
AN10066 (1.0.0)

Application Note: AN10066

Using safe pointers for string processing
This application note is a short how-to on programming/using the xTIMEcomposer tools. It shows using
safe pointers for string processing.

Required tools and libraries

This application note is based on the following components:

• xTIMEcomposer Tools - Version 14.0.0

Required hardware

Programming how-tos are generally not specific to any particular hardware and can usually run on all
XMOS devices. See the contents of the note for full details.

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM007456



AN10066 (1.0.0)

1 Using safe pointers for string processing

When using the multicore extensions to C, pointers are safe. This means that extra checks are inserted
to avoid common memory access errors. It also means that pointers sometimes need to be annotated to
indicate their use.

A couple of standard string processing functions are presented here to show the use of safe pointers in
xC.

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM007456



AN10066 (1.0.0)

2 strlen

The following function implements a version of the standard strlen function that gets the length of a
zero-terminated string:

int my_strlen_1(const char *str)
{
int n = 0;
while (*str != 0) {
str++;
n++;

}
return n;

}

Here there is no difference to standard C. However, the implementation implements bounds checking.
This means that if a string is passed in that is not zero terminated, the program will trap instead of
reading invalid memory and returing a nonsense value:

char str[3] = "abc"; // oh-oh, not zero-terminated
int len = my_strlen_1(str); // this will trap since the loop will

// read past the three bytes allocated to str

Since the trap occurs here at the point of error it is much easier to debug than a later follow-on subtle
program error.

Although the above definition of strlen is workable, it could be better. In xC, arrays and pointers are
not the same - although they can be implictly converted. In particular:

• Array parameters can only access the elements in front of them (you can subtract from pointers to
access behind).

• Arrays cannot be null.

If your function satisfies the properties of being an array, then it is more efficient and safer to use an
array argument. So the function becomes:

int my_strlen_2(const char str[])
{
int n = 0;
const char *p = str;
while (*p != 0) {
p++;
n++;

}
return n;

}

In this case you get a more efficient implementation since the bounds checking does not need to worry
about elements earlier in memory than the pointer str. You also get extra safety checks. The argument
cannot be null so the following code will trap:

char *str = null;
int len = my_strlen_2(str); // this will trap at the point of the call

This will trap at the point of the function call (not within the my_strlen_2 function). Having the trap as
early as possible in execution greatly helps you debug where the cause of the error is.

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM007456



AN10066 (1.0.0)

3 strchr

The strchr function returns a pointer to the first occurence of a character within a string. The C prototype
for the function is:

char * strchr(char * str, int c);

However, if you try and prototype a function like this in xC you will get the error:

error: pointer return type must be marked movable, alias or unsafe

To understand this error, you need to understand that safe pointers have three types in xC: restricted,
aliasing and movable. By default, local pointers are aliasing - so you can have more than one pointer
pointing to the same object. Function parameters default to restricted - so they cannot alias each other.
Return values to functions cannot be restricted so they must be explicitly marked as aliasing or movable.

If a pointer return value is marked as aliasing, it can alias any of the aliasing pointer parameters to the
function (or any global objects). In this case both the incoming pointer and the return value need to be
marked as aliasing. Then the function can be written in the obvious way:

char * alias my_strchr(char * alias str, int c) {
char *p = str;
while (*p != 0 && *p != c) {
p++;

}
if (*p == 0)
return null;

else
return p;

}

By keeping track of aliasing pointers, the compiler can check for program errors involving parallel race
conditions and dangling pointers.

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM007456


	Using safe pointers for string processing
	Using safe pointers for string processing
	strlen
	strchr

