
AN10039 (1.0.0)

Application Note: AN10039

How to use notifications over interfaces
This application note is a short how-to on programming/using the xTIMEcomposer tools. It shows how to
use notifications over interfaces.

Required tools and libraries

This application note is based on the following components:

• xTIMEcomposer Tools - Version 14.0.0

Required hardware

Programming how-tos are generally not specific to any particular hardware and can usually run on all
XMOS devices. See the contents of the note for full details.

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM007330



AN10039 (1.0.0)

1 How to use notifications over interfaces

Sometimes the server end of an interface needs to signal information to the client end. However, usually
the client end initiates communication.

Notifications provide a way for the server to contact the client independently of the client making a call.
It can raise a signal and then carry on processing.

Within the interface declaration, a notification function can be declared with the [[notification]]
attribute.

[[notification]] slave void data_ready(void);

The function is declared as slave to indicate the direction of communication is from the server end to
the client end. In other words, the server will call the function and the client will respond. Notification
functions must take no arguments and have a void return type.

Once the server raises a notification, it triggers an event at the client end of the interface. However,
repeatedly raising the notification has no effect until the client clears the notification. This can be done
by marking one or more functions in the interface with the [clears_notification] attribute.

[[clears_notification]] int get_data();

The client will then clear the notification whenever it calls that function.

The server end of the interface can call the notification function to notify the client end. One important
property of notifications is that they will not block and the server can continue doing work.

c.data_ready();
// The above call is non-blocking , so the task carries on
printf("task1: Sent notification\n");

After calling data_ready, calling it again will have no effect (i.e. the signal can only be raised once). The
server end can then carry on with processing, including receiving messages from the client end of the
same interface connection.

// Wait for some incoming messages
for (int i = 0;i < 2; i++) {
select {
case c.msg(int x):
printf("task1: Received data message %d\n",x);
break;

case c.get_data() -> int return_value:
printf("task1: Received response to notification\n");
return_value = data;
break;

}
}

After the get_data call has been received, this task could re-notify the client.

The client end of the interface can make calls as normal, but can also select upon the notification from
the server end of the interface.

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM007330



AN10039 (1.0.0)

void task2(client interface if1 c)
{
c.msg(5);
select {
case c.data_ready():
int x = c.get_data();
printf("task2: Got data %d\n",x);
break;

}
}

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM007330


	How to use notifications over interfaces
	How to use notifications over interfaces

