
AN01021 (1.0.0)

Application Note: AN01021

Interfacing High Speed ADCs with xCORE
The application notes shows how to interface high speed ADCs with xCORE devices. It also gives an
overview about the advantages of using xCORE buffered I/O ports, clock blocks and xCONNECT commu-
nication channels.

The code associated with this application note povide an example to interface Texas Instruments high
speed ADC (ADS7863A) to xCORE devices. The application note contains simulation that shows how the
data is sampled by the xCORE device.

Required tools and libraries

• xTIMEcomposer Tools - Version 13.2

Required hardware

This application note is designed to run using xSIM (XMOS simulator tool). No additional hardware is
required to run the example.

The example code provided with the application has been implemented and tested using the XMOS sim-
ulator tool (xSIM) and can run on any xCORE device.

Prerequisites

• This document assumes familiarity with the XMOS xCORE architecture, the XMOS tool chain and the
xC language. Documentation related to these aspects which are not specific to this application note
are linked to in the references appendix.

• For descriptions of XMOS related terms found in this document please see the XMOS Glossary1.

1http://www.xmos.com/published/glossary

Copyright 2014 XMOS Ltd. 1 www.xmos.com
XM006976 (A)

http://www.xmos.com/published/glossary

AN01021 (1.0.0)

1 Overview

This application notes shows how to interface an xCORE device with an external ADC like TI ADS7863A.
To interface the ADC with an xCORE device, one logical core is sufficient. But, this application notes uses
three logical cores for demonstrating xCORE features. One logical core (master_ads7863a) is used to
interface with the ADC using xCORE I/O ports, one logical core is for the user application (app) – receives
data that is sent by the master_ads7863a logical core – and one logical core to emulate the ADS7863A
device (slave_side_ads7863a_simulation). This application note refers to the ADV in Mode-I; information
about other modes supported by this ADC is available in the ADS7863A data sheet.2

The timing diagram of the ADC is shown below:

Figure 1: Timing diagram of ADC

1.1 Applications where high speed ADCs are used

• Motor Control
• Multi-Axis Positioning Systems
• Three-Phase Power Control
• Sensor data acquisition

2http://www.ti.com/lit/ds/symlink/ads7863a.pdf

Copyright 2014 XMOS Ltd. 2 www.xmos.com
XM006976 (A)

http://www.ti.com/lit/ds/symlink/ads7863a.pdf

AN01021 (1.0.0)

1.2 Block Diagram

The block diagram (Figure 2) shows the ADC interface with an xCORE device in Mode-I.

Figure 2: Block digaram of ADC interface with xCORE

Copyright 2014 XMOS Ltd. 3 www.xmos.com
XM006976 (A)

AN01021 (1.0.0)

2 Application overview

The example in this document does not have any external dependancies on application libraries other
than those supplied with the XMOS development tools.

This example is implemented using three logical cores which perform the following functionality

• One logical core (master_ads7863a) is used to interface with the ADC using xCORE I/O ports and
generate clock for the ADC and read the ADC data when there is new data available.

• One logical core (slave_side_ads7863a_simulation) is used in this example to emulate the ADC slave.
• One logical core (app) is used as an application core to receive the ADC data using a channel.

This can be seen in the following core diagram

master_ads7863a

slave_side_
ads7863a_simulation

app

Figure 3: Core diagram showing communication between logical cores

2.1 Advantages of using xCORE technology

Unlike traditional microcontrollers, xCORE devices have multiple logical cores which run several tasks
independently in parallel and have high I/O flexibility. xCORE I/Os have less latency and can respond
to events very quickly compared to traditional microcontrollers, so they are well suited for time critical
and high speed data acquisition applications. More information is available in the xCORE Architecture
Introduction3 document.

2.1.1 xCORE I/O ports

xCORE I/O ports have unique functionality that allows a reference clock to be used to synchronize the
input and output operations on a port. The ports can be configured to buffer the transfers, and can be
easily converted between serial and parallel form. Ports can be configured to wait for a condition and then
generate events that trigger the logical processing core. All of these features are used in this application.
More information on ports is available in the XS1 Ports Introduction4.

3http://www.xmos.com/published/xcore-architecture
4http://www.xmos.com/published/xs1-ports-introduction

Copyright 2014 XMOS Ltd. 4 www.xmos.com
XM006976 (A)

http://www.xmos.com/published/xcore-architecture
http://www.xmos.com/published/xs1-ports-introduction

AN01021 (1.0.0)

2.1.2 xCONNECT channels

xCORE devices can communicate between the logical cores using high speed, low latency channels. There
are two types of channels: streaming channel and normal channel. This application uses streaming
channels which have less overhead compared to normal channels. They are suitable for high speed
communication between logical cores, but the number of streaming channels you can have between the
tiles is limited. See the xCONNECT Architecture5 document for more details.

2.2 Application Description

The application uses nine 1bit ports and a clock block to interface with ADC. It also uses four 1bit ports
and one clock block to emulate the ADC slave. The ADC requires a 32MHz clock to be generated by the
xCORE device. The I/O ports on xCORE devices generally run synchronous to the 100MHz reference clock.
The ports can be configured to run at different clock speeds by dividing the reference clock by multiples
of 2, but this still does not deliver the required 32MHz clock. Therefore, the application must use an
external 32MHz oscillator that’s connected to a 1bit port, as shown in Figure 2. For the demonstration, a
50MHz clock was used. The clock block is clocked from the crystal clock signal using the input port. All
the other input and output ports are set to clock based on the clock block, so the data will be sampled
synchronous to the clock block at the speed of 50MHz. More information on programming clock blocks
and buffered ports see the XMOS Programming Guide6.

2.3 PortMap details

In the xCORE architecture, a Port connects a processor to one or more physical pins. The portMap defines
which ports are assigned to which software functions. So in this example, clock signal, conversion start,
data ready, data input, read channel A data and read channel B data are required to interface with TI
ADS7863A ADC device. ADC conversion starts when the conversion start pin goes high. Converted ADC
data is read using sdoa pin for channel A and sdob pin for channel B. sdi pin is for sending configuration
information to the ADC (specifies the settings for conversion). The data read from the ADC after conver-
sion using sdoa and sdob is 12 bit. Data is available for reading only after two clock cycles after ready
signal goes low.

xCORE ports required to interface with TI ADS7863A ADC are listed below:

Port Name Use

XS1_CLK_BLK_1 Clockblock to generate 50MHz clock as 32 MHz cannot be generated by xCORE
internally.

p_clk_in Input port to input 32MHz clock signal to clock block clk; Not used in this
simulation as the demonstration uses a 50MHz internal clock.

p_clk_out Output port to driver clock to the ADS7863A device.

p_rd Output port for read write signal to the ADS7863A device.

p_convsr Output port to send the start conversion signal to the ADC.

p_sdi Output port to send configuration information to the ADC.

p_cs Output port for chip select (enable and disable the ADC).

p_sdoa Input port for reading Channel A conversion results from the ADC.

p_sdob Input port for reading Channel B conversion results from the ADC.

p_busy Input port for reading the status of the ADS7863A device.

5http://www.xmos.com/published/xconnect-architecture
6http://www.xmos.com/published/xmos-programming-guide

Copyright 2014 XMOS Ltd. 5 www.xmos.com
XM006976 (A)

http://www.xmos.com/published/xconnect-architecture
http://www.xmos.com/published/xmos-programming-guide

AN01021 (1.0.0)

Details about the functionality of the ports are available in the TI ADS7863A datasheet7.

2.4 PortMap for Slave Emulation

portmap for emulating the slave device is shown below

Port Name Use

p_dummy_1 Output port to send Channel A converted values.

p_dummy_2 Output port to send Channel B converted values.

p_signal Output port to indicate the status of the ADC.

p_clk_in_sim Input port to receive clock.

clk_1 Clock block that is configured to run based on the input clock signal.

2.5 The application main() function

The main() function is contained in main.xc as follows:

int main()
{

streaming chan c;
par
{

on tile[0] : master_ads7863a(c);
on tile[0] : slave_side_ads7863a_simulation();
on tile[0] : app(c);

}
}

//End

Looking at this function in more detail you can see the following:

• Three logical cores are running in parallel on tile 0.
• The application and master logical cores communicate the ADC information using a channel c.

7http://www.ti.com/lit/ds/symlink/ads7863a.pdf

Copyright 2014 XMOS Ltd. 6 www.xmos.com
XM006976 (A)

http://www.ti.com/lit/ds/symlink/ads7863a.pdf

AN01021 (1.0.0)

2.6 Master_ads7863a() logical core

The logical core master_ads7863a is available in the main.xc file as follows:

void master_ads7863a(streaming chanend c)
{
unsigned data_1,data_2,ts;
//reference clock is set to 50MHz
configure_clock_rate(clk,100,2);
configure_port_clock_output(p_clk_out, clk);
//Configuring all the ports synchronous to reference clock
configure_out_port(p_convsr, clk, 0);
configure_out_port(p_sdi, clk, 0);
configure_out_port(p_rd, clk, 0);
configure_in_port(p_sdoa, clk);
configure_in_port(p_sdob, clk);

p_rd<:0x0000000;
p_convsr<:0x00000000;
p_sdi<:0x00000000;
set_port_shift_count(p_sdoa,16);
set_port_shift_count(p_sdoa,16);
start_clock(clk);
p_cs<:0;
while(1)
{

p_rd @ (ts+5)<:0x00010001 ;
p_convsr @ (ts+5) <:0x00010001;
//write LSB first for two channels at a time
p_sdi @ (ts+7) <:0x05555550;
//Read two channels at a time. As we are usign 32 bit buffered ports
p_sdoa:> data_1;
p_sdob:> data_2 @ ts;
//Send the data read to the application using channels
c<:data_1;
c<:data_2;

}
}

Looking at the logical core in more detail, you can see the following:

• Clock block clk is set to run at 50MHz.
• Generated 50MHz clock is outputted on port p_clk_out. The clock output is used to input clock

to the ADC.
• Output ports p_convsr, p_sdi, p_rd are configured to run synchronously using clock block
clk. Information on timed output on a port is available in the how to perform timed output on
a port8 document.

• ADC requires conversion start signal along with the clock input. After receiving the conversion
start signal, the ADC starts the conversion.

• Configuration of ADC is done using p_sdi. The conversion start should be enabled once the
configuration is set.

• The input ports p_sdoa and p_sdob are clocked using clock block clk and read the converted
ADC data after each conversion.

8https://www.xmos.com/download/public/app_port_timed_output_example-README(1.1.1rc0.a).pdf

Copyright 2014 XMOS Ltd. 7 www.xmos.com
XM006976 (A)

https://www.xmos.com/download/public/app_port_timed_output_example-README(1.1.1rc0.a).pdf

AN01021 (1.0.0)

• p_rd and p_convsr ports signals are made high for every 16 clock pulses to indicate start con-
version to the ADC.

• Data from Channel A is read and sent to the application using a channel c
• Data from Channel B is read and sent to the application using a channel c.
• As the application uses a 32 bit buffered port, two samples must be read together. Information

on buffered output ports is available in the How to use buffering for port output9 document.

2.7 slave_side_ads7863a_simulation() logical core

The logical core slave_side__ads7863a_simulation is available in the main.xc file as follows:

void slave_side_ads7863a_simulation()
{

unsigned data;
configure_clock_rate(clk_1,100,2);
configure_out_port(p_dummy_1, clk_1,0);
configure_out_port(p_dummy_2, clk_1,0);
configure_in_port(p_signal, clk_1);
start_clock(clk_1);

while(1)
{

// wait for conversion start signal from Master
p_signal:>data ;

if(data)
{

clearbuf(p_dummy_1);
clearbuf(p_dummy_2);
//Output Channel A and CHannel B information. Two samples at a time.
p_dummy_1<: 0x3AAA3AAF ;
p_dummy_2<: 0xFFFFFFFE;

}
}

}

Looking at the logical core in more detail, you can see the following:

• clockblock clk_1 is configured to run according to the clock signal.
• Output ports p_dummy_1, p_dummy_2 are configured to run synchronous to clock block clk_1.
• The logical core reads data on p_signal port and sends data on the ports p_dummy_1, p_dummy_2

emulating the slave ADC device.
• The conversion start signal of master_ads7863a logical core is connected to the p_signal port.
• When the master_asd7863a core sends a conversion start signal, the p_signal port detects and

sends data back to the master_ads7863a core using ports p_dummy_1 and p_dummy_2.

9https://www.xmos.com/download/public/app_port_buffered_output_example-README(1.1.1rc0.a).pdf

Copyright 2014 XMOS Ltd. 8 www.xmos.com
XM006976 (A)

https://www.xmos.com/download/public/app_port_buffered_output_example-README(1.1.1rc0.a).pdf

AN01021 (1.0.0)

2.8 app() logical core

The logical core app is available in the main.xc file and is as follows,

void app(streaming chanend c)
{

unsigned data;
while(1)
{

//Read Channel A and CHannel B data alternatively.
c:>data;

}
}

Looking at the logical core in more detail, you can see that: channel c is waiting for the ADC channel
number; data is read from the channel A and channel B alternatively.

Copyright 2014 XMOS Ltd. 9 www.xmos.com
XM006976 (A)

AN01021 (1.0.0)

3 Launching the demo application

Once the demo application is built using the xTIMEcomposer Studio, the example can be run on the
simulator using the following steps: -0.5em

1. Right click on the binary in the bin directory within the project and select Run as · Run configura-
tions. This will open up Run configurations menu.

2. Select Run on Simulator option as shown in Figure 4:

Figure 4: Screen capture showing Run Configuration for simulator

3. Click on the Simulator tab and select the Enable Signal Tracing checkbox.

4. Check the Pins checkbox in the System Trace options (per device).

5. Click the Add button, check the Ports checkbox and click Apply (Figure 5).

Figure 5: Screen capture showing simulator tab

Copyright 2014 XMOS Ltd. 10 www.xmos.com
XM006976 (A)

AN01021 (1.0.0)

6. Select the Loopback tab and check the Enable Pin Connections checkbox.

7. Click the Add button and set loopback connections for Port 1J to Port 1G.

8. Create a loopback for Port 1K to Port 1H, Port 1L to 1C, and Port 1A to 1M (Figure 6).

Figure 6: Screen capture showing loopback settings

9. Click Run to run the demo using simulator. Once the demo starts running, you will see the application
core displaying the Channel A and Channel B values alternatively on the console.

Copyright 2014 XMOS Ltd. 11 www.xmos.com
XM006976 (A)

AN01021 (1.0.0)

3.1 Viewing the simulator

After the simulator has been running for 15 seconds, click the STOP button in the Console. The simulator
generates a VCD file in the project. -0.5em

1. Double-click on the VCD file to open the waveform on top of the Console view and the Signals* panel
on top of the Project Explorer.

2. Click on Ports in the Signals view, open the XS1_PORT_1A folder.

3. Right-click on tile[0]_XS1_PORT_1A and select the Display signal(s) option. This adds the Port 1A
into the waveform view (Figure 7).

Figure 7: Screen capture showing signals

4. Use the same procedure to add all the ports: 1B, 1C, 1D, 1F, 1G, 1H, 1I, 1J, 1K, 1L, 1M.

5. All the signals are displayed in the waveform viewer, as shown in Figure 8:

Figure 8: Screen capture showing waveform

Copyright 2014 XMOS Ltd. 12 www.xmos.com
XM006976 (A)

AN01021 (1.0.0)

3.2 Description of the waveform

• The first signal p_clk_out shows the 50MHz clock signal.
• The p_rd and p_convsr signals show the data these ports is pulled high for every 16 clock pulses.
• The p_sdi carries configuration information for every conversion. So, you will see the data being

sent every 16 clock pulses. As we are using 32 bit buffered ports in our application, we send two
samples at a time.

• p_sdoa and p_sdob shows the data that is read from from the Channel A and Channel B of ADC
after each conversion. We read two samples at a time as we are using 32 bit buffered ports.

Copyright 2014 XMOS Ltd. 13 www.xmos.com
XM006976 (A)

AN01021 (1.0.0)

4 References

XMOS Tools User Guide

http://www.xmos.com/published/xtimecomposer-user-guide

XMOS Programming Guide

http://www.xmos.com/published/xmos-programming-guide

xCORE Architecture Introduction

http://www.xmos.com/published/xcore-architecture

XS1 ports Introduction

http://www.xmos.com/published/xs1-ports-introduction

Copyright 2014 XMOS Ltd. 14 www.xmos.com
XM006976 (A)

http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide
http://www.xmos.com/published/xcore-architecture
http://www.xmos.com/published/xs1-ports-introduction

AN01021 (1.0.0)

5 Full source code listing

5.1 Source code for main.xc

#include <xs1.h>
#include <xclib.h>
#include <platform.h>

//Ports to interface with ADC
on tile[0] : clock clk = XS1_CLKBLK_1;
on tile[0] : in port p_clk_in = XS1_PORT_1E;
on tile[0] : out buffered port:32 p_clk_out = XS1_PORT_1A;
on tile[0] : out buffered port:32 p_rd = XS1_PORT_1B;
on tile[0] : out buffered port:32 p_convsr = XS1_PORT_1C;
on tile[0] : out buffered port:32 p_sdi = XS1_PORT_1D;
on tile[0] : out port p_cs = XS1_PORT_1F;
on tile[0] : in buffered port:32 p_sdoa = XS1_PORT_1G;
on tile[0] : in buffered port:32 p_sdob = XS1_PORT_1H;
on tile[0] : in port p_busy = XS1_PORT_1I;

//For Slave emulation
on tile[0] : out buffered port:32 p_dummy_1 = XS1_PORT_1J;
on tile[0] : out buffered port:32 p_dummy_2 = XS1_PORT_1K;
on tile[0] : in port p_signal = XS1_PORT_1L;
on tile[0] : in buffered port:32 p_clk_in_sim = XS1_PORT_1M;
on tile[0] : clock clk_1 = XS1_CLKBLK_2;

void master_ads7863a(streaming chanend c)
{
unsigned data_1,data_2,ts;
//reference clock is set to 50MHz
configure_clock_rate(clk,100,2);
configure_port_clock_output(p_clk_out, clk);
//Configuring all the ports synchronous to reference clock
configure_out_port(p_convsr, clk, 0);
configure_out_port(p_sdi, clk, 0);
configure_out_port(p_rd, clk, 0);
configure_in_port(p_sdoa, clk);
configure_in_port(p_sdob, clk);

p_rd<:0x0000000;
p_convsr<:0x00000000;
p_sdi<:0x00000000;
set_port_shift_count(p_sdoa,16);
set_port_shift_count(p_sdoa,16);
start_clock(clk);
p_cs<:0;
while(1)
{

p_rd @ (ts+5)<:0x00010001 ;
p_convsr @ (ts+5) <:0x00010001;
//write LSB first for two channels at a time
p_sdi @ (ts+7) <:0x05555550;
//Read two channels at a time. As we are usign 32 bit buffered ports
p_sdoa:> data_1;
p_sdob:> data_2 @ ts;

Copyright 2014 XMOS Ltd. 15 www.xmos.com
XM006976 (A)

AN01021 (1.0.0)

//Send the data read to the application using channels
c<:data_1;
c<:data_2;

}
}

void slave_side_ads7863a_simulation()
{

unsigned data;
configure_clock_rate(clk_1,100,2);
configure_out_port(p_dummy_1, clk_1,0);
configure_out_port(p_dummy_2, clk_1,0);
configure_in_port(p_signal, clk_1);
start_clock(clk_1);

while(1)
{

// wait for conversion start signal from Master
p_signal:>data ;

if(data)
{

clearbuf(p_dummy_1);
clearbuf(p_dummy_2);
//Output Channel A and CHannel B information. Two samples at a time.
p_dummy_1<: 0x3AAA3AAF ;
p_dummy_2<: 0xFFFFFFFE;

}
}

}

void app(streaming chanend c)
{

unsigned data;
while(1)
{

//Read Channel A and CHannel B data alternatively.
c:>data;

}
}

//main function//
int main()
{

streaming chan c;
par
{

on tile[0] : master_ads7863a(c);
on tile[0] : slave_side_ads7863a_simulation();
on tile[0] : app(c);

}
}

//End

Copyright 2014 XMOS Ltd. 16 www.xmos.com
XM006976 (A)

AN01021 (1.0.0)

Copyright © 2014, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2014 XMOS Ltd. 17 www.xmos.com
XM006976 (A)

	Overview
	Applications where high speed ADCs are used
	Block Diagram

	Application overview
	Advantages of using xCORE technology
	xCORE I/O ports
	xCONNECT channels

	Application Description
	PortMap details
	PortMap for Slave Emulation
	The application main() function
	Master_ads7863a() logical core
	slave_side_ads7863a_simulation() logical core
	app() logical core

	Launching the demo application
	Viewing the simulator
	Description of the waveform

	References
	Full source code listing
	Source code for main.xc

