
AN10011 (1.0.0)

Application Note: AN10011

A double buffering example
This application note is a short how-to on programming/using the xTIMEcomposer tools. It shows a
double buffering example.

Required tools and libraries

This application note is based on the following components:

• xTIMEcomposer Tools - Version 14.0.0

Required hardware

Programming how-tos are generally not specific to any particular hardware and can usually run on all
XMOS devices. See the contents of the note for full details.

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM007298



AN10011 (1.0.0)

1 A double buffering example

This example shows how two tasks can implement a double buffering mechanism accessing a shared
memory area.

One task fills a buffer whilst the other task displays a buffer. Both tasks access these buffers via movable
pointers. These pointers can be safely transferred between tasks without any race conditions between
the tasks using them.

When the tasks have finished filling and displaying the data, they connect via an interface connection and
swap their pointers allowing them to work on different buffers.

fill_task bufswap display_task

interface
movable movable
pointer pointer

MEMORY

buf1 buf2

The interface between the two tasks is a single transaction that swaps the movable pointers. It has an
argument that is a reference to a movable pointer. Since it is a reference the server side of the connection
can update the argument.

interface bufswap {
void swap(int * movable &x);

};

The filling task takes as arguments the server end of an interface connection and the initial buffer it is
going to fill. It is initialized by creating a movable pointer to this buffer and then filling it. Filling is done
via a function call to a fill function which is application dependent and not defined here.

void fill_task(server interface bufswap display,
int initial_buffer[])

{
int * movable buffer = &initial_buffer[0];
// fill the initial buffer
fill(buffer);

The main loop of the filling task waits for a swap transaction with the other task and implements the swap
of pointers. After that it fills the new buffer it has been given:

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM007298



AN10011 (1.0.0)

while (1) {
// swap buffers
select {
case display.swap(int * movable &display_buffer):
// Swapping uses the 'move' operator. This operator transfers the
// pointer to a new variable, setting the original variable to null.
// The 'display_buffer' variable is a reference, so updating it will
// update the pointer passed in by the other task.
int * movable tmp;
tmp = move(display_buffer);
display_buffer = move(buffer);
buffer = move(tmp);
break;

}
// fill the buffer with data
fill(buffer);

}
}

The displaying task takes the other end of the interface connection and its initial buffer as arguments. It
also creates a movable pointer to that buffer.

void display_task(client interface bufswap filler,
int initial_buffer[]) {

int * movable buffer = &initial_buffer[0];

The main loop of the display task first calls the swap transaction, which synchronizes with the fill task and
updates the buffer pointer to the new swapped memory location. After that it calls an auxiliary display
function to do the actual displaying. This function is application dependent and not defined here.

while (1) {
// swap buffers
filler.swap(buffer);
// display the buffer
display(buffer);

}
}

The application runs both of these tasks in parallel using a par statement. The two buffers are declared
at this level and passed into the two tasks:

int main() {
int buffer0[200];
int buffer1[200];
interface bufswap c;
par {
fill_task(c, buffer0);
display_task(c, buffer1);

}
return 0;

}

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM007298



AN10011 (1.0.0)

providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM007298


	A double buffering example
	A double buffering example

