM005270A

XMOS AVB-DC Design Guide 78/80

This structure is used to relate local XCore time with the least significant 64 bits of
gptp time.

The 64 bits of time is the PTP time in nanoseconds from the epoch.

It can be retrieved from the PTP server using the ptp_get_time_info_mod64() func-
tion.

ptp_get_time_info()

Retrieve port progatation delay from the ptp server.

Type

void ptp_get_time_info(chanend ptp_server, ptp_time_info &info)

Parameters

ptp_server chanend connected to the ptp_server

pdelay unsigned int with delay in ns

ptp_get_time_info_mod64()

Retrieve time information from the ptp server.

This function gets an up-to-date structure of type ptp_time_info_mod64 to use to
convert local time to ptp time (modulo 64 bits).

Type

void ptp_get_time_info_mod64(chanend ?ptp_server,
ptp_time_info_mod64 &info)

Parameters

ptp_server chanend connected to the ptp_server

info structure to be filled with time information

ptp_request_time_info()

This function requests a ptp_time_info structure from the PTP server.

This is an asynchronous call so needs to be completed later with a call to
ptp_get_requested_time_info().

Type

void ptp_request_time_info(chanend ptp_server)

Parameters

ptp_server chanend connecting to the ptp server

XM005270A

XMOS AVB-DC Design Guide 79/80

ptp_request_time_info_mod64()

This function requests a ptp_time_info_mod64 structure from the PTP server.

This is an asynchronous call so needs to be completed later with a call to
ptp_get_requested_time_info_mod64().

Type

void ptp_request_time_info_mod64(chanend ptp_server)

Parameters

ptp_server chanend connecting to the PTP server

ptp_get_requested_time_info()

This function receives a ptp_time_info structure from the PTP server.

This completes an asynchronous transaction initiated with a call to
ptp_request_time_info(). The function can be placed in a select case which will
activate when the PTP server is ready to send.

Type

void ptp_get_requested_time_info(chanend ptp_server, ptp_time_info &info)

Parameters

ptp_server chanend connecting to the PTP server

info a reference parameter to be filled with the time information
structure

ptp_get_requested_time_info_mod64()

This function receives a ptp_time_info_mod64 structure from the PTP server.

This completes an asynchronous transaction initiated with a call to
ptp_request_time_info_mod64(). The function can be placed in a select case which
will activate when the PTP server is ready to send.

Type

void ptp_get_requested_time_info_mod64(chanend ptp_server,
ptp_time_info_mod64 &info)

Parameters

ptp_server chanend connecting to the PTP server

info a reference parameter to be filled with the time information
structure

XM005270A

XMOS AVB-DC Design Guide 80/80

7.5.3 Converting timestamps

local_timestamp_to_ptp()

Convert a timestamp from the local XCore timer to PTP time.

This function takes a 32-bit timestamp taken from an XCore timer and converts it
to PTP time.

Type

void local_timestamp_to_ptp(ptp_timestamp &ptp_ts,
unsigned local_ts,
ptp_time_info &info)

Parameters

ptp_ts the PTP timestamp structure to be filled with the converted time

local_ts the local timestamp to be converted

info a time information structure retrieved from the ptp server

local_timestamp_to_ptp_mod32()

Convert a timestamp from the local XCore timer to the least significant 32 bits of
PTP time.

This function takes a 32-bit timestamp taken from an XCore timer and converts it
to the least significant 32 bits of global PTP time.

Type

unsigned local_timestamp_to_ptp_mod32(unsigned local_ts,
ptp_time_info_mod64 &info)

Parameters

local_ts the local timestamp to be converted

info a time information structure retrieved from the PTP server

Returns

the least significant 32-bits of ptp time in nanoseconds

XM005270A

XMOS AVB-DC Design Guide 81/80

ptp_timestamp_to_local()

Convert a PTP timestamp to a local XCore timestamp.

This function takes a PTP timestamp and converts it to a local 32-bit timestamp
that is related to the XCore timer.

Type

unsigned ptp_timestamp_to_local(ptp_timestamp &ts, ptp_time_info &info)

Parameters

ts the PTP timestamp to convert

info a time information structure retrieved from the PTP server.

Returns

the local timestamp

Copyright © 2014, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS and the XMOS logo are registered trademarks of Xmos Ltd. in the United Kingdom and other countries,
and may not be used without written permission. All other trademarks are property of their respective owners.
Where those designations appear in this book, and XMOS was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

XM005270A

	Overview
	Summary
	XMOS AVB-DC Key Features

	XMOS AVB-DC specification
	Ethernet AVB standards
	802.1AS
	802.1Qav
	802.1Qat
	IEC 61883-6
	IEEE 1722
	IEEE 1722.1

	Hardware development platforms
	System description
	High level system architecture
	Ethernet MAC component
	1722 packet routing

	Precision Timing Protocol component
	Audio components
	AVB streams, channels, talkers and listeners
	Internal routing, media FIFOs
	Talker units
	Listener units
	Media FIFOs to XC channels
	Audio hardware interfaces

	Media clocks
	Driving an external clock generator

	Device Discovery, Connection Management and Control
	The control task
	1722.1

	Resource usage
	Available chip resources
	Ethernet component
	PTP component
	Media clock server
	Audio component(s)
	Configuration/control

	Programming guide
	Getting started
	Obtaining the latest firmware
	Installing xTIMEcomposer Tools Suite
	Importing and building the firmware
	Installing the application onto flash memory
	Using the Command Line Tools
	Using Command Line Tools

	Source code structure
	Directory Structure
	Key Files

	Entity Firmware Upgrade (EFU)
	Introduction
	SPI Flash IC Requirements and Configuration
	Installing the factory image to the device
	Using the avdecc-lib CLI Controller to upgrade firmware

	API Reference
	Configuration defines
	Demo and hardware specific
	Core AVB parameters
	Ethernet
	Audio subsystem
	1722.1

	Component tasks and functions
	Core components
	Audio components

	AVB API
	General control functions
	Multicast Address Allocation commands
	MAAP application hooks
	AVB Control API
	1722.1 Controller commands
	1722.1 Discovery commands
	1722.1 application hooks

	1722.1 descriptors
	Editing descriptors
	Adding and removing descriptors

	PTP client API
	Time data structures
	Getting PTP time information
	Converting timestamps

